ON THE LATTICE OF IDEALS OF AN $M V$-ALGEBRA

Dumitru Buşneag and Dana Piciu

Received January 24, 2002

Abstract

For an MV-algebra $\left(A,+,{ }^{*}, 0\right)$ we denote by $I(A)$ the set of all ideals of A. For $I_{1}, I_{2} \in I(A)$ we define $I_{1} \wedge I_{2}=I_{1} \cap I_{2}, I_{1} \vee I_{2}=$ the ideal generated by $I_{1} \cup I_{2}$, and for $I \in I(A), I^{*}=\{a \in A: a \wedge x=0$ for every $x \in I\}$.

The aim of this paper is to prove that $\left(I(A), \vee, \wedge,{ }^{*},\{0\}, A\right)$ is a Boolean lattice iff A is a finite Boolean lattice relative to the natural order on A (Theorem 2.8.)

1 Definitions and preliminaries

Definition 1.1 [2,3]. An $M V$-algebra is an algebra $\left(A,+,{ }^{*}, 0\right)$ of type ($2,1,0$) satisfying the following equations:
$\left.M V_{1}\right) x+(y+z)=(x+y)+z$
$\left.M V_{2}\right) x+y=y+x$
$\left.M V_{3}\right) x+0=x$
$\left.M V_{4}\right) x^{* *}=x$
$\left.M V_{5}\right) x+0^{*}=0^{*}$
$\left.M V_{6}\right)\left(x^{*}+y\right)^{*}+y=\left(y^{*}+x\right)^{*}+x$.
$M V$-algebras were originally introduced by Chang in [2] in order to give an algebraic counterpart of the Lukasiewicz many valued logic (MV=many valued). Note that axioms $\left.M V_{1}\right)-M V_{3}$) state that $(A,+, 0)$ is an abelian monoid; following tradition, we denote an $M V$-algebra $\left(A,+{ }^{*}, 0\right)$ by its universe A.

Remark 1 If in $M V_{6}$) we put $y=0$ we obtain $x^{* *}=0^{* *}+x$, so, if $0^{* *}=0$ then $x^{* *}=x$ for every $x \in A$. Hence, the axiom $M V_{4}$) is equivalent with $\left.M V_{4}^{\prime}\right) 0^{* *}=0$.

Examples:

E_{1}) A singleton $\{0\}$ is a trivial example of an $M V$-algebra; an $M V$-algebra is said nontrivial provided its universe has more that one element.
$\left.E_{2}\right)$ Let $(G, \oplus,-, 0, \leq)$ an 1-group. For each $u \in G, u>0$, let

$$
[0, u]=\{x \in G: 0 \leq x \leq u\}
$$

and for each $x, y \in[0, u]$, let $x+y=u \wedge(x \oplus y)$ and $x^{*}=u-x$. Then $\left([0, u],+,{ }^{*}, 0\right)$ is an $M V$-algebra. In particular, if consider the real unit interval $[0,1]$ and for all $x, y \in[0,1]$ we define $x \oplus y=\min \{1, x+y\}$ and $x^{*}=1-x$, then $\left([0,1], \oplus,{ }^{*}, 0\right)$ is an $M V$-algebra.
$\left.E_{3}\right)$ If $\left(A, \vee, \wedge,{ }^{*}, 0,1\right)$ is a Boolean lattice, then $\left(A, \vee,{ }^{*}, 0\right)$ is an $M V$-algebra.

[^0]E_{4}) The rational numbers in $[0,1]$, and, for each integer $n \geq 2$, the n-element set $L_{n}=\left\{0, \frac{1}{(n-1)}, \ldots, \frac{(n-2)}{(n-1)}, 1\right\}$ yield examples of subalgebras of $[0,1]$.
E_{5}) Given an $M V$-algebra A and a set X, the set A^{X} of all functions $f: X \longrightarrow A$ becomes an $M V$-algebra if the operations + , and * and the element 0 are defined pointwise. The continous functions from $[0,1]$ into $[0,1]$ form a subalgebra of the $M V$-algebra $[0,1]^{[0,1]}$.

In the rest of this paper, by A we denote an $M V$-algebra.
On A we define the constant 1 and the operations ,." and ,,-" as follows: $1=0^{*}$, $x \cdot y=\left(x^{*}+y^{*}\right)^{*}$ and $x-y=x \cdot y^{*}=\left(x^{*}+y\right)^{*}$ (we consider the * operation more binding that any other operation, and the ,.," more binding that + and -).

Lemma $1.2[3,4]$ For $x, y \in A$, the following conditions are equivalent:
(i) $x^{*}+y=1$
(ii) $x \cdot y^{*}=0$
(iii) $y=x+(y-x)$
(iv) There is an element $z \in A$ such that $x+z=y$.

For any two elements $x, y \in A$ let us agree to write $x \leq y$ iff x and y satisfy the equivalent conditions (i)-(iv) in the above lemma. So, \leq is a partial order relation on A (which is called the natural order on A).

Theorem 1.3 [3,4] If $x, y, z \in A$ then the following hold:
$\left.\mathbf{c}_{1}\right) 1^{*}=0$
$\left.\mathbf{c}_{2}\right) x+y=\left(x^{*} \cdot y^{*}\right)^{*}$
c) $x+1=1$
$\left.\mathbf{c}_{4}\right)(x-y)+y=(y-x)+x$
c) $x+x^{*}=1$
$\left.\mathbf{c}_{6}\right) x-0=x, 0-x=0, x-x=0,1-x=x^{*}, x-1=0$
$\left.\mathbf{c}_{7}\right) x+x=x$ iff $x \cdot x=x$
\mathbf{c}_{8}) $x \leq y$ iff $y^{*} \leq x^{*}$
$\left.\mathbf{c}_{9}\right)$ If $x \leq y$, then $x+z \leq y+z$ and $x \cdot z \leq y \cdot z$
$\left.\mathbf{c}_{10}\right)$ If $x \leq y$, then $x-z \leq y-z$ and $z-y \leq z-x$
$\left.\mathbf{c}_{11}\right) x-y \leq x, x-y \leq y^{*}$
$\left.\mathbf{c}_{12}\right)(x+y)-x \leq y$
$\left.\mathbf{c}_{13}\right) x \cdot z \leq y$ iff $z \leq x^{*}+y$
c $\left.\mathbf{c}_{14}\right) x+y+x \cdot y=x+y$

Remark $2[3,4]$ On A, the natural order determines a bounded distributive lattice structure. Specifically, the join $x \vee y$ and the meet $x \wedge y$ of the elements x and y are given by:
$x \vee y=(x-y)+y=(y-x)+x$
$x \wedge y=\left(x^{*} \vee y^{*}\right)^{*}$
Clearly, $x \cdot y \leq x \wedge y \leq x \leq x \vee y \leq x+y$.
For each $x \in A$, we let $0 \cdot x=0$, and for each integer $n \geq 0,(n+1) x=n x+x$.
Theorem 1.4 [3,4] If $x, y, z,\left(x_{i}\right)_{i \in I}$ are elements of A, then the following hold:
$\left.\mathbf{c}_{15}\right) x+y=(x \vee y)+(x \wedge y)$
$\left.\mathbf{c}_{16}\right) x \cdot y=(x \vee y) \cdot(x \wedge y)$
$\left.\mathbf{c}_{17}\right) x+\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I}\left(x+x_{i}\right)$
$\left.\mathbf{c}_{18}\right) x+\left(\bigwedge_{i \in I} x_{i}\right)=\bigwedge_{i \in I}\left(x+x_{i}\right)$
$\left.\mathbf{c}_{19}\right) x \cdot\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I}\left(x \cdot x_{i}\right)$
$\left.\mathbf{c}_{20}\right) x \cdot\left(\bigwedge_{i \in I} x_{i}\right)=\bigwedge_{i \in I}\left(x \cdot x_{i}\right)$
$\left.\mathbf{c}_{21}\right) x \wedge\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I}\left(x \wedge x_{i}\right)$
$\left.\mathbf{c}_{22}\right) x \vee\left(\bigwedge_{i \in I} x_{i}\right)=\bigwedge_{i \in I}\left(x \vee x_{i}\right)$ (if all the suprema and infima exist).
Lemma 1.5 For every $x, y, z \in A$ we have
$\left.\mathbf{c}_{23}\right)(x+y)-z \leq(x-z)+(y-z)$.
Proof. We have $((x+y)-z)^{*}+(x-z)+(y-z)=(x+y)^{*}+z+(x-z)+(y-z)=$ $(x+y)^{*}+(z+(x-z))+(y-z)=(x+y)^{*}+(x \vee z)+(y-z)=$
$(x+y)^{*}+((x \vee z)+(y-z)) \stackrel{b y c_{17}}{=}(x+y)^{*}+\left((x+(y-z)) \vee(z+(y-z)) \stackrel{b y c_{17}}{=}\right.$ $(x+y)^{*}+\left((x+(y-z) \vee y \vee z)=(x+y)^{*}+(((x+(y-z)) \vee y) \vee z)^{b y} \stackrel{c_{17}}{=}\right.$
$(x+y)^{*}+(((x \vee y)+((y-z) \vee y)) \vee z)=(x+y)^{*}+(((x \vee y)+y) \vee z)$.
So, to prove c_{23} it suffices to prove $x+y \leq((x \vee y)+y) \vee z$ which result from c_{9} (since $x \leq x \vee y$, hence $x+y \leq(x \vee y)+y \leq((x-y)+y) \vee z)$

2 The lattice of ideals of an MV-algebra

Definition 2.1 A ideal of an $M V$-algebra A is a non-void subset I of A satisfying the following conditions:
$\left.\mathbf{I}_{1}\right)$ If $x \in I, y \in A$ and $y \leq x$, then $y \in I$
\mathbf{I}_{2}) If $x, y \in I$ then $x+y \in I$.

We denote by $I(A)$ the set of all ideals of A. For $M \subseteq A$ we denote by (M] the ideal of A generated by M (that is $(M]=\cap\{I \in I(A) \mid M \subseteq I\}$). If $M=\{a\}$ with $a \in A$, we denote by $(a]$ the ideal generated by $\{a\}((a]$ is called principal $)$

Proposition 2.2 [3,4]
(i) If $M \subseteq A$, then $(M]=\left\{x \in A: x \leq x_{1}+\ldots+x_{n}\right.$ for some $\left.x_{1}, \ldots, x_{n} \in M\right\}$.

In particular, for $a \in A,(a]=\{x \in A: x \leq$ na for some integer $n \geq 0\}$.
(ii) If $I_{1}, I_{2} \in I(A)$, then
$I_{1} \vee I_{2} \stackrel{\text { def }}{=}\left(I_{1} \cup I_{2}\right]=\left\{a \in A: a \leq x_{1}+x_{2}\right.$ for some $x_{1} \in I_{1}$ and $\left.x_{2} \in I_{2}\right\}$
(iii) If $x, y \in A$, then $(x] \cap(y]=(x \wedge y]$ (see[4, p.112]).

For $I \in I(A)$ and $a \in A \backslash I$ we denote by $I(a)=(a] \vee I=(I \cup\{a\}]$.
Remark 3 [3,4] For $I(a)$ we have the next characterization:
$I(a)=\{x \in A: x \leq y+(n a)$ for some $y \in I$ and integer $n \geq 0\}$.
Proposition 2.3 For $a \in A \backslash I, I(a)=\{x \in A: x-a \in I\}$
Proof. Let $I_{a}=\{x \in A: x-a \in I\}$. Since $a-a=0 \in I$ we deduce that $a \in I_{a}$. Since for $x \in I, x-a \leq x$ (by c_{11}) we deduce that $x-a \in I$, hence $I \subseteq I_{a}$. To prove $I_{a} \in I(A)$ we observe that $0-a=0 \in I$, hence $0 \in I_{a}$. If $x \leq y$ and $y \in I_{a}$, then from $x-a \leq y-a$ $\left(c_{10}\right)$ and $y-a \in I$ we deduce $x-a \in I$, hence $x \in I_{a}$. Let $x, y \in I_{a}$, that is $x-a, y-a \in I$. From Lemma 1.5. we have $(x+y)-a \leq(x-a)+(y-a)$, hence $(x+y)-a \in I$ that is $x+y \in I_{a}$.From $a \in I_{a}, I \subseteq I_{a}$ and $I_{a} \in I(A)$ we deduce $I(a) \subseteq I_{a}$. Let now $J \in I(A)$ such that $a \in J$ and $I \subseteq J$. If $x \in I_{a}$, then $x-a \in I \subseteq J$, hence $x \vee a=(x-a)+a \in J$. Since $x \leq x \vee a$ we deduce $x \in J$ that is $I_{a} \subseteq J$, hence $I_{a} \subseteq \cap J=I(a)$. ¿From $I(a) \subseteq I_{a}$ and $I_{a} \subseteq I(a)$ we deduce $I_{a}=I(a)$.

Corollary 2.4 If $x, y \in A$ then $(x] \vee(y]=(x+y]$.
Proof 1: By Proposition 2.3. we have

$$
(x] \vee(y]=(y](x)=\{a \in A: a-x \in(y]\}
$$

Since by $c_{12}(x+y)-x \leq y$, we deduce $x+y \in(x] \vee(y]$, hence $(x+y] \subseteq(x] \vee(y]$. Since the inclusion $(x] \vee(y] \subseteq(x+y]$ is obviously, we obtain the equality $(x] \vee(y]=(x+y]$.

Proof 2: It is suffices to show the inclusion $(x+y] \subseteq(x] \vee(y]$. If $z \in(x+y]$ then $z \leq n(x+y)$ for some integer $n \geq 0$. But $n(x+y)=(n x)+(n y)$ and so $z \leq(n x)+(n y)$. Since $n x \in(x]$ and $n y \in(y]$ we deduce that $z \in(x] \vee(y]$, that is $(x+y] \subseteq(x] \vee(y]$.

For $I_{1}, I_{2} \in I(A)$, we put $I_{1} \wedge I_{2}=I_{1} \cap I_{2}, I_{1} \vee I_{2}=\left(I_{1} \cup I_{2}\right], I_{1} \longrightarrow I_{2}=\{a \in A:$ $\left.(a] \cap I_{1} \subseteq I_{2}\right\}$.

Then $(I(A), \vee, \wedge,\{0\}, A)$ is a complete Brouwerian lattice ([4, p.114]); we recall that a complete lattice is Brouwerian if it satisfies the identity $a \wedge\left(\bigvee_{i \in I} b_{i}\right)=\bigvee_{i \in I}\left(a \wedge b_{i}\right)$.

Lemma 2.5 If $I_{1}, I_{2} \in I(A)$, then
(i) $I_{1} \longrightarrow I_{2} \in I(A)$
(ii) If $I \in I(A)$, then $I_{1} \cap I \subseteq I_{2}$ iff $I \subseteq I_{1} \longrightarrow I_{2}$ (that is, $I_{1} \longrightarrow I_{2}=\sup \{I \in I(A)$: $\left.I_{1} \cap I \subseteq I_{2}\right\}$).

Proof (i) Since (0] $\cap I_{1} \subseteq I_{2}$ we deduce that $0 \in I_{1} \longrightarrow I_{2}$. If $x, y \in A, x \leq y$ and $y \in I_{1} \longrightarrow I_{2}$, then $(y] \cap I_{1} \subseteq I_{2}$. Since $(x] \subseteq(y]$ we deduce that $(x] \cap I_{1} \subseteq(y] \cap I_{1} \subseteq I_{2}$, hence $x \in I_{1} \longrightarrow I_{2}$. Let now $x, y \in I_{1} \longrightarrow I_{2}$; then $(x] \cap I_{1} \subseteq I_{2}$ and $(y] \cap I_{1} \subseteq I_{2}$. We deduce $\left((x] \cap I_{1}\right) \vee\left((y] \cap I_{1}\right) \subseteq I_{2}$ hence $((x] \vee(y]) \cap I_{1} \subseteq I_{2}$, so $(x+y] \cap I_{1} \subseteq I_{2}$ (by Corollary 2.4.), that is $x+y \in I_{1} \longrightarrow I_{2}$.
(ii) (\Longrightarrow) Let $I \in I(A)$; then $I_{1} \cap I \subseteq I_{2}$. If $x \in I$ then $(x] \cap I_{1} \subseteq I \cap I_{1} \subseteq I_{2}$ hence $x \in I_{1} \longrightarrow I_{2}$, that is $I \subseteq I_{1} \longrightarrow I_{2}$.
(\Longleftarrow) We suppose $I \subseteq I_{1} \longrightarrow I_{2}$ and let $x \in I_{1} \cap I$; then $x \in I$, hence $x \in I_{1} \longrightarrow I_{2}$, that is $(x] \cap I_{1} \subseteq I_{2}$. Since $x \in(x] \cap I_{1}$, then $x \in I_{2}$, that is $I_{1} \cap I \subseteq I_{2}$.

Remark 4 ;From Lemma 2.5. we deduce that $(I(A), \vee, \wedge, \longrightarrow,\{0\}, A)$ is a Heyting algebra; for $I \in I(A), I^{*}=I \longrightarrow\{0\}=\{x \in A:(x] \cap I=\{0\}\}$.

Corollary 2.6 (i) For every $I \in I(A), I^{*}=\{x \in A: x \wedge y=0$ for every $y \in I\}$ (see[4, p.114])
(ii) For any $x \in A,(x]^{*}=\{y \in A:(y] \cap(x]=\{0\}=\{y \in A: x \wedge y=0\}$ (by Proposition 2.2., (iii)).

We recall that for a bounded distributive lattice L, following tradition, by $B(L)$ we denoted the Boolean lattice of complemented elements in L.

For an $M V$-algebra $\left(A,+,^{*}, 0,1\right)$ we shall denote by $B(A)$ the Boolean lattice associated with the bounded distributive lattice $(A, \vee, \wedge, 0,1)$.

Proposition 2.7 [4, p. 127] For every $x \in A$, the following conditions are equivalent:
(i) $x \in B(A)$
(ii) $x+x=x$
(iii) $x \cdot x=x$
(iv) $x \wedge x^{*}=0$
(v) $x \vee x^{*}=1$.

Theorem 2.8 If A is an $M V$-algebra, then the following conditions are equivalent:
(i) $\left(I(A), \vee, \wedge,^{*},\{0\}, A\right)$ is a Boolean lattice
(ii) $\left(A, \vee, \wedge,{ }^{*}, 0,1\right)$ is a finite Boolean lattice.

Proof $(\mathrm{i}) \Longrightarrow($ ii $)$. Let $x \in A$; since $I(A)$ is a Boolean lattice then $(x] \vee(x]^{*}=A$. By Proposition 2.3. and Corollary 2.6. (ii), we have $(x] \vee(x]^{*}=(x]^{*}(x)=\left\{y \in A: y-x \in(x]^{*}\right\}=\{y \in A:(y-x) \wedge x=0\}$. Since $(x] \vee(x]^{*}=A$, then $1 \in(x] \vee(x]^{*}$, hence $(1-x) \wedge x=0$. We obtain that $x^{*} \wedge x=0$, hence $x \in B(A)$ (by Proposition 2.7.(iii)), that is $\left(A, \vee, \wedge,{ }^{*}, 0,1\right)$ is a Boolean lattice. To show that A is finite it suffices to prove that every ideal of A is principal ([5, p.77]).If $I \in I(A)$, because $I(A)$ is supposed Boolean lattice then $I \vee I^{*}=A$, hence $1 \in I \vee I^{*}$. By Proposition 2.2. (ii), $1=a+b$ with $a \in I$ and $b \in I^{*}$. By Corrollary 2.6.(i), $x \wedge b=0$ for every $x \in I$. So $\left(x^{*} \vee b^{*}\right)^{*}=0 \Longleftrightarrow x^{*} \vee b^{*}=1 \Longleftrightarrow\left(x+b^{*}\right)^{*}+b^{*}=1 \Longleftrightarrow x+b^{*} \leq b^{*} \Longleftrightarrow x+b^{*}=b^{*}$ for every $x \in I$. Since $a+b=1$ we obtain $b^{*} \leq a$ hence $x+b^{*}=b^{*} \leq a$ for every $x \in I$. Finally, we obtain $x \leq x+b^{*} \leq a$, hence $x \leq a$ for every $x \in I$, that is $I=(a]$.
$($ ii $) \Longrightarrow($ i $)$. Suppose $\left(A, \vee, \wedge,{ }^{*}, 0,1\right)$ is a finite Boolean lattice. By Remark $4, I(A)$ is a Heyting algebra. To prove $I(A)$ is a Boolean lattice we must show $I^{*}=\{0\}$ only for $I=A([1, \mathrm{p} .175])$. Since in finite Boolean lattice every ideal is principal, then $I=(a]$ for some $a \in A$. By Corollary 2.6. (ii), $I^{*}=(a]^{*}=\{x \in A: x \wedge a=0\}$. Since $I^{*}=\{0\}$ and $a^{*} \wedge a=0$, then $a^{*}=0$, hence $a=1$ so $I=(1]=A$.

References

[1] R. Balbes, Ph. Dwinger: Distributive lattices, University of Missouri Press, 1974
[2] C. C. Chang: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958) pp 467-490
[3] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic fundation of many -valued Reasoning, Kluwer Academic Publ., Dordrecht, 2000
[4] G.Georgescu, A. Iorgulescu: Pseudo- MV algebras, Multi. Val. Logic, 2001, vol 6, pp.95-135
[5] G. Grätzer: Lattice theory, W.H. Freeman and Company, San Francisco, 1979

Department of Mathematics, University of Craiova,
A. I. Cuza Street, 13, 1100-Craiova, Romania

Phone: 4051412673 , Fax: 4051412673
E-mail: busneag@central.ucv.ro, danap@central.ucv.ro

[^0]: 2000 Mathematics Subject Classification. 06D35, 03G25.
 Key words and phrases. MV-algebra, Boolean lattice, ideal.

