
Scientiae Mathematicae Japonicae Online, Vol.6 (2002), 253{259 253

NOSHIRO-TYPE HARMONIC UNIVALENT FUNCTIONS

Om P. Ahuja and Jay M. Jahangiri

Received July 13, 2000

Abstract. We de�ne and investigate a family of Noshiro-Type complex-valued harmonic

functions of the form f = h + �g, where h and g are analytic in the unit disk �. A suÆcient

coeÆcient condition for these functions to be univalent and starlike in � is determined. This

coeÆcient condition is shown to be also necessary if h has negative and g has positive coeÆ-

cients. Furthermore, distortion theorem, extreme points, convolution conditions, and convex

combinations for this family of harmonic functions are obtained.

1. Introduction. A continuous complex-valued function f = u + iv de�ned in a simply

connected complex domain D is said to be harmonic in D if both u and v are real harmonic

in D: There is a close inter-relation between analytic functions and harmonic functions. For

example, for real harmonic functions u and v there exist analytic functions U and V so

that u = Re(U) and v = Im(V ): Then f(z) = h(z) + g(z) where h and g are, respectively,

the analytic functions (U + V )=2 and (U � V )=2: In this case, the Jacobian of f = h + g
is given by Jf (z) = jh0(z)j2 � jg0(z)j2: The mapping z ! f(z) is orientation preserving and

locally one-to-one in D if and only if Jf (z) > 0 in D: The necessity of this condition is a

result of Lewy [6]. See also Clunie and Sheil-Small [3]. The function f = h+ g is said to be

harmonic univalent in D if the mapping z ! f(z) is orientation preserving, harmonic, and

one-to-one in D: We call h the analytic part and g the co-analytic part of f = h+ g:

Let H denote the family of functions f = h+ g that are harmonic, orientation preserving,

and univalent in the open unit disk � = fz : jzj < 1g with the normalization

h(z) = z +

1X
n=2

anz
n; g(z) =

1X
n=1

bnz
n; jb1j < 1: (1)

For 0 � � < 1 we letKH(�) and SH(�), respectively, denote the subclasses ofH consisting of

functions in H that are convex of order � and starlike of order �. We further let KH(�) and
SH(�), be the respective subclasses of KH(�) and SH(�) consisting of functions f = h+ �g

so that

h(z) = z �

1X
n=2

janjz
n ; g(z) =

1X
n=1

jbnjz
n; jb1j < 1: (2)

The classes KH(0), SH(0), KH
(0), and S

H
(0) were studied by Avci and Zlotkiewicz [2],

Silverman [8], and Silverman and Silvia [9]. Jahangiri in [4,5] among other results proved

the following two theorems.

2000 AMS Subject Classi�cation: Primary 30C45; Secondary 30C50.

Key words and phrases. Harmonic, Univalent, Starlike, Convex.



254 O. P. AHUJA AND J. M. JAHANGIRI

Theorem A. Let f = h+ �g be so that h and g are given by (1). Then f 2 SH(�) if

1X
n=2

n� �

1� �
janj+

1X
n=1

n+ �

1� �
jbnj � 1; 0 � � < 1: (3)

The condition (3) is shown to be also necessary for f 2 SH(�):

Theorem B. Let f = h+ �g be so that h and g are given by (1). Then f 2 KH(�) if

1X
n=2

n(n� �)

1� �
janj+

1X
n=1

n(n+ �)

1� �
jbnj � 1; 0 � � < 1: (4)

The condition (4) is shown to be also necessary for f 2 KH(�):

Silverman[8] obtained results analogous to Theorems A and B for the special case b1 = � = 0

and Silverman and Silvia [9] improved the results of [8] to the case when b1 is not necessarily

zero. In this paper we de�ne a new class of harmonic functions which contains harmonic

convex functions and has an interesting inclusion relation with the class of harmonic starlike

functions. We then obtain suÆcient and necessary coeÆcient bounds, distortion theorem,

extreme points, convolution conditions, and convex combinations for this class.

For 0 � � < 1 we let NH(�) denote the class of harmonic functions f = h+ �g where h and

g are given by (1) and satisfy the condition

Re
@
@�
f(z)
@
@�
z

� � ; z = rei� ; z 2 �: (5)

The subclass of NH(�) where h and g are given by (2) is denoted by NH(�):

We used the letter N in the symbol NH(�) in the honor of Noshiro [7] who �rst introduced

such characterization (5) for the especial case � = 0: Later Al-Amiri [1] generalized Noshiro's

results to the case when 0 � � < 1:

2. CoeÆcient Bounds. First we prove the suÆcient coeÆcient bounds.

Theorem 1. Let f = h+ �g be so that h and g are given by (1). Furthermore, let

1X
n=1

n(janj+ jbnj) � 2� �; a1 = 1; 0 � � < 1: (6)

Then f is orientation preserving, harmonic univalent in �, and f 2 NH(�):

Proof. First we note that f is locally univalent and orientation preserving in �: This is
the case because

jh0(z)j � 1�

1X
n=2

njanjr
n�1 > 1�

1X
n=2

njanj � 1�

1X
n=2

n

1� �
janj

�

1X
n=1

n

1� �
jbnj �

1X
n=1

njbnj >

1X
n=1

njbnjr
n�1

� jg0(z)j:
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To show that f is univalent in � we notice that if g(z) � 0; then f(z) is analytic and the

univalence of f follows from its starlikeness. If g(z) 6� 0; then we show that f(z1) 6= f(z2)
when z1 6= z2: Suppose z1; z2 2 � so that z1 6= z2: Since � is simply connected and convex,

we have z(t) = (1� t)z1 + tz2 2 � where 0 � t � 1: Then we can write

f(z2)� f(z1) =

Z 1

0

h
(z2 � z1)h

0(z(t)) + (z2 � z1)g0(z(t))
i
dt:

Dividing the above equation by z2 � z1 6= 0 and taking the real parts we obtain

Re
f(z2)� f(z1)

z2 � z1
=

Z 1

0

Re

�
h0(z(t)) +

z2 � z1

z2 � z1
g0(z(t))

�
dt (7)

>

Z 1

0

[Reh0(z(t))� jg0(z(t))j] dt:

On the other hand

Reh0(z)� jg0(z)j � Re(h0(z))�

1X
n=1

njbnj � 1�

1X
n=2

njanj �

1X
n=1

njbnj

� 2� ��

1X
n=1

n(janj+ jbnj) � 0 ; by (6):

This in conjunction with the inequality (7) lead to the univalence of f:

Now we show that f 2 NH(�): Letting !(z) = ( @
@�
f(z))=( @

@�
z), it suÆces to show that

j1� �+ !j�j1 + �� !j for 0 � � < 1: Or equivalently, we need to show that

j(1� �)z + zh0(z)� zg0(z)j � j(1 + �)z � zh0(z) + zg0(z)j � 0:

Di�erentiating h and g and substituting in the above inequality we obtain

j(1� �)z + zh0(z)� zg0(z)j � j(1 + �)z � zh0(z) + zg0(z)j

= j(2� �)z +
P
1

n=2 nanz
n
�

P
1

n=1 nbnz
n
j � j�z �

P
1

n=2 nanz
n +

P
1

n=1 nbnz
n
j

� (2� �)jzj �
P
1

n=2 njanjjzj
n
�

P
1

n=1 njbnjjz
n
j � �jzj �

P
1

n=2 njanjjzj
n
�

P
1

n=1 njbnjjzj
n

= 2f(1� �)jzj �
P
1

n=2 njanjjzj
n
�

P
1

n=1 njbnjjzj
n
g

� 2jzjf2� ��
P
1

n=1 n(janj+ jbnj)g:

This last expression is non-negative by the hypothesis and so the proof is complete.

The restriction in Theorem 1 placed on the moduli of the coeÆcients of f = h+�g enables us
to conclude for arbitrary rotation of the coeÆcients of f that the resulting functions would

still be harmonic univalent. Our next theorem establishes that such coeÆcient bounds can

not be improved.

Theorem 2. Let f = h + �g be so that h and g are given by (2). Then f 2 NH(�) if and
only if

P
1

n=1 n(janj+ jbnj) � 2� �; where a1 = 1; and 0 � � < 1:
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Proof. The \if" part follows from Theorem 1 upon noting that NH(�) � NH(�): For the

\only if" part, let f 2 NH(�): Then for z = rei� ; 0 � r < 1; and � real we have

Re
@
@�
f(z)
@
@�
z

= Re

�
h0(z)�

1

z
zg0(z)

�

= Re

(
1�

1X
n=2

njanjr
n�1ei(n�1)� �

1X
n=1

njbnjr
n�1e�i(n+1)�

)

= 1�

1X
n=2

njanjr
n�1cos(n� 1)� �

1X
n=1

njbnjr
n�1cos(n+ 1)�

= 2�

1X
n=1

n [janjcos(n� 1)� + jbnjcos(n+ 1)�] rn�1 � �:

The above inequality must hold for all z 2 �: In particular, letting z = r ! 1 lead to the

required condition 2�
P
1

n=1 n(janj+ jbnj) � �:

3. Inclusion Relations, Distortion Theorem, and Extreme Points. In the next two

theorems we determine inclusion relations between classes KH(�), SH(�), and NH(�):

Theorem 3. If 0 � � � � < 1 then KH(�) � NH(�): This inclusion is proper.

Proof. Let f = h+ �g 2 KH(�) where h and g are given by (2). Then, by Theorem B and

the condition 0 � � � � < 1, we have

jb1j+

1X
n=2

n(janj+ jbnj) � (1 + �)jb1j+

1X
n=2

[n(n� �)janj+ n(n+ �)jbnj]

� 1� � � 1� �:

Therefore, f = h+ �g 2 NH(�), by Theorem 2.

To show that the inclusion is proper, consider the function

f(z) = z �
1� �

4
z2 +

1� �

4
�z2:

We observe that

2(ja2j+ jb2j) = 2(
1� �

4
+

1� �

4
) = 1� �

and so, f = h+ �g 2 NH(�): On the other hand

2(2� �)

1� �
ja2j+

2(2 + �)

1� �
jb2j =

2(2� �)

1� �

1� �

4
+

2(2 + �)

1� �

1� �

4
=

2(1� �)

1� �)
> 2:

Thus, by Theorem B, f = h+ �g =2 KH(�):

Theorem 4. If 0 � �; � < 1 and 0 � � � �
2��

then we have the proper inclusion relation

NH(�) � SH(�):

Proof. Let f 2 N �H(�): Then by the hypotheses of the theorem we have

1X
n=2

n� �

1� �
janj+

1X
n=1

n+ �

1� �
jbnj �

1X
n=2

n

1� �
janj+

1X
n=1

n

1� �
jbnj � 1:
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Therefore, by Theorem A, f 2 SH(�): Now consider the function

f(z) = z �
1� �

2(2� �)
z2 +

1� �

2(2 + �)
�z2:

We see that f 2 S
H
(�) since

2� �

1� �

�
1� �

2(2� �)

�
+

2 + �

1� �

�
1� �

2(2 + �)

�
= 1:

On the other hand

2

1� �

�
1� �

2(2� �)

�
+

2

1� �

�
1� �

2(2 + �)

�
=

1� �

1� �

�
4

4� �2

�
> 1:

Therefore, by Theorem 2, f =2 NH(�); and so the inclusion is proper.

Corollary. From Theorems A and 2, it follows that NH(0) � SH(0):

Theorem 5. Let f = h+ �g be so that h and g are given by (2). If f 2 NH(�) then

jf(z)j � (1 + jb1j)r +
1

2
(1� �� jb1j)r

2; jzj = r < 1;

and

jf(z)j � (1� jb1j)r �
1

2
(1� �� jb1j)r

2; jzj = r < 1:

Proof. We prove the left hand inequality only. The proof for the right hand inequality is

similar and we omit it. Let f = h+ �g 2 NH(�), and take the absolute value of f: Using the
fact that

P
1

n=2 n(janj+ jbnj)�(1� �� jb1j); we obtain

jf(z)j =

�����z �
1X
n=2

janjz
n +

1X
n=1

jbnj�z
n

����� � (1� jb1j)r �

1X
n=2

(janj+ jbnj)r
n

� (1� jb1j)r �

1X
n=2

(janj+ jbnj)r
2
� (1� jb1j)r �

1

2

1X
n=2

n(janj+ jbnj)r
2

� (1� jb1j)r �
1

2
(1� �� jb1j)r

2; jzj = r < 1:

Equality occurs for f = h+ �g if the coeÆcients of h and g are so that a1 = 1; an � 0 (n =

2; 3; :::); b1 = b1; b2 =
1
2
(1� �� jb1j); and bn � 0 (n = 3; 4; :::):

As a consequence of the left hand inequality in Theorem 5 we have

Corollary. If f = h+ �g 2 NH(�) then
�
w : jwj < 1

2
(1 + �� jb1j)

	
� f(�):

Now we determine the extreme points of closed convex hulls of NH(�) denoted by

clco NH(�):

Theorem 6. f 2 clco NH(�) if and only if f(z) =
P
1

n=1(Xnhn + Yngn); where h1(z) =

z; hn(z) = z� 1��
n
zn (n = 2; 3; :::); gn(z) = z+ 1��

n
�zn (n = 1; 2; 3; :::);

P
1

n=1(Xn+Yn) =
1; Xn � 0; and Yn � 0: In particular, the extreme points of N �H(�) are fhng and fgng:
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Proof. First write

f(z) =

1X
n=1

(Xnhn + Yngn) =

1X
n=1

(Xn + Yn)z �

1X
n=2

1� �

n
Xnz

n +

1X
n=2

1� �

n
Yn�z

n

= z �

1X
n=2

1� �

n
Xnz

n +

1X
n=2

1� �

n
Yn�z

n:

Then

1X
n=2

n

1� �
(janj) +

1X
n=1

n

1� �
(jbnj) =

1X
n=2

n

1� �

�
1� �

n
Xn

�
+

1X
n=1

n

1� �

�
1� �

n
Yn

�

=

1X
n=2

Xn +

1X
n=1

Yn = 1�X1 � 1:

Therefore f 2 clco N
H
(�): Conversely, suppose that f 2 clcoN

H
(�): Set Xn = n

1��
janj

(n = 2; 3; :::), Yn = n
1��

jbnj (n = 1; 2; 3; :::); where
P
1

n=1(Xn + Yn) = 1: Then

f(z) = z �

1X
n=2

janjz
n +

1X
n=1

jbnj�z
n = z �

1X
n=2

1� �

n
Xnz

n +

1X
n=1

1� �

n
Yn�z

n

= z +

1X
n=2

(hn(z)� z)Xn +

1X
n=1

(gn(z)� z)Yn =

1X
n=1

(Xnhn + Yngn):

From Theorem 2 it is easily seen that NH(�) is convex and closed and so clco NH(�) �
NH(�): In other words, the statement of Theorem 6 is actually for NH(�):

4. Convolutions and Convex Combinations. In the next theorem we examine the

convolution properties of the class N
H
(�):

De�ne the convolution of two harmonic functions f(z) = z �
P
1

n=2 janjz
n +

P
1

n=1 jbnj�z
n

and F (z) = z �
P
1

n=2 jAnjz
n +

P
1

n=1 jBnj�z
n by

(f � F )(z) = z �

1X
n=2

janAnjz
n +

1X
n=1

jbnBnj�z
n: (8)

Theorem 7. For 0 � � � � < 1; suppose that f 2 NH(�) and F 2 NH(�): Then
f � F 2 NH(�) � NH(�):

Proof. For f 2 N
H
(�) and F 2 N

H
(�); let f � F be given by the above de�nition (8).

Since jAnj�1 and jBnj�1; we can write

1X
n=2

njanjjAnj+

1X
n=1

njbnjjBnj �

1X
n=2

njanj+

1X
n=1

njbnj:

The right hand side of the above inequality is bounded by 1 � � because f 2 NH(�):
Therefore f � F 2 NH(�) � NH(�):

Finally, we determine the convex combination properties of the members of N
H
(�):
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Theorem 8. The class NH(�) is closed under convex combination.

Proof. For i = 1; 2; 3; ::: suppose that fi(z) 2 NH(�) where fi is given by

fi(z) = z �

1X
n=2

jain jz
n +

1X
n=1

jbin j�z
n:

For
P
1

i=1 ti = 1; 0 � ti � 1; the convex combinations of fi may be written as

1X
i=1

tifi(z) = z �

1X
n=2

 
1X
i=1

tijain j

!
zn +

1X
n=1

 
1X
i=1

tijbin j

!
�zn:

Since,
P
1

n=2 njain j+
P
1

n=1 njbin j � 1� � � 1; from the above equation we obtain

1X
n=2

n

�����
1X
i=1

tijain j

�����+
1X
n=1

n

�����
1X
i=1

tijbin j

����� =
1X
i=1

ti

(
1X
n=2

njain j+

1X
n=1

njbin j

)
�

1X
i=1

ti = 1;

and so
P
1

i=1 tifi(z) 2 NH(�):
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