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Abstract. We consider multilinear operators T = T (f1; f2; : : : ; fm) of the following form:

T (f1; f2; : : : ; fm)(x) =
R
1

0
(('1)t � f1)(x)(('2)t � f2)(x) � � � (('m)t � fm)(x) dt=t. It is known

that under appropriate conditions on 'j , there exists C > 0 such that kT (f1; f2; : : : ; fm)kp �

Ckf1kp1kf2kp2 � � � kfmkpm for 1 < p1; p2; : : : ; pm <1, 1

p
= 1

p1
+ � � �+ 1

pm
� 1. In this paper,

we treat the case without restriction p � 1. To prove this, we use a recent work on multilinear

singular integrals of Grafakos and Torres, and one on Littlewood-Paley's g-functions by S.

Sato.

x1. Introduction

Multilinearized Littlewood-Paley operators were �rst considered by R. R. Coifman and Y.

Meyer in [2]. Since then, many authors treated multilinearized Littlewood-Paley operators.

Recently, Grafakos and Torres [4] established multilinear Calder�on-Zygmund theory and got

new estimates for a class of multilinear Fourier multipliers. Also, deep results are developed

on square functions in the Littlewood-Paley theory, Sato [6], etc. In this paper, we report

that we can obtain new estimates for multilinearized Littlewood-Paley operators, by using

their recent results.

We say that an m-linear operator T is good if T is a bounded operator from L
p1 �Lp2 �

� � � �Lpm to Lp for 1 < p1; p2; : : : ; pm <1, 1
p
= 1

p1
+ � � �+ 1

pm
, i:e:, there exists C > 0 such

that

kT (f1; f2; : : : ; fm)kp � Ckf1kp1kf2kp2 � � � kfmkpm :

We consider the following m-linearized Littlewood-Paley type operator

T'1;'2;::: ;'m(f1; f2; : : : ; fm)(x) =

Z 1

0

(('1)t � f1)(x)(('2)t � f2)(x) � � � (('m)t � fm)(x)
dt

t
;

In the above and in the sequel, ft(x) denotes t�nf(x=t). Let W (x) = (2�)�n=2e�jxj
2
=2

be the Gauss kernel, Wt(x) = t
�n
W (x=t), and fWt(x) = t

@Wt(x)

@t
, fW (x) = fW1(x). Then,cWt(�) = e

�jt�j
2
=2,

cfWt(�) = �jt�j2e�jt�j
2
=2. A consequence of a recent result of Grafakos

and Torres [4] is the following.
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Lemma 1. T
fW;W;::: ;W

is good.

To prove this, we recall the de�nition ofm-linear Fourier multiplier. Anm-linear operator

T� is said to be an m-linear Fourier multiplier with symbol �, if T� has the following form

T�(f1; : : : ; fm)(x) =
1

(2�)nm

Z
Rnm

e
ix�(�1+���+�m)

�(�1; : : : ; �m)f̂1(�) � � � f̂m(�m) d�1 � � � d�m:

Proof of Lemma 1. The symbol �(�1; �2; : : : ; �m) of TfW;W;::: ;W
as an m-linear Fourier mul-

tiplier is given by

�(�1; �2; : : : ; �m) =

Z
1

0

cfW (t�1)cW (t�2) � � �cW (t�m)
dt

t

=

Z
1

0

�jt�1j
2
e
�jt�1j

2
=2
e
�jt�2j

2
=2 � � � e�jt�mj

2
=2 dt

t

= �j�1j
2

Z
1

0

te
�jt�j

2
=2
dt = �j�1j

2
=j�j2 2 C1(Rnm n f0g):

This symbol function is of homogeneous of degree 0. Hence, by a theorem of Grafakos and

Torres, the conclusion holds true. �

The symbol of our operators T'1;'2;::: ;'m as m-linear Fourier multiplier is given byZ
1

0

b'1(t�1)b'2(t�2) � � � b'm(t�m) dt
t
;

at least formally, and really if the integrand of the above integral is absolutely integrable.

Clearly this symbol function is of homogeneous of degree 0, however, in general, this is not

so smooth in Rnm n f0g. For example, if 'j is the Poisson kernel P (x) = cn(1 + jxj2)�
n+1

2

(j = 2; : : : ;m), and '1(x) =
@Pt(x)

@t

��
t=1

, then the symbol is �j�1j=(j�1j + j�2j + � � �+ j�mj).
So, in general we cannot use Grafakos-Torres theorem directly.

Known results on multilinearlized Littlewood-Paley opertors are restricted on the case

p � 1, Coifman and Meyer [2], Yabuta [10]. In this paper, we treat the case p > 1=m,

1=m < 1 for m � 2.

x2. Preliminaries and main result

To state our result, we introduce some de�nitions. We consider the least non-increasing

radial majorant of a function  de�ned by

H (x) = sup
jyj�jxj

j (y)j:

We also use two seminorms

B"( ) :=

Z
jxj>1

j (x)jjxj" dx for " > 0 ;

D�( ) :=

 Z
jxj<1

j (x)j� dx

!1=�

for � > 1
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De�nition 1. A function '(x) is said to belong to LP if ' 2 L1(Rn ), B"(') <1 for some

" > 0, D�(') <1 for some � > 1, and H' 2 L
1(Rn ).

A function '(x) is said to belong to LP0 if ' 2 LP and
R
Rn
'(x) dx = 0.

A function '(x) is said to belong to LP00 if ' 2 LP0 and
R1
0
'(sx)sn�1 ds = 0 for all

non-zero x 2 Rn , and H'(x)j log jxj j 2 L
1(Rn ).

Now we can state our main result.

Theorem 1. Let 'j 2 LP , j = 1; 2; : : : ;m. Suppose one of 'j belongs to LP00. Then,

T'1;'2;::: ;'m is good.

Corollary 1. Let 1 < p1 < 1. Let '1 2 LP00 and 'j 2 LP , j = 2; : : : ;m. Let b(�) be

a bounded function of homogeneous of degree 0 and Sb be the Fourier multiplier de�ned bydSbf(�) = b(�)f̂(�). Suppose Sb is bounded on L
p1(Rn ) and  = Sb'1 is well-de�ned as an

L
1(Rn )-function. Then, for 1 < pj < 1 (j = 2; : : : ;m), 1=p = 1=p1 + 1=p2 + � � � + 1=pm

there exists C > 0 such that

kT ;'2;::: ;'m(f1; f2; : : : ; fm)kp � Ckf1kp1kf2kp2 � � � kfmkpm :

Example. Let

Pt(x) = cn
t

(jxj2 + t2)(n+1)=2

be the Poisson kernel. Put  (x) =
@P (x)

@xj
, where P = P1, and '1(x) =

@Pt(x)

@t

��
t=1

. We can

check that '1 2 LP00, in particular, the condition:

(y)

Z 1

0

'1(tx)t
n�1

dt = 0 for all non-zero x 2 Rn :

So, for 'j 2 LP (j = 2; : : : ;m) we see that T'1;'2;::: ;'m is good. On the other hand, we

can see that  does not satisfy the condition (y). Now, let b(�) = �i�j=j�j for � 6= 0. Then

Sb is the Riesz transform Rj . We observe that  = Rj'1. Therefore, although we cannot

apply Theorem 1 directly to T ;'2;::: ;'m , by the L
p boundedness of the Riesz transform and

by Corollary 1 we can see that T ;'2;::: ;'m is also good.

x3. Proofs of Theorem 1 and Corollary 1

We �rst note that if j'(x)j � C(1 + jxj)�n�" (x 2 R
n ) for some C > 0 and " > 0, then

' 2 LP .
To prove our theorem, we prepare some lemmas.

Lemma 2. Let 'j 2 LP , j = 1; 2; : : : ;m. Suppose two of 'j belong to LP0. Then,

T'1;'2;::: ;'m is good.

Proof. We may assume '1; '2 2 LP0. From the assumption H'j 2 L
1(Rn ) it follows

j('j)t � fj(x)j � CM(fj)(x);

whereM(f) denotes the Hardy-Littlewood maximal function (see, for example, Stein-Weiss

[9]). Hence, we have by the Cauchy-Schwarz inequality

jT'1;'2;::: ;'m(f1; f2; : : : ; fm)(x)j

� C

�Z
1

0

���(('1)t � f1)(x)���2 dt
t

� 1
2
�Z

1

0

���(('2)t � f2)(x)���2 dt
t

� 1
2

M(f3)(x) � � �M(fm)(x):

By Theorem 1 of S. Sato [6, p. 200], the �rst two terms in the right hand side of the above

inequality is bounded for every Lr(Rn ) (1 < r <1). As is well-known, maximal functions

are bounded for every Lr(Rn ) (1 < r <1). Hence, using H�older's inequality, we have the

conclusion. �
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Lemma 3. Let  2 L1(Rn ) satisfy D�( ) < +1 for some � > 1. Put

	(x) = �

Z
1

1

 

�
x

s

�
ds

sn+1
= �

Z 1

0

 (sx)sn�1 ds:

Then it holds

D�(	) �
�

n(� � 1)
D�( ):

Proof. Using Minkowski's inequality we have

D�(	) =

 Z
jxj<1

���Z 1

0

 (sx)sn�1 ds
���� dx! 1

�

�

Z 1

0

 Z
jxj<1

j (sx)j� dx

! 1
�

s
n�1

ds

=

Z 1

0

 Z
jxj<s

j (y)j� dy

! 1
�

s
�n=�

s
n�1

ds � D�( )

Z 1

0

s
n(1�1=�)�1

ds

=
�

n(� � 1)
D�( ): �

Lemma 4. Let  2 L
1(Rn ) satisfy B"( ) < 1 for some " > 0 and

R
1

0
 (sx)sn�1 ds = 0

for all x 6= 0. Let 	 be as in Lemma 3. Then,

B"(	) �
1

"
B"( ):

Proof. Since
R
1

0
 (sx)sn�1 ds = 0, we have 	(x) =

R
1

1
 (sx)sn�1 ds. Hence

B"(	) =

Z
jxj>1

���Z 1

1

 (sx)sn�1 ds
���jxj" dx:

Thus

B"(	) �

Z
1

1

�Z
jxj>1

j (sx)jjxj" dx

�
s
n�1

ds =

Z
1

1

�Z
jyj>s

j (y)jjyj" dy

�
s
�n�"

s
n�1

ds

� B"( )

Z
1

1

s
�1�"

ds =
1

"
B"( ): �

Lemma 5. Suppose
R
Rn
H (x)j log jxjj dx < 1 and

R1
0
 (sx)sn�1 ds = 0 for all x 6= 0.

Let 	 be as in Lemma 3. ThenZ
Rn

H	(x) dx �

Z
Rn

H (x)j log jxjj dx:

Proof. Since j	(x)j =
���R 10  (sx)sn�1 ds��� �

R 1
0
H (sx)s

n�1
ds, we have H	(x) �R 1

0
H (sx)s

n�1
ds. So, we have, using Fubini's theorem twice,Z

jxj�1

H	(x) dx �

Z
jxj�1

Z 1

0

H (sx)s
n�1

dsdx =

Z 1

0

 Z
jxj�1

H (sx) dx

!
s
n�1

ds

=

Z 1

0

 Z
jyj�s

H (y) dy

!
ds

s
=

Z
jyj�1

H (y)

 Z 1

jyj

ds

s

!
dy

=

Z
jyj�1

H (y)j log jyjj dy:
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Next, since
R
1

0
 (sx)sn�1 ds = 0, we have

	(x) =

Z
1

1

 (sx)sn�1 ds; and hence j	(x)j �

Z
1

1

H (sx)s
n�1

ds:

So,

H	(x) � sup
jyj�jxj

Z
1

1

H (sy)s
n�1

ds =

Z
1

1

H (sx)s
n�1

ds:

Thus, using Fubini's theorem twice, we haveZ
jxj�1

H	(x) dx �

Z
jxj�1

Z
1

1

H (sx)s
n�1

dsdx =

Z
1

1

 Z
jxj�1

H (sx) dx

!
s
n�1

ds

=

Z 1

1

 Z
jyj�s

H (y) dy

!
ds

s
=

Z
jyj�1

H (y)

 Z jyj

1

ds

s

!
dy

=

Z
jyj�1

H (y) log jyj dy: �

Now we proceed to the proof of our Theorem 1. We may assume '1 2 LP00, andR
Rn
'j(x) dx = 1, j = 2; : : : ;m. We decompose T'1;::: ;'m as follows.

T'1;::: ;'m(f1; : : : ; fm)

=

Z
1

0

(('1)t � f1)
�
('2 �W )t � f2

�
(('3)t � f3) � � � (('m)t � fm)

dt

t

+

Z 1

0

(('1)t � f1)(Wt � f2)(('3)t � f3) � � � (('m)t � fm)
dt

t

=: T1 + T2:

Since
R
W (x) dx =

R
'2(x) dx = 1, we see easily '2 �W 2 LP0. Hence, by Lemma 2,

we see that T1 is good. So, we have only to show T2 is good. Repeating this procedure,

we may assume 'j(x) = W (x), j = 2; : : : ;m. Set  = '1 and 	 be as in Lemma 3.

Then, by Lemmas 3, 4 and 5, we have 	 2 LP . We see also that t@	t

@t
=  t. Noting

that limt!1	t � f1(x) = 0, limt!1Wt � fj(x) = 0, j = 2; : : : ;m, limt!0	t � f1(x) =

f1(x)
R
	(x) dx, limt!0Wt � fj(x) = fj(x), j = 2; : : : ;m, we have, by integration by parts,

T'1;::: ;'m(f1; : : : ; fm)

= �
�Z

	 dx

�
f1(x)f2(x) � � � fm(x) �

Z
1

0

(	t � f1)(x)
@

@t

mY
j=2

(Wt � fj)(x) dt:

The �rst term of the right hand side of the above is clearly good. So, to prove our theorem,

we have only to treat the following one.

T
	;fW;W;::: ;W

(f1; f2; : : : ; fm) =

Z 1

0

(	t � f1)(x)(fWt � f2)(Wt � f3) � � � (Wt � fm)
dt

t
:

If
R
	(x) dx = 0, then it follows that 	 2 LP0, and hence we can apply Lemma 2. Hence,

we may assume
R
	(x) dx = 1. We decompose T

	;fW;W;::: ;W
(f1; f2; : : : ; fm) as before.

T
	;fW;W;::: ;W

(f1; f2; : : : ; fm)

=

Z
1

0

((	�W )t � f1)(x)(fWt � f2)(Wt � f3) � � � (Wt � fm)
dt

t

+

Z 1

0

(Wt � f1)(x)(fWt � f2)(Wt � f3) � � � (Wt � fm)
dt

t
:
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We see by Lemma 2 that the �rst term is good, and by Lemma 1 that the last term is also

good. This completes the proof of Theorem 1. �

Proof of Corollary 1. We note that  t � f(x) = ('1)t � (Sbf)(x) (this can be seen by

taking the Fourier transform and using the homogeneity of b(�)), and hence we have

T ;'2;::: ;'m(f1; f2; : : : ; fm)(x) = T'1;'2;::: ;'m(Sbf1; f2; : : : ; fm)(x). Therefore applying

Theorem 1 and using Lp1 boundedness of Sb, we get the conclusion. �

Remark 1. We can also get weighted versions. If w(x) 2 Apmin in Theorem 1, then there

exists C > 0 such that

kT'1;'2;::: ;'m(f1; f2; : : : ; fm)kLp(w) � Ckf1kLp1(w)kf2kLp2 (w) � � � kfmkLpm(w);

where Ap is the Muckenhoupt weight class and pmin = min(p1; p2; : : : ; pm).

Remark 2. If, in Theorem 1, j'j(x)j � C(1 + jxj)�n�" (x 2 R
n ) for some C > 0 and " > 0

(j = 1; : : : ;m), and each 'j satis�es further for some  > 0Z
j'j(x � y)� 'j(x)j dx � Cjyj ; y 2 Rn ;

and if one of 'j satis�es
R
'j(x) dx = 0 and

R
1

0
'j(sx)s

n�1
ds = 0 for all non-zero x 2 Rn ,

then, it holds

�jfx 2 Rn ; jT'1;'2;::: ;'m(f1; f2; : : : ; fm)(x)j > �gj
1
p � Ckf1kp1kf2kp2 � � � kfmkpm ; � > 0

provided one of pj = 1.

Recently, D. Fan and S. Sato showed the following: Suppose  2 L1 satis�es
R
Rn
 (x) dx

= 0, D�( ) < 1 for some � > 1, B�( ) < 1 for some � > 0,
R
jxj�1

H (x) dx < 1 and

supjxj�1H (x) < 1 (note that this follows from the condition H 2 L
1(Rn )). Then the

Littlewood-Paley function

g (f)(x) =

�Z 1

0

j t � f(x)j
2
dt=t

�1=2
is bounded on Lp for all 2 � p <1 (see [3, Corollary 3]). As an application of this, we can

give somewhat weak assertion assuming weaker condition on '1 in Theorem 1.

Remark 3. Let 'j 2 LP for j = 2; 3; : : : ;m, and let '1 2 L
1 satisfy

R
Rn
'1(x) dx = 0,

D�('1) < 1 for some � > 1,
R1
0
'1(tx)t

n�1
dt = 0 for all non-zero x 2 R

n , B�('1) < 1

for some � > 0 and
R
jxj�1=2

H'1
(x) log(2jxj) dx <1. (Note that the last two conditions are

always satis�ed if '1 is supported in fjxj � 1=2g.) Then we have

kT'1;'2;:::;'m(f1; f2; : : : ; fm)kp � Ckf1kp1kf2kp2 : : : kfmkpm

for 2 � p1 <1, 1 < p2; p3; : : : ; pm <1, 1=p = 1=p1 + 1=p2 + � � �+ 1=pm.

Arguing as in the proof of Theorem 1, we can prove this as follows. First, we may assume

'j = W for j = 2; 3; : : : ;m. To see this, we note that the conditions supjxj�1H'1(x) < 1

and
R
jxj�1

H'1(x) dx < 1 follow from our last assumption on '1, and so g'1 is bounded

on Lp, 2 � p <1. Next, after integration by parts we �nd that to get the result it suÆces

to prove the Lp1 � � � � � L
pm � L

p boundedness of T
e	;fW;W:::;W

with e	 = 	 � cW , where

	 is as in the proof of Theorem 1, c =
R
Rn

	(x) dx and p, p1; : : : ; pm are as above. Now,
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Lemmas 3 and 4 imply D�(	) < 1 and B�(	) < 1, respectively. Furthermore, from the

proof of Lemma 5 we see thatZ
jxj�1=2

H	(x) dx �

Z
jxj�1=2

H'1
(x) log(2jxj) dx <1:

Therefore we have
R
jxj�1

H	(x) dx < 1 and supjxj�1H	(x) <1. It is easy to see that e	
satis�es the same conditions. Since we also have

R
Rn
e	(x) dx = 0, g

e	
is bounded on L

p,

2 � p <1. So, arguing as in the proof of Lemma 2, we get the conclusion.
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