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Abstract. Let G be a locally compact group. A continuous unitary representation � of G is

said to be amenable if there exists a G-invariant mean on the space of B(H�). In this paper,

we investigate various characterization of amenable representations through the study of the

existence and properties of invariant means on spaces of operators. One of our characterizations

is an analogue of the Dixmier criterion for amenable groups. We also attempt to formulate a

�xed point property for the amenable representations.

A locally compact group G is said to be amenable if there exists a left invariant mean

on G, i:e:, a continuous linear functional m on L1(G) such that m(1) = 1 = kmk and

m(xf) = m(f) for all x 2 G and f 2 L1(G). Amenable groups have been studied from

various angles. Among many others, one of more recent approaches is through amenable

representations.

A continuous unitary representation � of G is said to be amenable if there exists a G-
invariant mean on B(H�). This notion is introduced by M. Bekka [1]. The signi�cance

of this concept is best demonstrated by the following result of Bekka: G is amenable if

and only if every continuous unitary representation of G is amenable. The amenability

of representations can be characterized in various ways. For example, Bekka presented

the analogues of Reiter's properties, Day's asymptotic invariance properties, and F�lner's

condition for amenable groups in [1].

In the following, we are also primarily concerned with di�erent ways of characteriz-

ing amenable representations. We start with discussing some interesting properties of the

means on a space of operators. Then we present various characterizations of amenable rep-

resentations. At the end, we attempt to formulate a �xed point property to describe the

amenability of representations.

Let H be a Hilbert space, B(H) the space of all bounded linear operators on H . For a

subspace A of B(H), let Ah = fT 2 A; T � = Tg. The following lemma has its analogue

for spaces of functions.

Lemma 1. Let A be a conjugate closed subspace of B(H) containing identity I. Let M be

a bounded linear functional on A. If M satis�es any two of the following three conditions,

it must satis�es the remaining one, and then M is a mean.

(i)M(I) = 1: (ii) kMk = 1: (iii)M � 0 (i:e:; M(T ) � 0 if T � 0):

Proof. (i) and (ii) =) (iii). Our �rst observation is that (i) and (ii) ensures M(S) 2 R

for all S 2 Ah. For any S 2 A, assume that M(S) = � + i�; �; � 2 R. Then, for any


 2 R, we have

(� + 
)2 � j�+ i(� + 
)j
2
= jM(S + i
I)j

2
� kS + i
Ik2 � kSk

2
+ 
2:
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Hence we get 2�
 � kSk
2
� �2 for all 
 2 R. But this can not be true unless � = 0.

Thus M(S) = � 2 R. Now, we assume M(T ) < 0 for some T 2 A and T � 0. Let

S = kTkI � T . Note that S 2 Ah and kSk � kTk. But, (i) and (ii) implies that kSk �
M(S) = kTk�M(T ) > kTk, a contradiction. Thus (iii) holds.

(i) and (iii) =) (ii). Note that, for any T 2 Ah, kTkI � T � 0, and hence M(T ) 2 R
and jM(T )j � kTk. Given T 2 A, there must exist an � 2 C with j�j = 1 and T1; T2 2 Ah

such that �T = T1 + iT2 and

0 � jM(T )j = M(�T ) = M(T1 + iT2) = M(T1) + iM(T2):

This implies that M(T2) = 0 and M(T1) � kT1k � k�Tk = kTk, hence kMk � 1. Together

with (i), we have kMk = 1.

(ii) and (iii) =) (i). Let �; T1 and T2 be as above. Then, kT1kI � T1 � 0 implies

jM(T )j =M(T1) �M(I)kT1k �M(I)kTk, and thus M(I) � kMk = 1. Together with (ii),
we have M(I) = 1. �

For T 2 B(H), the set W (T ) = fhT�; �i; � 2 H and k�k = 1g (� C) is commonly

known as the numerical range of the operator T . It is well-known that W (T ) is always

convex but not closed (see Halmos [3, Chapter 17]). If T is hermitian, then W (T ) � R. If

T is positive, then W (T ) � R
+ = [0;1). Now, we give another characterization of means.

Lemma 2. Let A and M be as in Lemma 1. Then the following statements are equivalent.

(i)M is a mean on A: (ii) infW (S) �M(S) � supW (S) for all S 2 Ah:

Proof. (ii) =) (i). Since W (I) = f1g, we have M(I) = 1. If S � 0, then M(S) �
infW (S) � 0. Thus M is a mean by Lemma 1.

(i) =) (ii): For S 2 Ah, we denote � = supW (S) and consider the operator (�I � S) 2
Ah. If � 2 H and k�k = 1, then

h(�I � S)�; �i = � k�k2 � hS�; �i = �� hS�; �i � 0:

So (�I �S) � 0. By (i), we have M(�I �S) � 0, i.e. M(S) � � = supW (S). Replacing
S by �S, we have �M(S) =M(�S) � supW (�S) = � infW (S). Hence (ii) holds. �

Let G be a locally compact group and � a continuous unitary representation of G on a

Hilbert space H�. The Banach space B(H�) forms a left G-module with the natural group

action de�ned by

x �� T = �(x)T �(x�1) ; x 2 G; T 2 B(H�):

Under this group action, a subset A of B(H�) is said to be G-invariant if G � A = fx �
T ; x 2 G; T 2 Ag � A. A is said to be an admissible subspace of B(H�) if it is a

norm closed, conjugate closed and G-invariant subspace of B(H�) containing I . A bounded

linear functional M on an admissible subspace A is called a mean on A if it satis�es

kMk = M(I) = 1. It is called a G-invariant mean if it also satis�es M(x � T ) = M(T ) for
all x 2 G and T 2 A. Now, for an admissible subspace A of B(H�), we de�ne J(A) =
spanfT � x � T ; T 2 A; x 2 Gg.

Lemma 3. If A is an admissible subspace of B(H�), then the following statements are

equivalent.

(i) There exists a G-invariant mean on A.

(ii) supW (S) � 0 for all S 2 J(A)h.

Proof. (i) =) (ii). Let M be a G-invariant mean on A. Then M(J(A)) = f0g. By

Lemma 2, supW (S) �M(S) = 0 for all S 2 J(A)h.



AMENABLE REPRESENTATIONS 239

(ii) =) (i). Note that Ah is a real normed linear space, and J(A)h is a proper real

subspace of Ah because (�I) 62 J(A)h by (ii). De�ne a function p by p(S) = supW (S)
for all S 2 Ah. Clearly, p is a subadditive, positively homogeneous, real-valued function

on Ah. De�ne another function MÆ by MÆ(S) = 0 for all S 2 J(A)h. Obviously, we have
MÆ � p on J(A)h. By the Hahn-Banach theorem, MÆ can be extended to a real-valued

linear functional M on Ah satisfying M(S) � p(S) for all S 2 Ah. Replacing S by �S, we
get

�kSk � infW (S) � M(S) � supW (S) � kSk ; for all S 2 Ah :

So, jM(S)j � kSk, i.e., M is continuous on Ah. In a natural way, M can be (uniquely)

extended to a bounded linear functional on A, still denoted by M . Then M is a mean on

A by Lemma 2, and is G-invariant because M(J(A)) = f0g. �

When A is an admissible subalgebra of B(H�), we have the following

Lemma 4. If A is an admissible subalgebra of B(H�), then the following statements are

equivalent.

(i) There exists a G-invariant mean on A:
(ii) inffkI � Sk; S 2 J(A)g = 1:

(iii) J(A) $ A:

Proof. (i) =) (ii). Let M be a G-invariant mean on A. Then we have M(J(A)) = f0g,
and 1 =M(I � S) � kI � Sk for all S 2 J(A). Moreover 0 2 J(A) and kI � 0k = 1. Thus

(ii) holds.

(ii) =) (iii). Trivial, because (ii) implies that I 62 J(A).

(iii) =) (i). We choose a TÆ 2 A n J(A). Then TÆ 6= 0. By the Hahn-Banach theorem,

there exists an M 2 A� such that M(TÆ) 6= 0, and M(J(A)) = f0g. For convenience, we

de�ne x �M 2 A� by x �M(T ) =M(x � T ) for x 2 G, T 2 A. Then M(J(A)) = f0g yields
that x �M =M for all x 2 G, i.e., M is G-invariant.

Without loss of generality, we may assume that M is hermitian (otherwise, we can

replace M by either (M + ~M)=2 or (M � ~M)=2i whichever is nonvanishing at TÆ, where
~M(T ) =M(T �) ). Then M has a unique Jordan decomposition satisfying

(1) M =M+ �M� with M+ and M� positive;

(2) kMk = kM+k+ kM�k:
(see Takesaki [7, Theorem III.2.1]). Now, for all x 2 G, x � M+ and x � M� are both

positive, and kx �M�k = x �M�(I) = M�(I) = kM�k. Thus, kMk = kM+k + kM�k =
kx �M+k + kx �M�k. By the uniqueness of the decomposition, we have x �M� = M�,

for all x 2 G. Therefore, both M+ and M� are G-invariant. Since M(TÆ) 6= 0, one of

M+(TÆ) and M�(TÆ) must be non-zero, say M+(TÆ) 6= 0. Then M+(I) = kM+k > 0, and

so M̂(T ) =M+(T )=M+(I) (T 2 A) de�nes a G-invariant mean on A. �

As a direct consequence of the Lemma 3 and 4, we have following characterizations for

amenable representations.

Theorem 5. For a continuous unitary representation �, following conditions are equiva-

lent.

(i) � is amenable.

(ii) supW (S) � 0 for all S 2 J(B(H�))h.

(iii) infS2J(B(H�)) kI � Sk = 1.

(iv) J(B(H�)) $ B(H�).

We will call the second condition in Theorem 5 the Dixmier criterion for amenable

representations because it is analogous to the Dixmier criterion for amenable groups.
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Now, we consider the space TC(H�) of all trace class operators on H� equipped with the

trace-norm. With the restriction of the group action de�ned before Lemma 3 to TC(H�),

TC(H�) forms a left Banach G-module (see Bekka [1, Lemma 2.1]). We observe that

TC(H�) also forms a right Banach L1(G)-module with the action de�ned as follows: for

any A 2 TC(H�) and f 2 L1(G),

hA � f; T i =

Z
G

f(y)hy�1 � A; T idy ; T 2 B(H�) :

By the duality B(H�) = TC(H�)
�, B(H�) can be made into a left Banach L1(G)-module

with the action given by

h(f � T )�; �i =

Z
G

f(y)h(y � T )�; �idy ; �; � 2 H�;

for all f 2 L1(G) and T 2 B(H�). This module structure is introduced by Bekka in [1].

Let L1(G)+1 = ff 2 L1(G); f � 0; kfk1 = 1g. A subset A of B(H�) is said to be

topologically invariant (t-invariant) if L1(G)+1 � A = ff � T ; f 2 L1(G)+1 ; T 2 Ag � A.
A is said to be a topologically admissible (t-admissible) subspace if it is a norm closed,

conjugate-closed, t-invariant subspace of B(H�) containing I . An M 2 A� is called a

topologically invariant (t-invariant) mean if it is a mean on A satisfying M(f � T ) =M(T ),

for all f 2 L1(G)+1 , T 2 A. One can easily check that if A is closed under the weak operator

topology, then A is t-invariant if and only if it is G-invariant. It is also known that the

existence of a t-invariant mean on B(H�) is equivalent to the existence of a G-invariant
mean on B(H�) (see Bekka [1]).

Let A be a t-admissible subspace of B(H�). We put

Jt(A) = spanfT � f � T ; T 2 A; f 2 L1(G)+1 g (� A):

Then we have analogues of Lemma 3 and 4 for the topological invariance case.

Lemma 6. If A is a t-admissible subspace of B(H�), then the following statements are

equivalent.

(i) There exists a t-invariant mean on A .

(ii) supW (S) � 0 for every S 2 Jt(A)h.

Furthermore, if A is a t-admissible subalgebra, they are also equivalent to:

(iii) inffkI � Sk ; S 2 Jt(A)g = 1:

The proof is similar to that of Lemma 3 and 4. So we omit it. As a direct consequence

of Lemma 6, we have

Theorem 7. For a continuous unitary representation �, following conditions are equiva-

lent.

(i) � is amenable.

(ii) supW (S) � 0; for all S 2 Jt(B(H�))h:

(iii) infS2Jt(B(H�)) kI � Sk = 1:

(iv) Jt(B(H�)) $ B(H�):

As an application of Lemma 3 and 6, we have the following result, which is an analogue

of [2, Proposition 1.1].
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Theorem 8. If A is a t-admissible [resp. admissible] subspace of B(H�), then A admits a

t-invariant [resp. G-invariant] mean if and only if A contains a linear subspace Y with the

following properties.

(1) f � T � T 2 Y for all f 2 L1(G)+1 ; T 2 A:
[resp. (10) x � T � T 2 Y for all x 2 G; T 2 A:]
(2) T 2 Ah and infW (T ) > 0 imply that T 62 Y :

Proof. We will only prove the theorem for t-invariant case. The proof for G-invariant
case is similar. Assume that M is a t-invariant mean on A. Let Y = ker(M). Then Y
satis�es (1) and (2). In fact, the t-invariance of M implies that M(f � T � T ) = 0 for

all f 2 L1(G)+1 and T 2 A. Therefore (1) holds. By Lemma 2, for T 2 Ah, we have

infW (T ) � M(T ) � supW (T ). Thus infW (T ) > 0 implies that M(T ) > 0 and hence

T 62 Y = ker(M). Therefore (2) holds.

Conversely, assume (1) and (2) hold for some subspace Y of A. Then, (1) implies Jt(A) �
Y , and (2) implies infW (T ) � 0 for T 2 Jt(A)h. Replacing T by �T , we get supW (T ) � 0.

Now, the existence of t-invariant mean on A follows immediately from Lemma 6. �

By Theorem 8, a continuous unitary representation is amenable if and only if B(H�)

contains a linear subspace which satis�es (1) and (2) in Theorem 8. The following result

is an analogue of a result of Wong and Riazi [8], which gives a handy candidate of such

subspaces.

Theorem 9. Let A be a t-admissible subspace of B(H�). Let

YÆ(A) = fT 2 A; inf
f2L1(G)

+

1

kf � Tk = 0g:

Then YÆ(A) satis�es (1) and (2) in Theorem 8 and is closed under scalar multiplication.

Consequently, A admits a t-invariant mean if YÆ(A) is closed under addition.

Proof. It is trivial that YÆ(A) is closed under scalar multiplication. Let f 2 L1(G)+1 . For
k 2 N (positive integers), we de�ne

fk =

kz }| {
f � f � � � � � f :

Since L1(G)+1 � L1(G)+1 � L1(G)+1 , we have fk 2 L1(G)+1 for all k 2 N. For any �xed

n 2 N, put Fn =
1

n

nX
k=1

fk. Obviously, Fn 2 L1(G)+1 . If T 2 A, then

Fn � (f � T � T ) = (
1

n

nX
k=1

fk) � (f � T � T ) =
1

n
(fn+1 � T � f � T ):

Thus we have

kFn � (f � T � T )k =
1

n
kfn+1 � T � f � Tk �

2

n
kTk �! 0 (as n!1):

Therefore (f � T � T ) 2 YÆ(A) for all f 2 L1(G)+1 , T 2 A, i:e:, (1) holds for YÆ(A).
To show that YÆ(A) satis�es (2), we assume that T 2 Ah and infW (T ) = " > 0. Note

that, for any f 2 L1(G)+1 and �, � 2 H�, we have h�; (f �T )�i = h(f � T )�; �i = h(f �T )�; �i;
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i.e., f � T 2 Ah. Moreover,

kf � Tk = sup
�2H�; k�k=1

jh(f � T )� ; �ij

= sup
�2H�; k�k=1

j

Z
G

f(y) hT�(y�1)� ; �(y�1)�i dy j

� inf
�2H�; k�k=1

Z
G

f(y) hT�(y�1)� ; �(y�1)�i dy

� "

Z
G

f(y) dy = ":

Thus, by the de�nition of YÆ(A), T 62 YÆ(A). �

Given any x 2 G, we de�ne a linear map Ux : B(H�) �! B(H�) by Ux(T ) = x �T for all

T 2 B(H�). Let �(G) = co fUx; x 2 Gg (� B(B(H�))). An important observation about

�(G) is that �(G) � �(G) � �(G).

Theorem 10. Let A be an admissible subalgebra of B(H�). Let

Y1(A) = fT 2 A; inf
U2�(G)

kU(T )k = 0g:

Then Y1(A) satis�es (1)0 and (2) in Theorem 8 and is closed under scalar multiplication.

Consequently, A admits a G-invariant mean if Y1(A) is closed under addition.

Proof. Similar to the proof of Theorem 9, we just need to replace Fn there by

Un =
1

n

nX
k=1

Ux
k =

1

n

nX
k=1

Uxk :

�

Next, we will formulate a kind of �xed point property for a unitary continuous repre-

sentation � of G on a Hilbert space H�. We will show that it is a necessary condition for

� to be amenable. For this purpose, we notice that, for any Banach B(H�)-bimodule �,

both �� and ��� can be regarded as Banach B(H�)-bimodules in the canonical way. It

is also well-known that the unit ball of B(���) is W �OT compact (see Kadison [5]). Now

we de�ne a linear map � : T 2 B(H�) 7�! �T 2 B(���), where �T (m) = T � m for all

m 2 ���. It is readily checked that k�T k � �kTk, where � is the constant for the module

structure (see Johnson [4]). Let

P� = f�T ; T 2 TC(H�)
+
1 g

W
�

OT

;

where TC(H�)
+
1 = fT 2 TC(H�); T � 0; kTk1 = 1g. Obviously, P� is contained in the

ball of radius � in B(���), therefore, it is W �OT compact.

We will say that � has the �xed point property if, for any Banach B(H�)-bimodule �,

there exists an operator �Æ 2 P� such that ��(x)�Æ��(x�1) = �Æ for all x 2 G.

Theorem 11. If � is amenable, then � has the �xed point property.

Proof. If � is amenable, by [1, Theorem 3.6], there exists a net fS�g in TC(H�)
+

1 such

that lim� kx � S� � S�k1 = 0 for all x 2 G. Let � be a Banach B(H�)-bimodule. Consider

the net f�S�g in P�. For all x 2 G and m 2 ���, we have

k��(x)�S���(x�1)(m)��S�(m)k = k�(x�S��S�)(m)k � � kx � S� � S�k kmk

� � kx � S� � S�k1 kmk �! 0 :
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Since P� is W �OT -compact, we may assume that �S�������!
W
�

OT �Æ for some �Æ 2 P�. This

leads to ��(x)�S���(x�1)������!
W
�

OT ��(x)�Æ��(x�1). On the other hand,

��(x)�S���(x�1) = (��(x)�S���(x�1) ��S�) + �S�������!
W
�

OT �Æ ; for all x 2 G :

Therefore, ��(x)�Æ��(x�1) = �Æ for all x 2 G. �

This formulation of the �xed point property is motivated by [6, Theorem 5.1]. It would

be very interesting to know whether the converse of Theorem 11 is true or not.

This paper forms part of the author's Ph.D dissertation under the supervision of Pro-

fessor Anthony T. Lau, to whom the author wishes to express his deepest gratitude for his

invaluable guidance and continued encouragement.
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