On R-maps in $B C K / B C I$-algebras

Sun Shin Ahn and Hee Sik Kim

Received January 16, 2002

Abstract

In this paper, we investigate some properties of R-maps in $B C K / B C I$ algebras.

1. Introduction.

K. H. Dar and B. Ahmad([DA]) studied R-maps and L-maps for $B C K$-algebras and obtained some results. In fact early in $1981, H$. Huang introduced the notion of R-maps for positive implicative $B C K$-algebras and gave some interesting results. In this paper, we investigate some properties of R-maps in $B C K / B C I$-algebras.

2. Introduction.

An algebraic system $(X ; *, 0)$ is said to be a $B C I$-algebra if it satisfies the following conditions:
(I) $(x * y) *(x * z) \leq z * y$,
(II) $x *(x * y) \leq y$,
(III) $x \leq x$,
(IV) $x \leq y, y \leq x$ imply $x=y$,
where $x \leq y$ is defined by $x * y=0$. A $B C I$-algebra X is said to be a $B C K$-algebra if $0 \leq x$, for all $x \in X$.
K. Iséki ([Is]) defined the notion of $B C I$-algebras with condition (S), i.e., for any $a, b \in$ $X, A(a, b):=\{x \in X \mid x * a \leq b\}$ has the greatest element, say $a \circ b$.

Theorem 2.1 ([Is]). If X is a $B C I$-algebra with condition (S), then $(X, 0)$ is a semigroup and 0 is the zero element.

Theorem 2.2 ([Ho]). If X is a $B C I$-algebra with condition (S), then
(i) $x *(y \circ z)=(x * y) * z$,
(ii) $(x \circ z) *(y \circ z) \leq x * y \leq x \circ y$.

3. Main Results.

Let $(X ; *, 0)$ be a $B C K / B C I$-algebra and let $x \in X$. A mapping $R_{x}: X \rightarrow X$ defined by $R_{x}(y):=y * x$, for all $y \in X$, is called a right map of X. The set of all right maps on X is denoted by $\mathbf{R}(X)$. We define a binary operation " $($ " on $\mathbf{R}(X)$ as follows:

$$
\left(R_{a} \odot R_{b}\right)(x):=R_{a}\left(R_{b}(x)\right)
$$

where $R_{a}, R_{b} \in \mathbf{R}(X)$ and $x \in X$.
Proposition 3.1. If $(X ; *, 0)$ is $B C I$-algebra with condition (S), then $R_{a} \odot R_{b}=R_{a \circ b}$ for any $R_{a}, R_{b} \in \mathbf{R}(X)$.

Proof. By applying Theorem 2.2-(i) we have $\left(R_{a}\right.$ © $\left.R_{b}\right)=R_{a}\left(R_{b}(x)\right)=R_{a}(x * b)=$ $(x * b) * a=x *(a \circ b)=R_{a \circ b}(x)$, proving the proposition.

Since ($X ; 0$) is a semigroup if X is a $B C K / B C I$-algebra with condition (S), we can easily see that $(\mathbf{R}(X) ; 0)$ is a commutative semigroup. Concerning Theorem 3.12 and 3.13 ([MeJu, pp. 129-130]) the condition "positive implicative" is superfluous and the proof of Theorem 3.13 is incorrect. We restate Theorem 3.12 and give correct proof of Theorem 3.13 as follows:

Theorem 3.2. If $(x ; *, 0)$ is a $B C K / B C I$-algebra with condition (S), then $(\mathbf{R}(X)$, ©) is a commutative semigroup with zero element R_{0}.

Theorem 3.3. If $(x ; *, 0)$ is a $B C K / B C I$-algebra with condition (S), then $(X, \circ) \cong$ $(\mathbf{R}(X)$, ,) as a semigroup.

Proof. If we define $\phi:(X, \circ) \rightarrow(\mathbf{R}(X)$, © $)$ by $\phi(x)=R_{x}$, then ϕ is surjective. Since $\phi(x \circ y)=R_{x \circ y}=R_{x} \odot R_{y}=\phi(x) \odot \phi(y)$, it is a semigroup homomorphism. Assume $\phi(x)=$ $\phi(y)$ for some $x \neq y$ in X. Then $R_{x}=R_{y}$ and hence $y * x=R_{x}(y)=R_{y}(y)=y * y=0$ and $x * y=R_{y}(x)=R_{x}(x)=x * x=0$. By (IV) we have $x=y$, a contradiction.

We can restate Theorem 7.9 ([MeJu, pp. 40]) in terms of R-maps as follows:
Proposition 3.4. Let $(X ; *, 0)$ be a BCK-algebra. Assume that there is a binary operation ∇ on X such that R_{a} © $R_{b}=R_{a \nabla b}$ for any $a, b \in X$. Then X is with condition (S) and ∇ is exactly the operation " 0 ".

Combining Proposition 3.4 with Proposition 3.1 we obtain:
Theorem 3.5. Let $(X ; *, 0)$ be a $B C K$-algebra. Then the following are equivalent:
(i) X is with condition (S),
(ii) there is a binary operation ∇ on X such that R_{a} ○ $R_{b}=R_{a \nabla b}$ for any $a, b \in X$.

Lemma 3.6 ([MeJu]). Let $(X ; *, 0)$ be a BCK-algebra with condition (S). Then the following are equivalent:
(a) X is positive implicative,
(b) $(x \circ y) * z=(x * z) \circ(y * z)$,
(c) $x \circ y=x \circ(y * x)$.

We define $R_{x} \leq R_{y}$ if and only if $R_{x}(z) \leq R_{y}(z)$ for all $z \in X$, and $R_{x}=R_{y}$ if and only if $R_{x} \leq R_{y}$ and $R_{y} \leq R_{x}$.

Proposition 3.7. Let X be a BCK/BCI-algebras and $x, y, z \in X$. Then
(i) if $x \leq y$ then $R_{y} \leq R_{x}$,
(ii) if $R_{x} \leq R_{y}$ then R_{x} © $R_{z} \leq R_{y}$ ○ R_{z}, for any $z \in X$,
(iii) if X is with condition (S) then $R_{(x \circ y) \circ z} \leq R_{(x * y) \circ z}$,
(iv) if X is positive implicative with condition (S) then $R_{y \circ(z \circ y)} \leq R_{y \circ z}$.

Proof. (i). Refer to [DA].
(ii). If $R_{x} \leq R_{y}$ then $u * x \leq u * y$ for any $u \in X$ and hence $(u * x) * z \leq(u * y) * z$. Hence $\left(R_{x} \odot R_{z}\right)(u) \leq\left(R_{y} \odot R_{z}\right)(u)$, i.e., $R_{x} \odot R_{z} \leq R_{y}$ © R_{z}.
(iii). If X is with condition (S), then $x * y \leq x \circ y$. By (i) we have $R_{x \circ y} \leq R_{x * y}$. By applying Proposition 3.1 and (ii) we obtain

$$
R_{(x \circ y) \circ z}=R_{x \circ y} \odot R_{z} \leq R_{x * y} \odot R_{z}=R_{(x * y) \circ z}
$$

(iv). If X is positive implicative with condition (S), then by (iii) and Lemma 3.6-(c) we obtain:

$$
R_{y \circ(z \circ y)}=R_{z \circ y} \odot R_{y} \leq R_{z * y} \odot R_{y}=R_{y \circ(z * y)}=R_{y \circ z},
$$

proving the proposition.

Remark. 1. By Proposition 3.7-(iv) we have $x *(y \circ(z \circ y)) \leq x *(y \circ z)$. Since X is a positive implicative $B C K$-algebra, using Theorem 2.2-(i) we obtain $x *(y \circ(z \circ y)) \leq$ $(x * z) *(y * z)$.
2. Since every $B C I$-algebra with $(x * y) * y=x * y$ becomes a $B C K$-algebra, there is no non-trivial positive implicative $B C I$-algebra.

Using the notion of R-maps we can give very simple proof of Theorem 2.2-(i).
Theorem 3.8. If X is a BCI-algebra with condition (S) then $x *(y \circ z)=(x * y) * z$.
Proof. $x *(y \circ z)=R_{y \circ z}(x)=\left(R_{y} \odot R_{z}\right)(x)=R_{y}\left(R_{z}(x)\right)=R_{y}(x * z)=(x * z) * y=$ $(x * y) * z$, completing the proof.

Lemma 3.9 ([MeJu, pp. 129]). If $(X ; *, 0)$ is a positive implicative BCK-algebra with condition (S), then any right map $R_{z}:(X, \circ) \rightarrow(X, \circ), z \in X$, is a semigroup homomorphism.

Proof. For any $x, y \in X$, we have

$$
R_{z}(x \circ y)=(x \circ y) * z=(x * z) \circ(y * z)=R_{z}(x) \circ R_{z}(y)
$$

proving the lemma.

It is known that a $B C K$-algebra is implicative if and only if it is both commutative and positive implicative. It is also known the useful properties in implicative $B C K$-algebras with condition (S).

Proposition 3.10 ([MeJu, pp. 45]). If $(X ; *, 0)$ is an implicative $B C K$-algebra with condition (S), then
(i) $c *(a \wedge b)=(c * a) \circ(c * b)$,
(ii) $c *(a \circ b)=(c * a) \wedge(c * b)$.

Using the notion of R-maps we can restate the Proposition 3.10 as follows:
Proposition 3.11. If $(X ; *, 0)$ is an implicative $B C K$-algebra with condition (S), then
(i) $R_{a \circ b}(c)=R_{a}(c) \wedge R_{b}(c)$,
(ii) $R_{a \wedge b}(c)=R_{a}(c) \circ R_{b}(c)$.

Using the Proposition 3.11-(i) we obtain the useful following properties:
Theorem 3.12. If $(X ; *, 0)$ is an implicative $B C K$-algebra with condition (S), then

$$
\begin{aligned}
(p \circ q) *(a \circ b) & =\{p *(a \circ b)\} \circ\{q *(a \circ b)\} \cdots \cdots(*) \\
& =\{(p * a) \circ(q * a)\} \wedge\{(p * b) \circ(q * b)\} \cdots \cdots(* *)
\end{aligned}
$$

Proof. Since X is a positive implicative $B C K$-algebra with condition (S), by Lemma $3.9 R_{a \circ b}$ is a semigroup homomorphism. Hence

$$
R_{a \circ b}(p \circ q)=R_{a \circ b}(p) \circ R_{a \circ b}(q)
$$

which means that $(p \circ q) *(a \circ b)=\{p *(a \circ b)\} \circ\{q *(a \circ b)\}$. By applying Proposition 3.11-(i) we obtain

$$
(p \circ q) *(a \circ b)=\{(p * a) \circ(q * a)\} \wedge\{(p * b) \circ(q * b)\}
$$

proving the theorem.

Corollary 3.13. If $(X ; *, 0)$ is an implicative $B C K$-algebra with condition (S), then
(a) $(a \circ c) *(a \circ b)=(c * a) \wedge[(a * b) \circ(c * b)]$,
(b) $(b * a) \wedge(a * b)=0$,
(c) $\{a *(a \circ b)\} \circ\{b *(a \circ b)\}=0$,
(d) $(a \circ c) *(a \circ b)=c *(a \circ b)$,
(e) $(c \circ b) *(a \circ b)=(c * a) * b$.

Proof. (a). Let $p:=a, q:=c$ in (**).(b). Let $c:=b$ in (a). In fact, if X is implicative, then

$$
\begin{aligned}
(b * a) \wedge(a * b) & =(a * b) *[(a * b) *(b * a)] \\
& =(a * b) *[(a *(b * a)) * b] \\
& =(a * b) *(a * b)=0 .
\end{aligned}
$$

(c). Let $p:=a, q:=b$ in (*). (d). Let $p:=a, q:=c$ in $(*)$. (e). Let $p:=c, q:=b$ in (*).

Remark. By applying Theorem 2.2-(i) we can see that the condition (d) is equal to the condition (e) in the above Corollary 3.13 .

Theorem 3.14. If $(X ; *, 0)$ is an implicative $B C K$-algebra with condition (S), then

$$
(a \circ b) *(a \wedge b)=(b * a) \circ(a * b)=(a *(a \wedge b)) \circ(b * a)
$$

Proof. By Proposition 3.11-(ii) we have $R_{a \wedge b}(c)=R_{a}(c) \circ R_{b}(c)$. If we put $c:=a \circ b$, then

$$
\begin{aligned}
(a \circ b) *(a \wedge b) & =[(a \circ b) * a] \circ[(a \circ b) * b] \\
& =[(a * a) \circ(b * a)] \circ[(a * b) \circ(b * b)] \\
& =(b * a) \circ(a * b)
\end{aligned}
$$

since $(x \circ y) * z=(x * z) \circ(y * z)$ holds in any positive implicative $B C K$-algebra. Similarly,

$$
\begin{aligned}
(a \circ b) *(a \wedge b) & =[a *(a \wedge b)] \circ[b *(a \wedge b)] \\
& =[a *(b *(b * a))] \circ[b *(b *(b * a))] \\
& =[a *(a \wedge b)] \circ(b * a)
\end{aligned}
$$

Corollary 3.15. Let $(X ; *, 0)$ be an implicative $B C K$-algebra with condition (S). If $b * a=0$ then $(a \circ b) * b=a * b$.

Proof. If $b * a=0$ then $(a \circ b) *(a \wedge b)=(a \circ b) *(b *(b * a))=(a \circ b) * b$ and $(b * a) \circ(a * b)=a * b$.

Theorem 3.16. If $(X ; *, 0)$ is an implicative $B C K$-algebra with condition (S), then

$$
(p \wedge q) *(a \wedge b)=[(p \wedge q) * a] \circ[(p \wedge q) * b]
$$

Proof. It can be easily obtained from Proposition 3.11-(ii) simply replacing c by $p \wedge q$.

Corollary 3.17. If $(X ; *, 0)$ is an implicative $B C K$-algebra with condition (S), then
(a) $(p \wedge a) *(a \wedge b)=(p \wedge a) * b=(a * b) *(a * p)$,
(b) $a *(a * b) \leq b *(b * a)$.

Proof. (a). If we put $q:=a$ in Theorem 3.16, then

$$
\begin{aligned}
(p \wedge a) *(a \wedge b) & =[(p \wedge a) * a] \circ[(p \wedge a) * b] \\
& =[\{a *(a * p)\} * a] \circ[(p \wedge a) * b] \\
& =0 \circ[(p \wedge a) * b] \\
& =(p \wedge a) * b \\
& =(a * b) *(a * p)
\end{aligned}
$$

(b). Since $(a * b) *(a * p) \leq p * b$, if we let $p:=b$ in (a), then $(b \wedge a) *(a \wedge b) \leq b * b=0$, hence $b \wedge a \leq a \wedge b$, i.e., $a *(a * b) \leq b *(b * a)$.

References

[1] K. H. Dar and B. Ahmad, Endomorphisms of BCK-algebras, Math. Japonica 31 (1986), 855-857.
[2] C. S. Hoo, BCI-algebras with condition (S), Math. Japonica 32 (1987), 749-756.
[3] K. Iséki, On BCI-algebras with condition (S), Math. Sem. Notes, Kobe Univ. 8 (1980), 171172.
[4] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.

Sun Shin Ahn, Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea sunshine@dgu.ac.kr

Hee Sik Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea heekim@hanyang.ac.kr

