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Abstract. For an MV-algebra (A;+;� ; 0) we denote by I(A) the set of all ideals of

A. For I1; I2 2 I(A) we de�ne I1^I2 = I1\I2, I1_I2 = the ideal generated by I1[I2;

and for I 2 I(A), I� = fa 2 A : a ^ x = 0 for every x 2 Ig:

The aim of this paper is to prove that (I(A);_;^;� ; f0g; A) is a Boolean lattice i�

A is a �nite Boolean lattice relative to the natural order on A (Theorem 2.8.)

1 De�nitions and preliminaries

De�nition 1.1 [2,3]. An MV -algebra is an algebra (A;+;� ; 0) of type (2; 1; 0) satisfying

the following equations:

MV1) x+ (y + z) = (x + y) + z

MV2) x+ y = y + x

MV3) x+ 0 = x

MV4) x
�� = x

MV5) x+ 0� = 0�

MV6) (x� + y)� + y = (y� + x)� + x:

MV -algebras were originally introduced by Chang in [2] in order to give an algebraic

counterpart of the Lukasiewicz many valued logic (MV=many valued). Note that axioms

MV1)-MV3) state that (A;+; 0) is an abelian monoid; following tradition, we denote an

MV -algebra (A;+;� ; 0) by its universe A.

Remark 1 If in MV6) we put y = 0 we obtain x�� = 0�� + x, so, if 0�� = 0 then x�� = x

for every x 2 A. Hence, the axiom MV4) is equivalent with MV 0

4 ) 0
�� = 0.

Examples:

E1) A singleton f0g is a trivial example of an MV -algebra; an MV -algebra is said

nontrivial provided its universe has more that one element.

E2) Let (G;�;�; 0;�) an l-group. For each u 2 G, u > 0, let

[0; u] = fx 2 G : 0 � x � ug

and for each x; y 2 [0; u], let x+y = u ^ (x � y) and x� = u� x: Then ([0; u];+;� ; 0) is an

MV -algebra. In particular, if consider the real unit interval [0; 1] and for all x; y 2 [0; 1] we

de�ne x � y = minf1; x + yg and x� = 1� x, then ([0; 1];�;� ; 0) is an MV -algebra.

E3) If (A;_;^;
� ; 0; 1) is a Boolean lattice, then (A;_;� ; 0) is an MV -algebra.
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E4) The rational numbers in [0; 1], and, for each integer n � 2, the n-element set

Ln =
n
0; 1

(n�1)
; :::;

(n�2)

(n�1)
; 1
o
yield examples of subalgebras of [0; 1]:

E5) Given an MV -algebra A and a set X, the set AX of all functions f : X �! A

becomes anMV -algebra if the operations + , and � and the element 0 are de�ned pointwise.

The continous functions from [0; 1] into [0; 1] form a subalgebra of theMV -algebra [0; 1][0;1]:

In the rest of this paper, by A we denote an MV -algebra.

On A we de�ne the constant 1 and the operations ,,�" and ,,�" as follows: 1 = 0�,

x � y = (x� + y�)� and x� y = x � y� = (x� + y)� (we consider the � operation more binding

that any other operation, and the ,,�" more binding that + and -).

Lemma 1.2 [3,4] For x; y 2 A, the following conditions are equivalent:

(i) x� + y = 1

(ii) x � y� = 0

(iii) y = x + (y � x)

(iv) There is an element z 2 A such that x + z = y.

For any two elements x; y 2 A let us agree to write x � y i� x and y satisfy the equivalent

conditions (i)-(iv) in the above lemma. So, � is a partial order relation on A (which is called

the natural order on A).

Theorem 1.3 [3,4] If x; y; z 2 A then the following hold:

c1) 1� = 0

c2) x + y = (x� � y�)�

c3) x + 1 = 1

c4) (x � y) + y = (y � x) + x

c5) x + x� = 1

c6) x � 0 = x; 0� x = 0; x � x = 0; 1� x = x�; x� 1 = 0

c7) x + x = x i� x � x = x

c8) x � y i� y� � x�

c9) If x � y, then x+ z � y + z and x � z � y � z

c10) If x � y, then x � z � y � z and z � y � z � x

c11) x � y � x; x � y � y�

c12) (x + y) � x � y

c13) x � z � y i� z � x� + y

c14) x + y + x � y = x+ y
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Remark 2 [3,4] On A, the natural order determines a bounded distributive lattice structure.

Speci�cally, the join x _ y and the meet x ^ y of the elements x and y are given by:

x _ y = (x� y) + y = (y � x) + x

x ^ y = (x� _ y�)�

Clearly, x � y � x ^ y � x � x _ y � x + y:

For each x 2 A, we let 0 � x = 0, and for each integer n � 0, (n+ 1)x = nx+ x:

Theorem 1.4 [3,4] If x; y; z; (xi)i2I are elements of A, then the following hold:

c15) x + y = (x _ y) + (x ^ y)

c16) x � y = (x _ y) � (x ^ y)

c17) x +

�W
i2I

xi

�
=
W
i2I

(x + xi)

c18) x +

�V
i2I

xi

�
=
V
i2I

(x + xi)

c19) x �

�W
i2I

xi

�
=
W
i2I

(x � xi)

c20) x �

�V
i2I

xi

�
=
V
i2I

(x � xi)

c21) x ^

�W
i2I

xi

�
=
W
i2I

(x ^ xi)

c22) x _

�V
i2I

xi

�
=
V
i2I

(x _ xi) (if all the suprema and in�ma exist).

Lemma 1.5 For every x; y; z 2 A we have

c23) (x + y) � z � (x � z) + (y � z):

Proof. We have ((x + y) � z)� + (x � z) + (y � z) = (x + y)� + z + (x � z) + (y � z) =

(x + y)� + (z + (x � z)) + (y � z) = (x + y)� + (x _ z) + (y � z) =

(x + y)� + ((x _ z) + (y � z))
by c17
= (x + y)� + ((x + (y � z)) _ (z + (y � z))

by c17
=

(x + y)� + ((x + (y � z) _ y _ z) = (x + y)� + (((x + (y � z)) _ y) _ z)
by c17
=

(x + y)� + (((x _ y) + ((y � z) _ y)) _ z) = (x + y)� + (((x _ y) + y) _ z):

So, to prove c23 it suÆces to prove x+ y � ((x _ y) + y) _ z which result from c9 (since

x � x _ y; hence x + y � (x _ y) + y � ((x � y) + y) _ z):�

2 The lattice of ideals of an MV-algebra

De�nition 2.1 A ideal of an MV -algebra A is a non-void subset I of A satisfying the

following conditions:

I1) If x 2 I , y 2 A and y � x, then y 2 I

I2) If x; y 2 I then x+ y 2 I.
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We denote by I(A) the set of all ideals of A: For M � A we denote by (M ] the ideal of

A generated by M (that is (M ] = \fI 2 I(A)jM � Ig). If M = fag with a 2 A; we denote

by (a] the ideal generated by fag((a] is called principal)

Proposition 2.2 [3,4]

(i) If M � A, then (M ] = fx 2 A : x � x1 + :::+ xn for some x1; :::; xn 2Mg.

In particular, for a 2 A; (a] = fx 2 A : x � na for some integer n � 0g :

(ii) If I1; I2 2 I(A), then

I1_I 2
def

= (I 1[I 2] = fa 2 A : a � x1 + x2 for some x1 2 I1 and x2 2 I2g

(iii) If x; y 2 A, then (x] \ (y] = (x ^ y] (see[4, p.112]).

For I 2 I(A) and a 2 A n I we denote by I(a) = (a] _ I = (I [ fag]:

Remark 3 [3,4] For I(a) we have the next characterization:

I(a) = fx 2 A : x � y + (na) for some y 2 I and integer n � 0g.

Proposition 2.3 For a 2 A n I , I(a) = fx 2 A : x� a 2 Ig

Proof. Let Ia = fx 2 A : x� a 2 Ig : Since a � a = 0 2 I we deduce that a 2 Ia .Since

for x 2 I , x� a � x (by c11) we deduce that x� a 2 I, hence I � Ia: To prove Ia 2 I(A)

we observe that 0� a = 0 2 I, hence 0 2 Ia: If x � y and y 2 Ia, then from x � a � y � a

(c10) and y�a 2 I we deduce x�a 2 I , hence x 2 Ia: Let x; y 2 Ia; that is x�a; y�a 2 I

. From Lemma 1.5. we have (x + y) � a � (x � a) + (y � a), hence (x + y) � a 2 I that

is x + y 2 Ia:From a 2 Ia; I � Ia and Ia 2 I(A) we deduce I(a) � Ia: Let now J 2 I(A)

such that a 2 J and I � J . If x 2 Ia; then x � a 2 I � J , hence x _ a = (x � a) + a 2 J:

Since x � x _ a we deduce x 2 J that is Ia � J; hence Ia � \J = I(a): >From I(a) � Ia
and Ia � I(a) we deduce Ia = I(a).�

Corollary 2.4 If x; y 2 A then (x] _ (y] = (x + y]:

Proof 1: By Proposition 2.3. we have

(x] _ (y] = (y](x) = fa 2 A : a� x 2 (y]g :

Since by c12 (x + y) � x � y, we deduce x + y 2 (x] _ (y] , hence (x + y] � (x] _ (y]. Since

the inclusion (x] _ (y] � (x + y] is obviously, we obtain the equality (x] _ (y] = (x + y]:

Proof 2 : It is suÆces to show the inclusion (x + y] � (x] _ (y]. If z 2 (x + y] then

z � n(x + y) for some integer n � 0. But n(x + y) = (nx) + (ny) and so z � (nx) + (ny).

Since nx 2 (x] and ny 2 (y] we deduce that z 2 (x] _ (y], that is (x + y] � (x] _ (y].�

For I1; I2 2 I(A), we put I1 ^ I2 = I1 \ I2 , I1 _ I2 = (I1 [ I2],I1 �! I2 = fa 2 A :

(a] \ I1 � I2g:

Then (I(A); _;^; f0g; A) is a complete Brouwerian lattice ([4, p.114]); we recall that a

complete lattice is Brouwerian if it satis�es the identity a ^

�W
i2I

bi

�
=
W
i2I

(a ^ bi).

Lemma 2.5 If I1; I2 2 I(A), then

(i) I1 �! I2 2 I(A)

(ii) If I 2 I(A), then I1 \ I � I2 i� I � I1 �! I2 (that is, I1 �! I2 = supfI 2 I(A) :

I1 \ I � I2g).
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Proof (i) Since (0]\ I1 � I2 we deduce that 0 2 I1 �! I2 . If x; y 2 A, x � y and

y 2 I1 �! I2, then (y] \ I1 � I2: Since (x] � (y] we deduce that (x] \ I1 � (y] \ I1 � I2,

hence x 2 I1 �! I2. Let now x; y 2 I1 �! I2; then (x] \ I1 � I2 and (y] \ I1 � I2. We

deduce ((x]\I1)_ ((y]\I1) � I2 hence ((x]_ (y])\I1 � I2; so (x+y]\I1 � I2 (by Corollary

2.4.), that is x+ y 2 I1 �! I2:

(ii) (=)) Let I 2 I(A); then I1 \ I � I2 . If x 2 I then (x] \ I1 � I \ I1 � I2 hence

x 2 I1 �! I2 , that is I � I1 �! I2.

((=) We suppose I � I1 �! I2 and let x 2 I1 \ I ; then x 2 I, hence x 2 I1 �! I2,

that is (x] \ I1 � I2: Since x 2 (x] \ I1; then x 2 I2; that is I1 \ I � I2:�

Remark 4 >From Lemma 2.5. we deduce that (I(A); _;^;�!; f0g; A) is a Heyting alge-

bra; for I 2 I(A), I� = I �! f0g = fx 2 A : (x] \ I = f0gg :

Corollary 2.6 (i) For every I 2 I(A), I� = fx 2 A : x ^ y = 0 for every y 2 Ig (see[4,

p.114])

(ii) For any x 2 A, (x]� = fy 2 A : (y]\ (x] = f0g = fy 2 A : x^y = 0g (by Proposition

2.2., (iii)).

We recall that for a bounded distributive lattice L, following tradition , by B(L) we

denoted the Boolean lattice of complemented elements in L.

For anMV -algebra (A;+;� ; 0; 1) we shall denote by B(A) the Boolean lattice associated

with the bounded distributive lattice (A;_;^; 0; 1).

Proposition 2.7 [4, p. 127] For every x 2 A, the following conditions are equivalent:

(i) x 2 B(A)

(ii) x + x = x

(iii) x � x = x

(iv) x ^ x� = 0

(v) x _ x� = 1:

Theorem 2.8 If A is an MV -algebra, then the following conditions are equivalent:

(i) (I(A);_;^;� ; f0g; A) is a Boolean lattice

(ii) (A;_;^;� ; 0; 1) is a �nite Boolean lattice.

Proof (i)=)(ii). Let x 2 A; since I(A) is a Boolean lattice then

(x] _ (x]� = A. By Proposition 2.3. and Corollary 2.6. (ii), we have

(x]_(x]� = (x]�(x) = fy 2 A : y�x 2 (x]�g = fy 2 A : (y�x)^x = 0g: Since (x]_(x]� = A;

then 1 2 (x] _ (x]�; hence (1 � x) ^ x = 0 . We obtain that x� ^ x = 0, hence x 2 B(A)

(by Proposition 2.7.(iii)), that is (A;_;^;� ; 0; 1) is a Boolean lattice.To show that A is

�nite it suÆces to prove that every ideal of A is principal ([5, p.77]).If I 2 I(A), because

I(A) is supposed Boolean lattice then I _ I� = A, hence 1 2 I _ I� . By Proposition 2.2.

(ii),1 = a + b with a 2 I and b 2 I�: By Corrollary 2.6.(i), x ^ b = 0 for every x 2 I . So

(x� _ b�)� = 0 () x� _ b� = 1 () (x + b�)� + b� = 1 () x + b� � b� () x + b� = b�

for every x 2 I . Since a + b = 1 we obtain b� � a hence x + b� = b� � a for every x 2 I:

Finally, we obtain x � x+ b� � a; hence x � a for every x 2 I, that is I = (a].

(ii)=)(i). Suppose (A;_;^;� ; 0; 1) is a �nite Boolean lattice. By Remark 4, I(A) is

a Heyting algebra. To prove I(A) is a Boolean lattice we must show I� = f0g only for

I = A ([1, p.175]). Since in �nite Boolean lattice every ideal is principal, then I = (a] for

some a 2 A: By Corollary 2.6. (ii), I� = (a]� = fx 2 A : x ^ a = 0g: Since I� = f0g and

a� ^ a = 0; then a� = 0, hence a = 1 so I = (1] = A:�
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