MULTILINEARIZED LITTLEWOOD-PALEY OPERATORS

Shuichi SATO and Kôzô YABUTA

Received May 14, 2001

Abstract

We consider multilinear operators $T=T\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ of the following form: $T\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)=\int_{0}^{\infty}\left(\left(\varphi_{1}\right)_{t} * f_{1}\right)(x)\left(\left(\varphi_{2}\right)_{t} * f_{2}\right)(x) \cdots\left(\left(\varphi_{m}\right)_{t} * f_{m}\right)(x) d t / t$. It is known that under appropriate conditions on φ_{j}, there exists $C>0$ such that $\left\|T\left(f_{1}, f_{2}, \ldots, f_{m}\right)\right\|_{p} \leq$ $C\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \cdots\left\|f_{m}\right\|_{p_{m}}$ for $1<p_{1}, p_{2}, \ldots, p_{m}<\infty, \frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}} \leq 1$. In this paper, we treat the case without restriction $p \geq 1$. To prove this, we use a recent work on multilinear singular integrals of Grafakos and Torres, and one on Littlewood-Paley's g-functions by S. Sato.

§1. Introduction

Multilinearized Littlewood-Paley operators were first considered by R. R. Coifman and Y. Meyer in [2]. Since then, many authors treated multilinearized Littlewood-Paley operators. Recently, Grafakos and Torres [4] established multilinear Calderón-Zygmund theory and got new estimates for a class of multilinear Fourier multipliers. Also, deep results are developed on square functions in the Littlewood-Paley theory, Sato [6], etc. In this paper, we report that we can obtain new estimates for multilinearized Littlewood-Paley operators, by using their recent results.

We say that an m-linear operator T is good if T is a bounded operator from $L^{p_{1}} \times L^{p_{2}} \times$ $\cdots \times L^{p_{m}}$ to L^{p} for $1<p_{1}, p_{2}, \ldots, p_{m}<\infty, \frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$, i.e., there exists $C>0$ such that

$$
\left\|T\left(f_{1}, f_{2}, \ldots, f_{m}\right)\right\|_{p} \leq C\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \cdots\left\|f_{m}\right\|_{p_{m}}
$$

We consider the following m-linearized Littlewood-Paley type operator

$$
T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)=\int_{0}^{\infty}\left(\left(\varphi_{1}\right)_{t} * f_{1}\right)(x)\left(\left(\varphi_{2}\right)_{t} * f_{2}\right)(x) \cdots\left(\left(\varphi_{m}\right)_{t} * f_{m}\right)(x) \frac{d t}{t}
$$

In the above and in the sequel, $f_{t}(x)$ denotes $t^{-n} f(x / t)$. Let $W(x)=(2 \pi)^{-n / 2} e^{-|x|^{2} / 2}$ be the Gauss kernel, $W_{t}(x)=t^{-n} W(x / t)$, and $\widetilde{W}_{t}(x)=t \frac{\partial W_{t}(x)}{\partial t}, \widetilde{W}(x)=\widetilde{W}_{1}(x)$. Then, $\widehat{W}_{t}(\xi)=e^{-|t \xi|^{2} / 2}, \widehat{W}_{t}(\xi)=-|t \xi|^{2} e^{-|t \xi|^{2} / 2}$. A consequence of a recent result of Grafakos and Torres [4] is the following.

[^0]Lemma 1. $T_{\widetilde{W}, W, \ldots, W}$ is good.
To prove this, we recall the definition of m-linear Fourier multiplier. An m-linear operator T_{σ} is said to be an m-linear Fourier multiplier with symbol σ, if T_{σ} has the following form

$$
T_{\sigma}\left(f_{1}, \ldots, f_{m}\right)(x)=\frac{1}{(2 \pi)^{n m}} \int_{\mathbb{R}^{n m}} e^{i x \cdot\left(\xi_{1}+\cdots+\xi_{m}\right)} \sigma\left(\xi_{1}, \ldots, \xi_{m}\right) \hat{f}_{1}(\xi) \cdots \hat{f}_{m}\left(\xi_{m}\right) d \xi_{1} \cdots d \xi_{m}
$$

Proof of Lemma 1. The symbol $\sigma\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)$ of $T_{\widetilde{W}, W, \ldots, W}$ as an m-linear Fourier multiplier is given by

$$
\begin{aligned}
\sigma\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right) & =\int_{0}^{\infty} \widehat{\widehat{W}}\left(t \xi_{1}\right) \widehat{W}\left(t \xi_{2}\right) \cdots \widehat{W}\left(t \xi_{m}\right) \frac{d t}{t} \\
& =\int_{0}^{\infty}-\left|t \xi_{1}\right|^{2} e^{-\left|t \xi_{1}\right|^{2} / 2} e^{-\left|t \xi_{2}\right|^{2} / 2} \cdots e^{-\left|t \xi_{m}\right|^{2} / 2} \frac{d t}{t} \\
& =-\left|\xi_{1}\right|^{2} \int_{0}^{\infty} t e^{-|t \xi|^{2} / 2} d t=-\left|\xi_{1}\right|^{2} /|\xi|^{2} \in C^{\infty}\left(\mathbb{R}^{n m} \backslash\{0\}\right)
\end{aligned}
$$

This symbol function is of homogeneous of degree 0 . Hence, by a theorem of Grafakos and Torres, the conclusion holds true.

The symbol of our operators $T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}$ as m-linear Fourier multiplier is given by

$$
\int_{0}^{\infty} \widehat{\varphi}_{1}\left(t \xi_{1}\right) \widehat{\varphi}_{2}\left(t \xi_{2}\right) \cdots \widehat{\varphi}_{m}\left(t \xi_{m}\right) \frac{d t}{t}
$$

at least formally, and really if the integrand of the above integral is absolutely integrable. Clearly this symbol function is of homogeneous of degree 0 , however, in general, this is not so smooth in $\mathbb{R}^{n m} \backslash\{0\}$. For example, if φ_{j} is the Poisson kernel $P(x)=c_{n}\left(1+|x|^{2}\right)^{-\frac{n+1}{2}}$ $(j=2, \ldots, m)$, and $\varphi_{1}(x)=\left.\frac{\partial P_{t}(x)}{\partial t}\right|_{t=1}$, then the symbol is $-\left|\xi_{1}\right| /\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|+\cdots+\left|\xi_{m}\right|\right)$. So, in general we cannot use Grafakos-Torres theorem directly.

Known results on multilinearlized Littlewood-Paley opertors are restricted on the case $p \geq 1$, Coifman and Meyer [2], Yabuta [10]. In this paper, we treat the case $p>1 / m$, $1 / m<1$ for $m \geq 2$.

§2. Preliminaries and main result

To state our result, we introduce some definitions. We consider the least non-increasing radial majorant of a function ψ defined by

$$
H_{\psi}(x)=\sup _{|y| \geq|x|}|\psi(y)|
$$

We also use two seminorms

$$
\begin{aligned}
& B_{\varepsilon}(\psi):=\int_{|x|>1}|\psi(x)||x|^{\varepsilon} d x \quad \text { for } \varepsilon>0 \\
& D_{\eta}(\psi):=\left(\int_{|x|<1}|\psi(x)|^{\eta} d x\right)^{1 / \eta} \quad \text { for } \eta>1
\end{aligned}
$$

Definition 1. A function $\varphi(x)$ is said to belong to $L P$ if $\varphi \in L^{1}\left(\mathbb{R}^{n}\right), B_{\varepsilon}(\varphi)<\infty$ for some $\varepsilon>0, D_{\eta}(\varphi)<\infty$ for some $\eta>1$, and $H_{\varphi} \in L^{1}\left(\mathbb{R}^{n}\right)$.

A function $\varphi(x)$ is said to belong to $L P_{0}$ if $\varphi \in L P$ and $\int_{\mathbb{R}^{n}} \varphi(x) d x=0$.
A function $\varphi(x)$ is said to belong to $L P_{00}$ if $\varphi \in L P_{0}$ and $\int_{0}^{\infty} \varphi(s x) s^{n-1} d s=0$ for all non-zero $x \in \mathbb{R}^{n}$, and $H_{\varphi}(x)|\log | x| | \in L^{1}\left(\mathbb{R}^{n}\right)$.

Now we can state our main result.
Theorem 1. Let $\varphi_{j} \in L P, j=1,2, \ldots, m$. Suppose one of φ_{j} belongs to $L P_{00}$. Then, $T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}$ is good.
Corollary 1. Let $1<p_{1}<\infty$. Let $\varphi_{1} \in L P_{00}$ and $\varphi_{j} \in L P, j=2, \ldots, m$. Let $b(\xi)$ be a bounded function of homogeneous of degree 0 and S_{b} be the Fourier multiplier defined by $\widehat{S_{b} f}(\xi)=b(\xi) \hat{f}(\xi)$. Suppose S_{b} is bounded on $L^{p_{1}}\left(\mathbb{R}^{n}\right)$ and $\psi=S_{b} \varphi_{1}$ is well-defined as an $L^{1}\left(\mathbb{R}^{n}\right)$-function. Then, for $1<p_{j}<\infty(j=2, \ldots, m), 1 / p=1 / p_{1}+1 / p_{2}+\cdots+1 / p_{m}$ there exists $C>0$ such that

$$
\left\|T_{\psi, \varphi_{2}, \ldots, \varphi_{m}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)\right\|_{p} \leq C\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \cdots\left\|f_{m}\right\|_{p_{m}}
$$

Example. Let

$$
P_{t}(x)=c_{n} \frac{t}{\left(|x|^{2}+t^{2}\right)^{(n+1) / 2}}
$$

be the Poisson kernel. Put $\psi(x)=\frac{\partial P(x)}{\partial x_{j}}$, where $P=P_{1}$, and $\varphi_{1}(x)=\left.\frac{\partial P_{t}(x)}{\partial t}\right|_{t=1}$. We can check that $\varphi_{1} \in L P_{00}$, in particular, the condition:

$$
\int_{0}^{\infty} \varphi_{1}(t x) t^{n-1} d t=0 \quad \text { for all non-zero } x \in \mathbb{R}^{n} .
$$

So, for $\varphi_{j} \in L P(j=2, \ldots, m)$ we see that $T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}$ is good. On the other hand, we can see that ψ does not satisfy the condition (\dagger). Now, let $b(\xi)=-i \xi_{j} /|\xi|$ for $\xi \neq 0$. Then S_{b} is the Riesz transform R_{j}. We observe that $\psi=R_{j} \varphi_{1}$. Therefore, although we cannot apply Theorem 1 directly to $T_{\psi, \varphi_{2}, \ldots, \varphi_{m}}$, by the L^{p} boundedness of the Riesz transform and by Corollary 1 we can see that $T_{\psi, \varphi_{2}, \ldots, \varphi_{m}}$ is also good.

§3. Proofs of Theorem 1 and Corollary 1

We first note that if $|\varphi(x)| \leq C(1+|x|)^{-n-\varepsilon}\left(x \in \mathbb{R}^{n}\right)$ for some $C>0$ and $\varepsilon>0$, then $\varphi \in L P$.

To prove our theorem, we prepare some lemmas.
Lemma 2. Let $\varphi_{j} \in L P, j=1,2, \ldots, m$. Suppose two of φ_{j} belong to $L P_{0}$. Then, $T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}$ is good.
Proof. We may assume $\varphi_{1}, \varphi_{2} \in L P_{0}$. From the assumption $H_{\varphi_{j}} \in L^{1}\left(\mathbb{R}^{n}\right)$ it follows

$$
\left|\left(\varphi_{j}\right)_{t} * f_{j}(x)\right| \leq C M\left(f_{j}\right)(x)
$$

where $M(f)$ denotes the Hardy-Littlewood maximal function (see, for example, Stein-Weiss [9]). Hence, we have by the Cauchy-Schwarz inequality

$$
\begin{aligned}
& \left|T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right| \\
& \leq C\left(\int_{0}^{\infty}\left|\left(\left(\varphi_{1}\right)_{t} * f_{1}\right)(x)\right|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}\left(\int_{0}^{\infty}\left|\left(\left(\varphi_{2}\right)_{t} * f_{2}\right)(x)\right|^{2} \frac{d t}{t}\right)^{\frac{1}{2}} M\left(f_{3}\right)(x) \cdots M\left(f_{m}\right)(x)
\end{aligned}
$$

By Theorem 1 of S. Sato [6, p. 200], the first two terms in the right hand side of the above inequality is bounded for every $L^{r}\left(\mathbb{R}^{n}\right)(1<r<\infty)$. As is well-known, maximal functions are bounded for every $L^{r}\left(\mathbb{R}^{n}\right)(1<r<\infty)$. Hence, using Hölder's inequality, we have the conclusion.

Lemma 3. Let $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfy $D_{\eta}(\psi)<+\infty$ for some $\eta>1$. Put

$$
\Psi(x)=-\int_{1}^{\infty} \psi\left(\frac{x}{s}\right) \frac{d s}{s^{n+1}}=-\int_{0}^{1} \psi(s x) s^{n-1} d s
$$

Then it holds

$$
D_{\eta}(\Psi) \leq \frac{\eta}{n(\eta-1)} D_{\eta}(\psi)
$$

Proof. Using Minkowski's inequality we have

$$
\begin{aligned}
D_{\eta}(\Psi) & =\left(\int_{|x|<1}\left|\int_{0}^{1} \psi(s x) s^{n-1} d s\right|^{\eta} d x\right)^{\frac{1}{\eta}} \leq \int_{0}^{1}\left(\int_{|x|<1}|\psi(s x)|^{\eta} d x\right)^{\frac{1}{\eta}} s^{n-1} d s \\
& =\int_{0}^{1}\left(\int_{|x|<s}|\psi(y)|^{\eta} d y\right)^{\frac{1}{\eta}} s^{-n / \eta} s^{n-1} d s \leq D_{\eta}(\psi) \int_{0}^{1} s^{n(1-1 / \eta)-1} d s \\
& =\frac{\eta}{n(\eta-1)} D_{\eta}(\psi) .
\end{aligned}
$$

Lemma 4. Let $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$ satisfy $B_{\varepsilon}(\psi)<\infty$ for some $\varepsilon>0$ and $\int_{0}^{\infty} \psi(s x) s^{n-1} d s=0$ for all $x \neq 0$. Let Ψ be as in Lemma 3. Then,

$$
B_{\varepsilon}(\Psi) \leq \frac{1}{\varepsilon} B_{\varepsilon}(\psi) .
$$

Proof. Since $\int_{0}^{\infty} \psi(s x) s^{n-1} d s=0$, we have $\Psi(x)=\int_{1}^{\infty} \psi(s x) s^{n-1} d s$. Hence

$$
B_{\varepsilon}(\Psi)=\int_{|x|>1}\left|\int_{1}^{\infty} \psi(s x) s^{n-1} d s\right||x|^{\varepsilon} d x
$$

Thus

$$
\begin{aligned}
B_{\varepsilon}(\Psi) & \leq \int_{1}^{\infty}\left(\int_{|x|>1}|\psi(s x)||x|^{\varepsilon} d x\right) s^{n-1} d s=\int_{1}^{\infty}\left(\int_{|y|>s}|\psi(y)||y|^{\varepsilon} d y\right) s^{-n-\varepsilon} s^{n-1} d s \\
& \leq B_{\varepsilon}(\psi) \int_{1}^{\infty} s^{-1-\varepsilon} d s=\frac{1}{\varepsilon} B_{\varepsilon}(\psi) .
\end{aligned}
$$

Lemma 5. Suppose $\int_{\mathbb{R}^{n}} H_{\psi}(x)|\log | x| | d x<\infty$ and $\int_{0}^{\infty} \psi(s x) s^{n-1} d s=0$ for all $x \neq 0$. Let Ψ be as in Lemma 3. Then

$$
\int_{\mathbb{R}^{n}} H_{\Psi}(x) d x \leq \int_{\mathbb{R}^{n}} H_{\psi}(x)|\log | x| | d x
$$

Proof. Since $|\Psi(x)|=\left|\int_{0}^{1} \psi(s x) s^{n-1} d s\right| \leq \int_{0}^{1} H_{\psi}(s x) s^{n-1} d s$, we have $H_{\Psi}(x) \leq$ $\int_{0}^{1} H_{\psi}(s x) s^{n-1} d s$. So, we have, using Fubini's theorem twice,

$$
\begin{aligned}
\int_{|x| \leq 1} & H_{\Psi}(x) d x \leq \int_{|x| \leq 1} \int_{0}^{1} H_{\psi}(s x) s^{n-1} d s d x=\int_{0}^{1}\left(\int_{|x| \leq 1} H_{\psi}(s x) d x\right) s^{n-1} d s \\
& =\int_{0}^{1}\left(\int_{|y| \leq s} H_{\psi}(y) d y\right) \frac{d s}{s}=\int_{|y| \leq 1} H_{\psi}(y)\left(\int_{|y|}^{1} \frac{d s}{s}\right) d y \\
& =\int_{|y| \leq 1} H_{\psi}(y)|\log | y| | d y .
\end{aligned}
$$

Next, since $\int_{0}^{\infty} \psi(s x) s^{n-1} d s=0$, we have

$$
\Psi(x)=\int_{1}^{\infty} \psi(s x) s^{n-1} d s, \text { and hence } \quad|\Psi(x)| \leq \int_{1}^{\infty} H_{\psi}(s x) s^{n-1} d s
$$

So,

$$
H_{\Psi}(x) \leq \sup _{|y| \geq|x|} \int_{1}^{\infty} H_{\psi}(s y) s^{n-1} d s=\int_{1}^{\infty} H_{\psi}(s x) s^{n-1} d s
$$

Thus, using Fubini's theorem twice, we have

$$
\begin{aligned}
& \int_{|x| \geq 1} H_{\Psi}(x) d x \leq \int_{|x| \geq 1} \int_{1}^{\infty} H_{\psi}(s x) s^{n-1} d s d x=\int_{1}^{\infty}\left(\int_{|x| \geq 1} H_{\psi}(s x) d x\right) s^{n-1} d s \\
& \quad=\int_{1}^{\infty}\left(\int_{|y| \geq s} H_{\psi}(y) d y\right) \frac{d s}{s}=\int_{|y| \geq 1} H_{\psi}(y)\left(\int_{1}^{|y|} \frac{d s}{s}\right) d y \\
& \quad=\int_{|y| \geq 1} H_{\psi}(y) \log |y| d y .
\end{aligned}
$$

Now we proceed to the proof of our Theorem 1. We may assume $\varphi_{1} \in L P_{00}$, and $\int_{\mathbb{R}^{n}} \varphi_{j}(x) d x=1, j=2, \ldots, m$. We decompose $T_{\varphi_{1}, \ldots, \varphi_{m}}$ as follows.

$$
\begin{aligned}
& T_{\varphi_{1}, \ldots, \varphi_{m}}\left(f_{1}, \ldots, f_{m}\right) \\
& =\int_{0}^{\infty}\left(\left(\varphi_{1}\right)_{t} * f_{1}\right)\left(\left(\varphi_{2}-W\right)_{t} * f_{2}\right)\left(\left(\varphi_{3}\right)_{t} * f_{3}\right) \cdots\left(\left(\varphi_{m}\right)_{t} * f_{m}\right) \frac{d t}{t} \\
& \quad+\int_{0}^{\infty}\left(\left(\varphi_{1}\right)_{t} * f_{1}\right)\left(W_{t} * f_{2}\right)\left(\left(\varphi_{3}\right)_{t} * f_{3}\right) \cdots\left(\left(\varphi_{m}\right)_{t} * f_{m}\right) \frac{d t}{t} \\
& = \\
& \quad: T_{1}+T_{2}
\end{aligned}
$$

Since $\int W(x) d x=\int \varphi_{2}(x) d x=1$, we see easily $\varphi_{2}-W \in L P_{0}$. Hence, by Lemma 2 , we see that T_{1} is good. So, we have only to show T_{2} is good. Repeating this procedure, we may assume $\varphi_{j}(x)=W(x), j=2, \ldots, m$. Set $\psi=\varphi_{1}$ and Ψ be as in Lemma 3. Then, by Lemmas 3, 4 and 5 , we have $\Psi \in L P$. We see also that $t \frac{\partial \Psi_{t}}{\partial t}=\psi_{t}$. Noting that $\lim _{t \rightarrow \infty} \Psi_{t} * f_{1}(x)=0, \lim _{t \rightarrow \infty} W_{t} * f_{j}(x)=0, j=2, \ldots, m, \lim _{t \rightarrow 0} \Psi_{t} * f_{1}(x)=$ $f_{1}(x) \int \Psi(x) d x, \lim _{t \rightarrow 0} W_{t} * f_{j}(x)=f_{j}(x), j=2, \ldots, m$, we have, by integration by parts,

$$
\begin{aligned}
T_{\varphi_{1}, \ldots, \varphi_{m}} & \left(f_{1}, \ldots, f_{m}\right) \\
& =-\left(\int \Psi d x\right) f_{1}(x) f_{2}(x) \cdots f_{m}(x)-\int_{0}^{\infty}\left(\Psi_{t} * f_{1}\right)(x) \frac{\partial}{\partial t} \prod_{j=2}^{m}\left(W_{t} * f_{j}\right)(x) d t
\end{aligned}
$$

The first term of the right hand side of the above is clearly good. So, to prove our theorem, we have only to treat the following one.

$$
T_{\Psi, \widetilde{W}, W, \ldots, W}\left(f_{1}, f_{2}, \ldots, f_{m}\right)=\int_{0}^{\infty}\left(\Psi_{t} * f_{1}\right)(x)\left(\widetilde{W}_{t} * f_{2}\right)\left(W_{t} * f_{3}\right) \cdots\left(W_{t} * f_{m}\right) \frac{d t}{t}
$$

If $\int \Psi(x) d x=0$, then it follows that $\Psi \in L P_{0}$, and hence we can apply Lemma 2 . Hence, we may assume $\int \Psi(x) d x=1$. We decompose $T_{\Psi, \widetilde{W}, W, \ldots, W}\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ as before.

$$
\begin{aligned}
& T_{\Psi, \widetilde{W}, W, \ldots, W}\left(f_{1}, f_{2}, \ldots, f_{m}\right) \\
&= \int_{0}^{\infty}\left((\Psi-W)_{t} * f_{1}\right)(x)\left(\widetilde{W}_{t} * f_{2}\right)\left(W_{t} * f_{3}\right) \cdots\left(W_{t} * f_{m}\right) \frac{d t}{t} \\
&+\int_{0}^{\infty}\left(W_{t} * f_{1}\right)(x)\left(\widetilde{W}_{t} * f_{2}\right)\left(W_{t} * f_{3}\right) \cdots\left(W_{t} * f_{m}\right) \frac{d t}{t}
\end{aligned}
$$

We see by Lemma 2 that the first term is good, and by Lemma 1 that the last term is also good. This completes the proof of Theorem 1.
Proof of Corollary 1. We note that $\psi_{t} * f(x)=\left(\varphi_{1}\right)_{t} *\left(S_{b} f\right)(x)$ (this can be seen by taking the Fourier transform and using the homogeneity of $b(\xi)$), and hence we have $T_{\psi, \varphi_{2}, \ldots, \varphi_{m}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)=T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}\left(S_{b} f_{1}, f_{2}, \ldots, f_{m}\right)(x)$. Therefore applying Theorem 1 and using $L^{p_{1}}$ boundedness of S_{b}, we get the conclusion.

Remark 1. We can also get weighted versions. If $w(x) \in A_{p_{\text {min }}}$ in Theorem 1, then there exists $C>0$ such that

$$
\left\|T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)\right\|_{L^{p}(w)} \leq C\left\|f_{1}\right\|_{L^{p_{1}}(w)}\left\|f_{2}\right\|_{L^{p_{2}}(w)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}(w)},
$$

where A_{p} is the Muckenhoupt weight class and $p_{\min }=\min \left(p_{1}, p_{2}, \ldots, p_{m}\right)$.
Remark 2. If, in Theorem $1,\left|\varphi_{j}(x)\right| \leq C(1+|x|)^{-n-\varepsilon}\left(x \in \mathbb{R}^{n}\right)$ for some $C>0$ and $\varepsilon>0$ $(j=1, \ldots, m)$, and each φ_{j} satisfies further for some $\gamma>0$

$$
\int\left|\varphi_{j}(x-y)-\varphi_{j}(x)\right| d x \leq C|y|^{\gamma}, \quad y \in \mathbb{R}^{n}
$$

and if one of φ_{j} satisfies $\int \varphi_{j}(x) d x=0$ and $\int_{0}^{\infty} \varphi_{j}(s x) s^{n-1} d s=0$ for all non-zero $x \in \mathbb{R}^{n}$, then, it holds

$$
\lambda\left|\left\{x \in \mathbb{R}^{n} ;\left|T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right|>\lambda\right\}\right|^{\frac{1}{p}} \leq C\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \cdots\left\|f_{m}\right\|_{p_{m}}, \quad \lambda>0
$$

provided one of $p_{j}=1$.
Recently, D. Fan and S. Sato showed the following: Suppose $\psi \in L^{1}$ satisfies $\int_{\mathbb{R}^{n}} \psi(x) d x$ $=0, D_{\eta}(\psi)<\infty$ for some $\eta>1, B_{\epsilon}(\psi)<\infty$ for some $\epsilon>0, \int_{|x| \geq 1} H_{\psi}(x) d x<\infty$ and $\sup _{|x| \geq 1} H_{\psi}(x)<\infty\left(\right.$ note that this follows from the condition $\left.H_{\psi} \in L^{1}\left(\mathbb{R}^{n}\right)\right)$. Then the Littlewood-Paley function

$$
g_{\psi}(f)(x)=\left(\int_{0}^{\infty}\left|\psi_{t} * f(x)\right|^{2} d t / t\right)^{1 / 2}
$$

is bounded on L^{p} for all $2 \leq p<\infty$ (see [3, Corollary 3]). As an application of this, we can give somewhat weak assertion assuming weaker condition on φ_{1} in Theorem 1.

Remark 3. Let $\varphi_{j} \in L P$ for $j=2,3, \ldots, m$, and let $\varphi_{1} \in L^{1}$ satisfy $\int_{\mathbb{R}^{n}} \varphi_{1}(x) d x=0$, $D_{\eta}\left(\varphi_{1}\right)<\infty$ for some $\eta>1, \int_{0}^{\infty} \varphi_{1}(t x) t^{n-1} d t=0$ for all non-zero $x \in \mathbb{R}^{n}, B_{\epsilon}\left(\varphi_{1}\right)<\infty$ for some $\epsilon>0$ and $\int_{|x| \geq 1 / 2} H_{\varphi_{1}}(x) \log (2|x|) d x<\infty$. (Note that the last two conditions are always satisfied if φ_{1} is supported in $\{|x| \leq 1 / 2\}$.) Then we have

$$
\left\|T_{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)\right\|_{p} \leq C\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \ldots\left\|f_{m}\right\|_{p_{m}}
$$

for $2 \leq p_{1}<\infty, 1<p_{2}, p_{3}, \ldots, p_{m}<\infty, 1 / p=1 / p_{1}+1 / p_{2}+\cdots+1 / p_{m}$.
Arguing as in the proof of Theorem 1, we can prove this as follows. First, we may assume $\varphi_{j}=W$ for $j=2,3, \ldots, m$. To see this, we note that the conditions $\sup _{|x| \geq 1} H_{\varphi_{1}}(x)<\infty$ and $\int_{|x| \geq 1} H_{\varphi_{1}}(x) d x<\infty$ follow from our last assumption on φ_{1}, and so $g_{\varphi_{1}}$ is bounded on $L^{p}, 2 \leq p<\infty$. Next, after integration by parts we find that to get the result it suffices to prove the $L^{p_{1}} \times \cdots \times L^{p_{m}}-L^{p}$ boundedness of $T_{\widetilde{\Psi}, \widetilde{W}, W \ldots, W}$ with $\widetilde{\Psi}=\Psi-c W$, where Ψ is as in the proof of Theorem $1, c=\int_{\mathbb{R}^{n}} \Psi(x) d x$ and p, p_{1}, \ldots, p_{m} are as above. Now,

Lemmas 3 and 4 imply $D_{\eta}(\Psi)<\infty$ and $B_{\epsilon}(\Psi)<\infty$, respectively. Furthermore, from the proof of Lemma 5 we see that

$$
\int_{|x| \geq 1 / 2} H_{\Psi}(x) d x \leq \int_{|x| \geq 1 / 2} H_{\varphi_{1}}(x) \log (2|x|) d x<\infty .
$$

Therefore we have $\int_{|x| \geq 1} H_{\Psi}(x) d x<\infty$ and $\sup _{|x| \geq 1} H_{\Psi}(x)<\infty$. It is easy to see that $\widetilde{\Psi}$ satisfies the same conditions. Since we also have $\int_{\mathbb{R}^{n}} \widetilde{\Psi}(x) d x=0, g_{\widetilde{\Psi}}$ is bounded on L^{p}, $2 \leq p<\infty$. So, arguing as in the proof of Lemma 2, we get the conclusion.

References

[1] A. Benedek, A. P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U. S. A., 48 (1962), 356-3365.
[2] R. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978), 1-185.
[3] D. Fan and S. Sato, Remarks on Littlewood-Paley functions and singular integrals, preprint.
[4] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, preprint.
[5] L. Grafakos and R. H. Torres, Maximal operators and weighted norm inequalities for multilinear singular integrals, preprint.
[6] S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc., 58 (1998), 199-211.
[7] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430-466.
[8] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970.
[9] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
[10] K. Yabuta, A multilinearization of Littlewood-Paley's g-function and Carleson measures, Tôhoku. Math. J., 34 (1982), 251-275.
[11] K. Yabuta, Bilinear Fourier multipliers, Tôhoku Math. J., 35 (1983), 541-555.

Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 9201192, Japan
E-MAIL: SHUICHI@KENROKU.KANAZAWA-U.AC.JP (S. SATO)

School of Science, Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan
e-mail: Yabuta@kwansei.ac.jp (K. Yabuta)

[^0]: 1991 Mathematics Subject Classification. Primary 42B25; Secondary 42B15, 42B20.
 Key words and phrases. Littlewood-Paley operators, multilinear operators, multipliers, singular integrals, L^{p} estimate.

