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BETTER-THAN-OPPONENT||A STOPPING GAME

FOR POISSON-ARRIVING OFFERS

Minoru Sakaguchi
�

Received July 12, 2001

Abstract. Two players observe a Poisson stream of o�ers. The o�ers are i.i.d.r.v.s

from U[0;1] distribution. Each player wants to accept one o�er in the interval [0; T ] and

aims to select an o�er larger than the opponent's one. O�ers arrive sequentially and

decisions to accept or reject must be made immediately after the o�ers arrive. Players

have equal weights, so if both players want to accept a same r.v., a lottery is used to

the e�ect that each player can get it with probability 1=2: If one player accepts a r.v.

and the other doesn't the latter player waits for a larger r.v. appearing before time

T: Call this event his win. Each player wants to maximize his probability of winning.

The normal form of the game is formulated and the explicit solution is given with

Nash values and equilibrium strategies. The bilateral-move version of the game is also

analysed and the explicit solution is found. It is shown that the second mover stands

unfavorable, on the contrary to the case in multi-round poker.

1 Better-than-opponent|Simultanious-move game. Players I and II must make

a decision to accept (A) or reject (R) an o�ered job at each o�er presentation. The o�ers

arrive during time interval [0; T ] as a Poisson process with rate �: The o�ered jobs have

random sizes being i.i.d. random variables from uniform distribution on [0; 1]: Whenever

an o�er with size x arrives it is presented to both players simultaniously, and players must

choose either A or R: If players' choice-pair is A-R or R-A then the player choosing A

gets x dropping out from the game thereafter, and the other player continues his (or her)

one-person game. If the choice-pair is A-A then a lottery is used to the e�ect that A-R or

R-A is enforced to the players with equal probability 1=2: If the choice-pair is R-R; then

the current sample x is rejected and the game passes on to the time when a new job arrives

next. A player wins if he accepts a r.v. that is larger than the opponent's one, or his

opponent fails to accept any r.v. before the deadline T comes. The aim of each player is to

�nd his strategy by following which he maximizes probability of his winning.

De�ne state (x; t) to mean that (1) both players remain in the game, and (2) an o�er

with size x has just arrived at time T � t(i.e the remaining time before deadline is t).

Let '(x; t)( (x; t)) be the probability of choosing A by player I(II) in state (x; t): Also let

Vi(t; ';  ) be the winning probability for player i at time t left to go, if players employ

strategies ' and  , respectively. Then the game is described by the following di�erential

equations (if one considers the possible events when the residual time decreases from t to

t�4t and takes the limit as 4t! 0).

(1:1) �
�1(V 0

1(t); V
0

2 (t)) = �(V1(t); V2(t)) +
Z 1

0

(';')M(x; t)( ; )Tdx
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with the initial conditions V1(0) = V2(0) = 0 and

(1:2) M(x; t) = (I)

8>><
>>:

R

A

(II)z }| {
R A

V1(t); V2(t) g(x; t); g(x; t)

g(x; t); g(x; t) 1=2; 1=2

Here Vi(t; ';  ); '(x; t) and  (x; t) are abreviated by Vi(t); ' and  ; respectively, and

g(x; t) = Pr:fhe wins j one player only chooses A in state (x; t)g

= e
��t

1X
j=0

x
j (�t)j=j! = e

��tx
: (x means 1� x)

Rewriting (1.1)-(1.2) we get the equations

(1:3)

8<
:

�
�1
V
0

1(t) = �V1(t) +
R 1
0
[ g +  V1 + f (12 � g) +  (g � V1)g']dx;

�
�1
V
0

2(t) = �V2(t) +
R 1
0
['g + 'V2 + f'(12 � g) + '(g � V2)g ]dx;

which reects the symmetry of the players' roles in the game. The problem here is to �nd

the solution to (V1(T;';  ); V2(T;';  ))! Nash eq.
('; )

The explicit solution to the simultanious-move version of the game (1.1) � (1.3) is given

in Section 1, and that to the bilateral-move version is given in Section 2.

The optimal stopping games have various phases according to the various essentials

of (1) zero-sum or nonzero-sum, (2) information pattern under which players choose their

decision, and (3) the objectives that players attempt. The problem we consider in this

paper belong to a class of best-choice problems combined with continuous-time sequential

games. In the recent works by the present author [9, 10], the game under ENV (= expected-

net-value)-maximization are investigated, whereas [11] and the present article discusses the

games underWP (= winning- probability)-maximization. Other recent works related to this

area of problems are [1 � 5, 6, 7, 9 and 12]. Also a recent work for the optimal stopping

games in various phases can be found in [8]. Moreover, some open problems in this area are

mentioned in Section 3 of the present paper.

The following lemma plays a fundamental role to derive the main results in this article.

Lemma 1.1 (Garnaev[3]) Let y0 = a(t) + b(t)y; with y(0) = 0: Then

y(t)

8<
:

<

=

>

9=
; 0;8t 2 (0; T ); if a(t)

8<
:

<

=

>

9=
; 0;8t 2 (0; T ]

This result follows from the fact that
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y(t) =

Z t

0

a(� )exp(

Z t

�

b(s)ds)d�:

Also the next lemma helps to derive the key equations (1.11) and (1.12) which will

appear in Theorem 1.

Lemma 1.2 Let 0 < V (t) < 1
2
; 8t 2 [0; T ]: For each x 2 [0; 1] and t 2 (0; T ]; the bimatrix

game

M(x; t) =

R

A

R A

V (t); V (t) g(x; t); g(x; t)

g(x; t); g(x; t) 1=2; 1=2

has the equilibria:

If Common eq. Value Common eq. Strategy

(i) 0 < x < [1 + (�t)�1 log V (t)]+ V (t) choose R

(ii) [1� (�t)�1 log 2]+ < x < 1 1=2 choose A

(iii) otherwise 1
2
� (1=2�g(x;t))2

1=2�V (t)
randomize R and A with

prob. ' =
g(x;t)�V (t)

1=2�V (t)
, for A

(c.f. If (iii) applies, the choice-pairs R-A and A-R give pure-strategy eq. also.)

Proof. First note that

(1:4)

8<
:

V (t) > g(x; t)() x < [1 + (�t)�1 logV ]+

�g(x; t) > 1=2() x < [1� (�t)�1 log 2]+

and V (t) < 1=2; Then evidently R-R [A-A] gives a unique equilibrium if (i) [(ii)] apllies. If

(iii) applies a mixed-strategy equilibrium exists which is given by solving

'V (t) + 'g(x; t) = 'g(x; t) +
1

2
' = Eq: payo� to II;

 V (t) +  g(x; t) =  g(x; t) +
1

2
 = Eq: payo� to I:

This gives the statements of the lemma. 2

Let denote, by '�(x; t)- �(x; t) and V1�(t)-V2�(t) the strategy-pair and game values in

Nash equilibrium, respectively, for the game described by (1.1)-(1.2). From the symmetry

of the players' role in the game, we can take V1�(t) = V2�(t) = V�(t); say.
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Therefore 0 < V�(t) <
1
2
; 8t > 0; is evident.

We consider the following three cases

Case 1Æ 0 < �T < log 2:

The condition (ii) in Lemma 1.2 applies, and the choice-pair A-A is selected. Since the

time left is too short, any o�er, however small, are accepted by both players.

Case 2Æ log 2 < �T < t0; where t0 2 (log 2;1); is a unique root of the equation

� log V�(�
�1
t) = t:

The conditions (ii)-(iii) in Lemma 1.2 apply. The choice-pair Mix-Mix (A-A) is selected

if x < (>)[1 � (�t)�1 log 2]+: Here Mix means to randomize A and R with respective

probabilities '�(x; t)( �(x; t)) and '�(x; t)( �(x; t)) for player I(II).

Case 3Æ �T > t0:

The conditions (i)�(iii) in Lemma 1.2 apply. Choice-pairs R-R, Mix-Mix, and A-A are

selected in this order as x 2 [0; 1] increases. Since the time left is long, small o�ers are

rejected by both players expecting to face a larger r.v. in the future.

Figure 1 shows devision of (x; t) region by the equilibrium strategy-pair (1.5) into the

three subregions. The appropriateness of the �gure is assured later in Corollaries 1.1 and

1.2.

Figure 1: Equibrium strategy-pairs in Theorem 1

-

6

t

0

1� (�t)�1 log 2

1 + (�t)�1 logV�(t)

�
�1 log 2 �

�1
t0(; 1:32��1)

Case1Æ Case2Æ Case3Æ

A-A
Mix-Mix

R-R

We prove

Theorem 1. The strategy-pair '�(x; t)- �(x; t) with

(1:5) '�(x; t) =  �(x; t) =

8>>>><
>>>>:

0; if 0 � x < [1 + (�t)�1 log V�(t)]
+

1; if [1� (�t)�1 log 2]+ < x � 1

(1=2� V�(t))
�1(g(x; t) � V�(t)); if otherwise

is in Nash equilibrium and the game has common eq. value V�(T ); which is given by the

solution of the di�erential equation :

In Case 1Æ;

(1:6) �
�1
V
0

�
(t) =

1

2
� V�(t); with V�(0) = 0;
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In Case 2Æ;

(1:7) �
�1
V
0

�
(t) =

1

2
� V�(t) �

�
1

2
� V�(t)

�
�1

a(t); with V�(�
�1 log 2) = 1=4;

where a(t) � 1
4
� (�T )�1

�
1
4
log 2 + 3

8
� e

��t + 1
2
e
�2�t

�
;

In Case 3Æ;

(1:8) tV
0

�
(t) =

1

2
+

�
1

2
� V�(t)

��
1

2
� logV�(t)

�
+

1

4

�
1

2
� V�(t)

�
�1

log(2V�(t));

with V�(�
�1
t0) = e

�t0
:

Proof. We want to prove that '� �  � given by (1.5) satis�es

(1:9) V (t; ';  �) � V (t; '�;  �); 8 strategy ' for I;

and

(1:10) V (t; '�;  ) � V (t; '�;  �); 8 strategy  for II:

We temporally use the abreviated notations V (t; ';  �) = V (t) and V (t; '�;  �) = V�(t)

for the proof of (1.9). Then from (1.3) we have

�
�1
V
0(t) = �V +

Z 1

0

�
 �g +  �V +

�
 �

�
1

2
� g

�
+  �(g � V )

�
'

�
dx;

and

(1:11) �
�1
V
0

�
(t) = �V� +

Z 1

0

�
 �g +  �V� +

�
 �

�
1

2
� g

�
+  �(g � V�)

�
'�

�
dx:

(In the r.h.s. of these equations, the arguments t and (x; t) are ommitted. This way of

the simpli�ed descriptions are often used in this paper)

By subtracting side-by-side and doing some rearrangement, we obtain

(1:12)

�
�1(V (t)�V�(t))0 = �(V �V�)

Z 1

0

(1�' �)dx+
Z 1

0

�
 �(g � V�) +  �

�
1

2
� g

��
('�'�)dx

Let B(t) denote the second term in the r.h.s. of (1.12), that is,

(1:13) B(t) �
Z 1

0

�
 �(g � V�) +  �

�
1

2
� g

��
('� '�)dx

Then in Case 1Æ we have, since '� =  � = 1; and g < 1=2;

B(t) = �
Z 1

0

�
1

2
� g

�
'dx � 0; 8 strategy ' for I:

In Case 2Æ we have

B(t) =

Z 1�(�t)�1 log 2

0

�
 �(g � V�) +  �

�
1

2
� g

��
('�'�)dx+

Z 1

1�(�t)�1 log 2

�
1

2
� g

�
(�')dx
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and

 �(g � V�) +  �

�
1

2
� g

�
=

�
1

2
� V�

�
�1��

1

2
� g

�
(g � V�) + (g � V�)

�
1

2
� g

��
= 0:

Therefore B(t) � 0; for any strategy ' for I.

In Case 3Æ; Eq.(1.12) becomes

B(t) =

Z 1+(�t)�1 logV
�

0

(g � V�)'dx+

Z 1�(�t)�1 log 2

1+(�t)�1 log V
�

0dx

+

Z 1

1�(�t)�1 log 2

�
1

2
� g

�
(�')dx � 0 + 0 + 0 = 0; 8':

So in all cases, " the constant term" B(t) in the linear di�erential equation (1.11) of

V (t) � V�(t) is non-positive. This implies, from Lemma 1.1, that (1.9) is valid.

Symmetry of the game leads to the similar fact (1.10) in the analogous way. This

completes the proof of the �rst half of the theorem.

Now it remains to show the second half. The above arguments combined with (1.11)

with '� =  � on th r.h.s. give the di�erential equation

(1:14) �
�1
V
0

�
(t) =

�
1

2
� V�

�Z 1

0

(2'� � '
2
�
)dx

�
�
�
1

2
� V�

�
B�(t); say:

�

Computation shows that

B�(t) = 1; in Case 1Æ;

B�(t) =

Z 1�(�t)�1 log 2

0

(
1�

�
1

2
� V�

�
�2�

1

2
� g

�2
)
dx+

Z 1

1�(�t)�1 log 2

dx

= 1�
�
1

2
� V�

�
�2

a(t);

where

(1:15) a(t) =

Z 1�(�t)�1 log 2

0

�
1

2
� g

�2

dx

=
1

4
� (�t)�1

�
1

4
log 2 +

3

8
� e��t +

1

2
e
�2�t

�
; in Case 2Æ

and �nally in Case 3Æ;

B�(t) =

Z 1�(�t)�1 log 2

1+(�t)�1 log V
�

(
1�

�
1=2� g

1=2� V�

�2
)
dx +

Z 1

1�(�t)�1 log 2

dx

= �(�t)�1 logV� �
�
1

2
� V�

�
�2

b(t);

where
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b(t) =

Z 1�(�t)�1 log 2

1+(�t)�1 logV
�

�
1

2
� g

�2

dx

= �(�t)�1
(
1

4
log(2V�) +

1

2

�
1

2
� V�

�
+

1

2

�
1

2
� V�

�2
)
;

and hence

B�(t) = (�t)�1

"
1

2
� log V� +

1

4

�
1

2
� V�

�
�2

log(2V�) +
1

2

�
1

2
� V�

�
�1
#
:

These expressions of B�(t); combined with (1.14), give the equations (1.6) � (1.8). 2

An equivalent empression of (1.8) is

(1:80)

Z V
�
(t)

e�t0

"
3

4
�

1

2
y +

�
1

2
� y

�
�1

log
�
21=4yyy

�#�1
dy = log

�
�t

t0

�

for t > �
�1
t0; where to will be given in Corollary 1.1, e�t0 ; e

�1:32
; 0:267; and the

integrand in the l.h.s. is positive for e�t0 < y < 1=2:

Corollary 1.1 Di�erential equations (1.6) and (1.7) give after integration,

(1:16) V�(t) =
1

2
(1� e

��t); for 0 � �t � log 2;

(1:17) V�(t) =
1

2
�

"
5

4
e
�2�t �

1

4
+ 2e�2�t

Z �t

log 2

�
�1

��
1

4
log 2 +

3

8

�
e
2� � e� +

1

2

�
d�

#1=2
;

for log 2 � �t � t0:

The value t0 is determined by t0 = log u0 where u0(; 3:74 and hence t0 = 1:32) is a unique

root of the equation

(1:18)

Z logu

log 2

�
�1

��
1

4
log 2 +

3

8

�
e
2� � e

� +
1

2

�
d� =

1

4
u
2 �

1

2
u�

1

8
:

Proof. (1.16) is evident from (1.6). We derive (1.17) as follows: By considering z(t) =�
1
2
� V�(t)

�2
: Eq.(1.7) becomes a linear di�erential equation

z
0(t) + 2�z(t) = �2�a(t); with z(��1 log 2) = 1=16:

and integration gives

z(t) = e
�2�t

�
1

4
� 2�

Z t

��1 log 2

a(� )e2��d�

�

=
5

4
e
�2�t �

1

4
+ 2e�2�t

Z �t

log 2

�
�1

��
1

4
log 2 +

3

8

�
e
2� � e

� +
1

2

�
d�:
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Since V�(t) =
1
2
�
p
z(t); Eq.(1.7) follows. Substituting V�(�

�1
t0) = e

�t0 into (1.17) we

have

Z t0

log 2

�
�1

��
1

4
log 2 +

3

8

�
e
2� � e

� +
1

2

�
d� =

1

4
e
2t0 �

1

2
e
t0 �

1

8
;

or equivalently, u0 = e
t0 satis�es (1.18).

Finally we show that (1.18) has a unique root in u 2 (2;1): Let

f(u) � (1:h:s: minus r:h:s:) of (1:18):

Then f(2) = 1=8 and f
0(u) = (u log u)�1

��
1
4
log 2 + 3

8

�
u
2 � u+ 1

2
� 1

2
(u� 1)u log u

	
=

(u log u)�1g(u); say. Besides g(2) = 0; g0(2) = �1
2
log 2 < 0; g0(u) =

�
1
2
log 2 + 1

4

�
u ��

u� 1
2

�
logu� 1

2
; g

00(u) = 1
2u
� log u�

�
3
4
� 1

2
log 2

�
< 0; for u > 2; and therefore g(u) �

g(2) = 0: This implies f 0(u) < 0 for u > 2; and hence the equation f(u) = 0 has a unique

root in u 2 (2;1): This completes the proof of Corollary 1.1. 2

The next corollary gives the approproateness of Figure 1.

Corollary 1.2 Both of V�(t) and t
�1 log V�(t) are increasing and concave in t > 0:

Proof. Increasingness of V�(t) is intuitively evident, but it is also clear in our approach,

since V 0

�
(t) > 0; 8t > 0; from (1.14).

Concavity of V�(t): In Case 1Æ, V 00

�
(t) < 0 by (1.6). In Case 2Æ;

�
�1
V
00

�
(t) = V

0

�
�
�
1

2
� V�

�
�1

a
0(t)�

�
1

2
� V�

�
�2

a(t)

from(1.7). All three terms in the r.h.s. are negative since, by (1.15), a(t) positive and both

of 1� (�t)�1 log 2 and
�
1
2
� g

�2
are increasing. In Case 3Æ; by di�erentiating tV 0

�
(t) in (1.8)

and doing some rearrangement, we get

tV
00

�
(t) =

1

4
V
0

�

�
1

2
� V�

�
�2

k(V�);

where

k(V�) =
1

2
+ log 2 + 2(1 � 2V� + 2V 2

�
) log V� � 2V 2

�
:

This function k(V ) has the property that k(0+) = �1; k

�
1
2
� 0

�
= 0; and

1

2
k
0(V ) = (V �1 � 2)� 4

�
1

2
� V

�
logV > 0; for 0 < V <

1

2
:

Thus tV 00

�
(t) and hence V 00

�
(t) is negative.

Increasingness of u(t) = t
�1 logV�(t):

u
0(t) = V

0

�
=(tV�) � t�2 log V� > 0 + 0 = 0:

Concavity of u(t): Di�erentiate both sides of tu = logV�; twice. Then we get

tu
00(t) = V

�2
�
fV 00

�
V� � (V 0

�
)2g � 2u0

=
V
00

�

V�

�
�
V
0

�

V�

�2

� 2u0 < 0 + 0 + 0 = 0: 2



BETTER-THAN-OPPONENT|A STOPPING GAME 287

Remark 1. An immediate consequence of Theorem 1 and Corollary 1.2 is as follows:

Evidently � � limt!1 V�(t) exists and is equal to 1/2, provided that limt!1 t
�1
V�(t) = 0:

Because, from (1.8), � should satisfy the equation

�
1

4

�
1

2
� �

�
�1

log(2�) � � log� =
3

4
�

1

2
(�+ log�); for 0 < � �

1

2
:

It is easy to show that the above equation has a unique root � = 1=2:

Corollary 1.3 The time s until the �rst acceptance of an o�er is made has the defective

p.d.f.

(1:19) g(s) = �p(s)exp

�
��

Z s

0

p(w)dw

�
;

where p(s) �
Z 1

0

�
2'�(x; T � s) � '

2
�
(x; T � s)

	
dx:

The probability that both players lose is 1�
R T
0
g(s)ds:

Proof. Note that p(s) is the probability of acceptance of an o�er in state (x; T � s): Let

0 < s1 < s2 < � � � < sn�1 be the ellapsed times from T of the succesive o�ers arrived and

were rejected. Then we have

g(s) = �e
��s

1X
n=1

Z
0<s1<���

Z
<sn�1<s

p(s)

n�1Y
j=1

(1 � p(sj))(�dsj );

which gives (1.19), if we apply the identity

Z
0<s1<���

Z
<sn�1<s

n�1Y
j=1

f(sj )dsj =
1

(n� 1)!

�Z s

0

f(w)dw

�n�1
; 8f(�): 2

2 Bilateral move Game We shall discuss in this section about the bilateral-move ver-

sion of the game. In each state (x; t) player's moves are split into two steps. Player I �rst

decides to choose either R or A; and then player II, after being informed of the choice made

by I; decides to choose either R or A: The rest of the game rule is the same as in the

simultanious-move version. So the game in state (x; t) is described by.

Players 1 st step 2nd step Payo�s

I: (x; t)

II: (x; t)

�
R

A �
R � � � � � � � � � � � � � � � (V1(t�4t); V2(t �4t))
A � � � � � � � � � � � � � � � (g(x; t); g(x; t))�
R � � � � � � � � � � � � � � � (g(x; t); g(x; t))
A � � � � � � � � � � � � � � � (1=2; 1=2)

-

-
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Let  R(x; t)( A(x; t)) be the probability that II chooses A after he is informed of the

fact that I has chosen R(A): Also let '(x; t) be the probability that I chooses A: Denote

V1(t; ';  R
�

;  A
�

) and Vi(t; '�;  R
�

;  A
�

) simoly by V1(t) and Vi
�

(t) respectively. Then

player II's behavior after being informed of I's

�
R

A

�
is evidently to chooseA(R) if g(x; t) >

(<)

�
V2

�

(t)

1=2

�
: So we have

(2:1)  R
�

(x; t) = I(g(x; t) > V2
�

(t) and  A
�

(x; t) = I

�
g(x; t) >

1

2

�

Also we obtain

(2:2) �
�1
V
0

1(t) + V1(t) =

Z 1

0

�
'( R

�

V1 +  R
�

g) + '

�
 A

�

g +
1

2
 A

�

��
dx

(2:3) �
�1
V
0

1
�

(t) + V1
�

(t) =

Z 1

0

�
'�( R

�

V1
�

+  R
�

g) + '�

�
 A

�

g +
1

2
 A

�

��
dx

(2:3) �
�1
V
0

2
�

(t) + V2
�

(t) =

Z 1

0

�
'�( R

�

V2
�

+  R
�

g) + '�

�
 A

�

g +
1

2
 A

�

��
dx

with the initial conditions V1(0) = Vi
�

(0) = 0; i = 1; 2; � � � : In the r.h.s. of (2.2) � (2.4)

simpli�ed notations for '(x; t); V1(t) ect. are used.

Now we obtain after some algebra,

(2:5) �
�1 (V1(t)� V1

�

(t))
0

= � (V1 � V1
�

)

Z 1

0

�
1� ' R

�

�
dx

+

Z 1

0

�
g � V1

�

+ (V1
�

� g) R
�

+

�
1

2
� g

�
 A

�

�
('� '�)dx

from (2.2) and (2.3);

(2:6) �
�1 (V1

�

(t)� V2
�

(t))
0

= � (V1
�

� V2
�

)

Z 1

0

�
1� ' R

�

�
dx

+

Z 1

0

(g � g)('� R
�

� '� A
�

)dx

from (2.3) and (2.4).

As in the previuos section we consider the following three cases:

Case 1+ 0 < �T < log 2:

This case is the same as Case 1Æ.

Case 2+ log 2 < �T < t1; where t1 2 (log 2;1) is a unique root of the equation

� log V2
�

(��1t) = t:

Case 3+ �T > t1:
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We consider the strategy-triple

(2:7) '�(x; t) =  A
�

(x; t) = I(g(x; t) > 1=2) = I

�
x >

�
1� (�t)�1 log 2

�+�
;

 R
�

(x; t) = I(g(x; t) > V2
�

(t)) = I

�
x >

�
1 + (�t)�1 log V2

�

(t)
�+�

which plays a central role hereafter. The (x; t) region is devided into the \upper" \middle"

and \lower" subregions as is shown by Figure 2. In the �gure the triple values '0
�
� R

�

� A
�

and the bilateral choices made by players in each subregions are mentioned. The R! A; for

example, means the bilateral choice �rst I' s R; then followed by II's A: The appropriateness

of Figure 2 will be made clear later. We �nd later that t1 is approximately 1.11.

Figure 2: Division of (x; t) region by the strategy-triple(2.7)

-

6

t

x

0

1� (�t)�1 log 2

1 + (�t)�1 logV2
�

(t)

�
�1 log 2 �

�1
t1

Case1+ Case2+ Case3Æ

A! A

1-1-1

R! A

0-1-0

0-0-0
R! R

Lemma 2.1 For the strategy-triple (2.7), we have

V2
�

(t) = (<)V1
�

(t): in Case+(Case+and 3+);

and therefore 0 < V2
�

(t) < 1=2; 8t > 0:

Proof. Denote by D�(t) the second integral in the r.h.s.of (2.6). Then the lemma is proven

from Lemma 1.1, if we show that D�(t) > 0; 8t > 0: Eq. (2.7) together with Figure 2 yield

(2:8) D�(t) �
Z 1

0

(1� 2g)('
�
 R

�

� '� A
�

)dx = 0; in Case1+;

=

Z 1�(�t)�1 log 2

0

(1 � 2g)dx > 0; in Case2+;

=

Z 1�(�t)�1 log 2

1+(�t)�1V2
�

(1 � 2g)dx > 0; in Case3+;

This implies that V2
�

(t) = V1
�

(t) in Case 1+ and V2
�

(t) < V1
�

(t) in Case 2+ and 3+ 2

Lemma 2.2 For the strategy-triple (2.7), we �nd that

(2:9) V2
�

(t) =
1

2
(1 � e��t); in Case1+;

(2:10) V2
�

(t) = e
��t

"
1

2
+

Z �t

log 2

�
�1

�
1

2
(1 + log 2)e� � 1

�
d�

#
; in Case2+;
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and in Case 3+; V2
�

(t) satis�es the equation

(2:11) V
0

2
�

(t) = t
�1

�
1

2
(1 + log 2)� V2

�

(1 � logV2
�

)

�
; with V2

�

(t1) = e
�t1 ; 0:33;

or equivalently

(2:110)

Z V2
�

(t)

V2
�

(��1t1)

dy

logfk(y=e)yg
= log

�
�t

t1

�

where k �
p
2e1=2 ; 2:33164: Here t1 = 1:11 is a unique root in t 2 (log 2;1) of the

equation

(2:12)

Z �t

log 2

�
�1

�
1

2
(1 + log 2)e� � 1

�
d� =

1

2
:

The integrand in the l.h.s. of (2:110) is positive and convexly increasing from 2=(1+log 2)

at y = 0 t0 1 at y = 1=2:

Proof. Eq. (2.4) becomes

(2:13) �
�1
V
0

2
�

(t) = �V2
�

Z 1

0

(1� '
�
 R

�

)dx +

Z 1

0

�
'
�
 R

�

g + '�

�
 A

�

g +
1

2
 A

�

��
dx

and let E�(t) and F�(t) be the �rst and second integral in the r.h.s. Then

(2:14)E�(t) �
Z 1

0

(1 � '
�
 R

�

)dx

= 1; in Cases 1 and 2;

=

Z 1�(�t)�1 log 2

1+(�t)�1 log V2
�

dx +

Z 1

1�(�t)�1 log 2

dx = �(�t)�1 log V2
�

; in Case 3+;

and

F�(t) �
Z 1

0

�
'
�
 R

�

g + '�

�
 A

�

g +
1

2
 A

�

��
dx;

=
1

2
; in Case 1+;

=

Z 1�(�t)�1 log 2

0

gdx+

Z 1

1�(�t)�1 log 2

1=2dx;

= (�t)�1
�
1

2
(1 + log 2)� e

��t

�
; in Case 2+;

and

=

Z 1�(�t)�1 log 2

1+(�t)�1 log V2
�

gdx+

Z 1

1�(�t)�1 log 2

1=2dx

= (�t)�1
�
1

2
(1 + log 2)� V2

�

�
; in Case 3+:
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Hence by substituting this expression into (2.13), we get the di�erential equation

(2:15) �
�1
V
0

2
�

(t) = �V2
�

+ 1=2 in Case 1+;

(2:16) = �V2� + (�t)�1
�
1

2
(1 + log 2)� e

��t

�
; in Case 2+;

(2:17) = (�t)�1
�
1

2
(1 + log 2)� V

0

2
�

(1� log V2
�

)

�
; in Case 3+;

Note that the r.h.s. of the above expression is continuously connected in case-to-case.

Integration of (2.15)-(2.16) give (2.9)-(2.10). The bordering value t1 deviding Case 2+ and

3+ is obtained from V2
�

(��1t1) = e
�t1 ; 0:3296 in (2.10) with t = �

�1
t1 and the result is

(2.12). The fact that (2.12) has a unique root is easy to prove. This completes the proof of

Lemma 2.2. 2

Now we proceed to stating the main result in Section 2.

Theorem 2. The strategy-triple (2.7) is in equilibrium, that is

(2:18) V1(t; ';  R
�

;  A
�

) � V1(t; '�;  R
�

;  A
�

): 8'

(2:19) V2(t; '�;  R;  A) � V2(t; '�;  R
�

;  A
�

): 8 R� A;

and gives the eq. values (V1
�

(t); V2
�

(t)):

Proof. (2.18) is, by our abreviated notation, (see the begining of Section 2)

(2:180) V1(t) � V1
�

(t); 8 :

Let D(t) be the second term in the r.h.s. of (2.5) (Don't confuse this with D�(t) de�ned

by (2.8)), that is,

(2:20) D(t) �
Z 1

0

�
g � V1

�

+ (V1
�

� g) R
�

+

�
1

2
� g

�
 A

�

�
('� '�)dx:

Then, by referring to Figure 2, we �nd that

D(t) =

Z 1

0

�
1

2
� g

�
(�')dx < 0; in Case 1+;

=

Z 1�(�t)�1 log 2

0

(g � g)'dx+

Z
1�(�t)�1 log 2

�
1

2
� g

�
(�')dx

< 0 + 0 = 0; in Case 2+;

and in Case 3+;

D(t) =

Z 1+(�t)�1 log V 2
�

0

(g � V1
�

)'dx +

Z 1�(�t)�1 log 2

1+(�t)�1 logV 2
�

(g � g)'dx

+

Z 1

1�(�t)�1 log 2

�
1

2
� g

�
(�')dx < 0 + 0 + 0 = 0;
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since g� V1
�

< g� V2
�

(by Lemma 2.1) < 0 in the �rst term. Hence D(t) < 0; 8t > 0; and

(2:180) is proven by applying Lemma 1.1.

Next we have to prove (2.19). Let us use, terporally, the simpli�ed notation V2(t);

instead of V2(t; '�;  R;  A): Then (2.19) becomes

(2:190) V2(t) � V2
�

(t); 8 R� A:

Since we have, similarly as in (2.2),

(2:21) �
�1
V
0

2(t) = �V2(t) +
Z 1

0

�
'�

�
1

2
 A +  Ag

�
+ '

�
( Rg +  RV2)

�
dx:

This equation and (2.4) yield, after some rearrangement,

(2:22) �
�1(V2(t) � V2

�

(t))0 = �(V2 � V2
�

)

Z 1

0

(1� '
�
 R)dx +H(t);

(2:23) H(t) �
Z 1

0

�
'�

�
1

2
� g

�
( A �  A

�

) + '
�
(g � V2

�

)( R �  R
�

)

�
dx:

We �nd by referring to Figure 2, that

H(t) =

Z 1

0

�
1

2
� g

�
(� A)dx < 0; in Case 1+;

=

Z 1�(�t)�1
log 2

0

(g � V2
�

)(� R)dx +
Z
1�(�t)�1 log 2

�
1

2
� g

�
(� A)dx

< 0 + 0 = 0; in Case 2+;

and in Case 3+;

H(t) =

Z 1+(�t)�1 log V 2
�

0

(g � V2
�

) Rdx +

Z 1�(�t)�1 log 2

1+(�t)�1 logV 2
�

(g � V2
�

)(� R)dx

+

Z 1

1�(�t)�1 log 2

�
1

2
� g

�
(� A)dx < 0 + 0 + 0 = 0;

Thus H(t) < 0; 8t > 0; and (2.19) is proven by applying Lemma 1.1. This completes the

proof of Theorem 2. 2

Theorem 2 and Lemma 2.2 give

Corollary 2.1 The eq. strategy-triple is given by (2.7), and satis�es (2.9) � (2.12).

Corollary 2.2 Both of V2
�

(t) are increasing and concave in t > 0:

Proof. Increasingness of V2
�

(t) is intuitively evident, so its proof is ommited. In Case

1+; V2
�

(t) = 1
2
(1� e

��t) is concave. From (2.4), we have

(2:24) �
�1
V
0

2
�

(t) =

�
1

2
� V2

�

(t)

�
E�(t) �

1

2
D�(t):

(c.f. E�(t) and D�(t) are given by (2.14) and (2.8), respectively. This equation correspond

to (1.14) in Section 1.)
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In Case 2+, since E�(t) = 1 and D�(t) =
R 1�(�t)�1 log 2

0
(1 � 2g)dx; we �nd that

�
�1
V
00

2
�

(t) = �V 0

2
�

�
1

2
D
0

�
(t) < 0;

and hence V2
�

(t) is concave. In Case 3+ we use (2.17) i.e. tV 0

2
�

(t) = 1
2
(1 + log 2)� V2

�

(1�
log V2

�

): Di�erentitation gives

V
00

2
�

= t
�1
V
0

2
�

(log V2
�

� 1) < 0:

The fact that if V2
�

(t) is concave, then so is t�1 log V2
�

(t) has been proven in Corollary

1.2. 2

Since V2
�

(t) is increasing and less than 1/2, the limit as t!1 exists. From (2.17) we

obtain

Remark 2. If limt!1 tV
0

2
�

(t) = 0; then limt!1 V2
�

(t) = 1
2
; because the equation based on

(2.17)

�v log v =
1

2
(1 + log 2) � v; in v 2 [0; 1]

has a unique root 1/2.

Therefore limt!1 V1
�

(t) = 1=2 also. Thus the advantage of the �rst mover is lost when

T !1: This is simply because players have qual weights. (Also, see the next Remark 3.)

Corollary 2.3

(2:25) V1
�

(t) + V2
�

(t) = 1� e
��t

; if 0 � t � �
�1
t1

= 1� exp:

�Z t

0

�
�1 log V2

�

(� )d�

�
; if t > �

�1
t1

Proof. Eq. (2.3) gives just in the same way as for Eq.(2.24),

(2:240) �
�1
V
0

1
�

(t) =

�
1

2
� V1

�

(t)

�
E�(t) +

1

2
D�(t):

Let s(t) � V1
�

(t) + V2
�

(t): Then (2.24)-(2:240)gives

�
�1
s
0(t) = (1� s(t))E�(t); with s(0) = 0;

and hence

log(1 � s(t)) = ��
Z t

0

E�(� )d�:

We obtain (2.25), if E�(� ) in (2.24) is used. 2

Corollary 2.4. The time s until the �rst acceptance of an o�er is made has the defective

p.d.f.

(2:26) g(s) = �q(s)exp:

�
��

Z s

0

q(w)dw

�

where q(s) =

8<
:
���1(T � s)�1 logV2

�

(T � s); if T � s > �
�1
t1

1; if otherwise:

The probability that both

players lose is 1�
R T
0
g(s)ds:
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Proof. Note that q(s) is the probability that acceptance is made at time T � s: Proof is the
same as in Corollary 1.3. 2

Remark 3. The bilateral-move game version by unequal-weight players are analysed in

Enns and Ferenstein [2]. Players' weight is 1 for I, and 0 for II. So lottery need not be used

for the choice-pair A-A. The game diagram is:

Players 1 st step 2nd step Payo�s

I: (x; t)

II: (x; t)

�
R

A �
R � � � � � � � � � � � � � � � (V1(t�4t); V2(t �4t))
A � � � � � � � � � � � � � � � (g; g)

(g; g)� � � � � � � � � � � � � � �

-

-

in contrast with one for the game by equal-weight players. The authors show in [2] that the

solution to the game is :

-

6

t

1
x

1� (�t)�1 log 2

1 + (�t)�1 logV2�(t)

�
�1 log 2 �

�1
s10

A! "non"

R! A

 R
�

= 1

 R
�

= 0
R! R

where s1 is appoximately 1.53. Compare the �gure with our Figure 2. Their V2
�

(t) is of

course di�erent from one given by our Lemma 2.2. Moreover, they prove that limt!1 V2
�

(t) ;

0:32756; which is the unique root of the equation u logu = log 2�u; and hence the advantage
of the �rst mover remains even when T !1 (c.f. Remark 2.)

3. Final Remarks.

Remark 4. A remarkable feature contained in the present work is that in the simultanious

move version of game, the equilibrium strategy uses some randomization between R and A;

whereas in the bilateral-move version of the game, they employ non-randomized strategies

only. See Figures 1 and 2.

Remark 5. In the bilateral-move game, the �rst mover stands at advantage to the second

mover. See (2.8) in Lemmma 2.1. This is di�erent from earlier works on single and mul-

tiround poker, where the �rst mover stands at disadvantage, because player's hand x for I

and y for II are private informations, and I leaks some information to his rival about his

private x by moving �rst. (See Garnaev [3] and Sakaguchi [7])

Remark 6. It is interesting to investigate some open problems mentioned in the following.

(a) Solve the three-person game version. See Sakaguchi [9, 10, 11] and Ramsey and Sza-

jowski [12])
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(b) Solve the game where a player wins if he gets the largest o�er among those arrived and

will arrive thereafter before time T: Each player aims to maximize his probability of

winning.

(c) Solve no-information version of the game. Players do not know the size distribution of

Poisson-arriving o�ers, but can only observe the ralative rank among those arrived so

far of the o�er. Each player wants to accept the o�er with smaller absolute rank than

the opponent's. The best (worst) has the absolute rank 1 (n, if the n-th is the last

o�er arrived beforre time T).
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