ON THE LATTICE OF IDEALS OF AN MV -ALGEBRA

DUMITRU BUŞNEAG AND DANA PICIU

Received January 24, 2002

ABSTRACT. For an MV-algebra (A, +, *, 0) we denote by I(A) the set of all ideals of A. For $I_1, I_2 \in I(A)$ we define $I_1 \wedge I_2 = I_1 \cap I_2$, $I_1 \vee I_2 =$ the ideal generated by $I_1 \cup I_2$, and for $I \in I(A)$, $I^* = \{a \in A : a \wedge x = 0 \text{ for every } x \in I\}$.

The aim of this paper is to prove that $(I(A), \lor, \land, ^*, \{0\}, A)$ is a Boolean lattice iff A is a finite Boolean lattice relative to the natural order on A (Theorem 2.8.)

1 Definitions and preliminaries

Definition 1.1 [2,3]. An MV-algebra is an algebra (A, +, *, 0) of type (2, 1, 0) satisfying the following equations:

- MV_1) x + (y + z) = (x + y) + z
- MV_2) x + y = y + x
- MV_3) x + 0 = x
- MV_4) $x^{**} = x$
- MV_5) $x + 0^* = 0^*$
- MV_6) $(x^* + y)^* + y = (y^* + x)^* + x.$

MV-algebras were originally introduced by Chang in [2] in order to give an algebraic counterpart of the Lukasiewicz many valued logic (MV=many valued). Note that axioms MV_1)- MV_3) state that (A, +, 0) is an abelian monoid; following tradition, we denote an MV-algebra (A, +, *, 0) by its universe A.

Remark 1 If in MV_6) we put y = 0 we obtain $x^{**} = 0^{**} + x$, so, if $0^{**} = 0$ then $x^{**} = x$ for every $x \in A$. Hence, the axiom MV_4) is equivalent with MV'_4 $0^{**} = 0$.

Examples:

 E_1) A singleton $\{0\}$ is a trivial example of an MV-algebra; an MV-algebra is said *nontrivial* provided its universe has more that one element.

 E_2) Let $(G, \oplus, -, 0, \leq)$ an l-group. For each $u \in G, u > 0$, let

$$[0, u] = \{ x \in G : 0 \le x \le u \}$$

and for each $x, y \in [0, u]$, let $x+y = u \land (x \oplus y)$ and $x^* = u - x$. Then $([0, u], +, ^*, 0)$ is an MV-algebra. In particular, if consider the real unit interval [0, 1] and for all $x, y \in [0, 1]$ we define $x \oplus y = \min\{1, x + y\}$ and $x^* = 1 - x$, then $([0, 1], \oplus, ^*, 0)$ is an MV-algebra.

 E_3) If $(A, \lor, \land, *, 0, 1)$ is a Boolean lattice, then $(A, \lor, *, 0)$ is an MV-algebra.

²⁰⁰⁰ Mathematics Subject Classification. 06D35, 03G25.

Key words and phrases. MV-algebra, Boolean lattice, ideal.

 E_4) The rational numbers in [0, 1], and, for each integer $n \ge 2$, the n-element set $L_n = \left\{0, \frac{1}{(n-1)}, \dots, \frac{(n-2)}{(n-1)}, 1\right\}$ yield examples of subalgebras of [0, 1].

 E_5) Given an MV-algebra A and a set X, the set A^X of all functions $f : X \longrightarrow A$ becomes an MV-algebra if the operations +, and * and the element 0 are defined pointwise. The continuus functions from [0, 1] into [0, 1] form a subalgebra of the MV-algebra $[0, 1]^{[0,1]}$. In the rest of this paper, by A we denote an MV-algebra.

On A we define the constant 1 and the operations ,... and ,... as follows: $1 = 0^*$, $x \cdot y = (x^* + y^*)^*$ and $x - y = x \cdot y^* = (x^* + y)^*$ (we consider the * operation more binding that any other operation, and the ,... more binding that + and -).

Lemma 1.2 [3,4] For $x, y \in A$, the following conditions are equivalent:

- (i) $x^* + y = 1$
- (ii) $x \cdot y^* = 0$
- (iii) y = x + (y x)
- (iv) There is an element $z \in A$ such that x + z = y.

For any two elements $x, y \in A$ let us agree to write $x \leq y$ iff x and y satisfy the equivalent conditions (i)-(iv) in the above lemma. So, \leq is a partial order relation on A (which is called the *natural order* on A).

Theorem 1.3 [3,4] If $x, y, z \in A$ then the following hold:

 $c_{1}) 1^{*} = 0$ $c_{2}) x + y = (x^{*} \cdot y^{*})^{*}$ $c_{3}) x + 1 = 1$ $c_{4}) (x - y) + y = (y - x) + x$ $c_{5}) x + x^{*} = 1$ $c_{6}) x - 0 = x, 0 - x = 0, x - x = 0, 1 - x = x^{*}, x - 1 = 0$ $c_{7}) x + x = x \text{ iff } x \cdot x = x$ $c_{8}) x \le y \text{ iff } y^{*} \le x^{*}$ $c_{9}) \text{ If } x \le y, \text{ then } x + z \le y + z \text{ and } x \cdot z \le y \cdot z$ $c_{10}) \text{ If } x \le y, \text{ then } x - z \le y - z \text{ and } z - y \le z - x$ $c_{11}) x - y \le x, x - y \le y^{*}$ $c_{12}) (x + y) - x \le y$ $c_{13}) x \cdot z \le y \text{ iff } z \le x^{*} + y$ $c_{14}) x + y + x \cdot y = x + y$

Remark 2 [3,4] On A, the natural order determines a bounded distributive lattice structure. Specifically, the join $x \lor y$ and the meet $x \land y$ of the elements x and y are given by: $x \lor y = (x - y) + y = (y - x) + x$

$$x \wedge y = (x^* \vee y^*)^*$$

Clearly, $x \cdot y \le x \wedge y \le x \le x \vee y \le x + y.$

For each $x \in A$, we let $0 \cdot x = 0$, and for each integer $n \ge 0$, (n+1)x = nx + x.

Theorem 1.4 [3,4] If $x, y, z, (x_i)_{i \in I}$ are elements of A, then the following hold:

$$\mathbf{c}_{15}) \ x + y = (x \lor y) + (x \land y)$$

$$\mathbf{c}_{16}) \ x \cdot y = (x \lor y) \cdot (x \land y)$$

$$\mathbf{c}_{17}) \ x + \left(\bigvee_{i \in I} x_i\right) = \bigvee_{i \in I} (x + x_i)$$

$$\mathbf{c}_{18}) \ x + \left(\bigwedge_{i \in I} x_i\right) = \bigwedge_{i \in I} (x + x_i)$$

$$\mathbf{c}_{19}) \ x \cdot \left(\bigvee_{i \in I} x_i\right) = \bigvee_{i \in I} (x \cdot x_i)$$

$$\mathbf{c}_{20}) \ x \cdot \left(\bigwedge_{i \in I} x_i\right) = \bigwedge_{i \in I} (x \land x_i)$$

$$\mathbf{c}_{21}) \ x \land \left(\bigvee_{i \in I} x_i\right) = \bigvee_{i \in I} (x \land x_i)$$

$$\mathbf{c}_{22}) \ x \lor \left(\bigwedge_{i \in I} x_i\right) = \bigwedge_{i \in I} (x \lor x_i) \text{ (if all the suprema and infima exist).}$$

Lemma 1.5 For every $x, y, z \in A$ we have

$$\mathbf{c}_{23}$$
) $(x + y) - z \le (x - z) + (y - z).$

 $\begin{array}{l} \textit{Proof. We have } ((x+y)-z)^*+(x-z)+(y-z)=(x+y)^*+z+(x-z)+(y-z)=(x+y)^*+(z+(x-z))+(y-z)=(x+y)^*+(x\vee z)+(y-z)=(x+y)^*+((x\vee z)+(y-z))^{by} \overset{c_{17}}{=}(x+y)^*+((x+(y-z))\vee(z+(y-z))^{by} \overset{c_{17}}{=}(x+y)^*+((x+(y-z))\vee y)\vee z) \overset{by}{=} \overset{c_{17}}{=}(x+y)^*+((x+(y-z))\vee y)\vee z)=(x+y)^*+(((x+(y-z))\vee y)\vee z)^{by} \overset{c_{17}}{=}(x+y)^*+(((x\vee y)+((y-z)\vee y))\vee z)=(x+y)^*+(((x\vee y)+y)\vee z).\end{array}$

So, to prove c_{23} it suffices to prove $x + y \le ((x \lor y) + y) \lor z$ which result from c_9 (since $x \le x \lor y$, hence $x + y \le (x \lor y) + y \le ((x - y) + y) \lor z$).

2 The lattice of ideals of an MV-algebra

Definition 2.1 A ideal of an MV-algebra A is a non-void subset I of A satisfying the following conditions:

- **I**₁) If $x \in I$, $y \in A$ and $y \leq x$, then $y \in I$
- \mathbf{I}_2) If $x, y \in I$ then $x + y \in I$.

We denote by I(A) the set of all ideals of A. For $M \subseteq A$ we denote by (M] the *ideal of* A generated by M (that is $(M] = \cap \{I \in I(A) | M \subseteq I\}$). If $M = \{a\}$ with $a \in A$, we denote by (a] the ideal generated by $\{a\}((a] \text{ is called } principal)$

Proposition 2.2 [3,4]

(i) If $M \subseteq A$, then $(M] = \{x \in A : x \le x_1 + ... + x_n \text{ for some } x_1, ..., x_n \in M\}$. In particular, for $a \in A$, $(a] = \{x \in A : x \le na \text{ for some integer } n \ge 0\}$. (ii) If $I_1, I_2 \in I(A)$, then $I_1 \lor I_2 \stackrel{\text{def}}{=} (I_1 \cup I_2] = \{a \in A : a \le x_1 + x_2 \text{ for some } x_1 \in I_1 \text{ and } x_2 \in I_2\}$ (iii) If $x, y \in A$, then $(x] \cap (y] = (x \land y] \text{ (see[4, p.112])}$.

For $I \in I(A)$ and $a \in A \setminus I$ we denote by $I(a) = (a] \vee I = (I \cup \{a\}].$

Remark 3 [3,4] For I(a) we have the next characterization:

 $I(a) = \{x \in A : x \le y + (na) \text{ for some } y \in I \text{ and integer } n \ge 0\}.$

Proposition 2.3 For $a \in A \setminus I$, $I(a) = \{x \in A : x - a \in I\}$

Proof. Let $I_a = \{x \in A : x - a \in I\}$. Since $a - a = 0 \in I$ we deduce that $a \in I_a$. Since for $x \in I$, $x - a \leq x$ (by c_{11}) we deduce that $x - a \in I$, hence $I \subseteq I_a$. To prove $I_a \in I(A)$ we observe that $0 - a = 0 \in I$, hence $0 \in I_a$. If $x \leq y$ and $y \in I_a$, then from $x - a \leq y - a$ (c_{10}) and $y - a \in I$ we deduce $x - a \in I$, hence $x \in I_a$. Let $x, y \in I_a$, that is $x - a, y - a \in I$. From Lemma 1.5. we have $(x + y) - a \leq (x - a) + (y - a)$, hence $(x + y) - a \in I$ that is $x + y \in I_a$. From $a \in I_a$, $I \subseteq I_a$ and $I_a \in I(A)$ we deduce $I(a) \subseteq I_a$. Let now $J \in I(A)$ such that $a \in J$ and $I \subseteq J$. If $x \in I_a$, then $x - a \in I \subseteq J$, hence $x \lor a = (x - a) + a \in J$. Since $x \leq x \lor a$ we deduce $x \in J$ that is $I_a \subseteq J$, hence $I_a \subseteq \cap J = I(a)$. From $I(a) \subseteq I_a$ and $I_a \subseteq I(a)$ we deduce $I_a = I(a)$. ■

Corollary 2.4 If $x, y \in A$ then $(x] \lor (y] = (x + y]$.

Proof 1: By Proposition 2.3. we have

$$(x] \lor (y] = (y](x) = \{a \in A : a - x \in (y]\}.$$

Since by $c_{12}(x+y) - x \leq y$, we deduce $x + y \in (x] \lor (y]$, hence $(x+y] \subseteq (x] \lor (y]$. Since the inclusion $(x] \lor (y] \subseteq (x+y]$ is obviously, we obtain the equality $(x] \lor (y] = (x+y]$.

Proof 2: It is suffices to show the inclusion $(x + y] \subseteq (x] \lor (y]$. If $z \in (x + y]$ then $z \leq n(x + y)$ for some integer $n \geq 0$. But n(x + y) = (nx) + (ny) and so $z \leq (nx) + (ny)$. Since $nx \in (x]$ and $ny \in (y]$ we deduce that $z \in (x] \lor (y]$, that is $(x + y] \subseteq (x] \lor (y]$.

For $I_1, I_2 \in I(A)$, we put $I_1 \wedge I_2 = I_1 \cap I_2$, $I_1 \vee I_2 = (I_1 \cup I_2], I_1 \longrightarrow I_2 = \{a \in A : (a] \cap I_1 \subseteq I_2\}.$

Then $(I(A), \lor, \land, \{0\}, A)$ is a complete *Brouwerian* lattice ([4, p.114]); we recall that a complete lattice is Brouwerian if it satisfies the identity $a \land \left(\bigvee_{i \in I} b_i\right) = \bigvee_{i \in I} (a \land b_i)$.

Lemma 2.5 If $I_1, I_2 \in I(A)$, then

(i) $I_1 \longrightarrow I_2 \in I(A)$ (ii) If $I \in I(A)$, then $I_1 \cap I \subseteq I_2$ iff $I \subseteq I_1 \longrightarrow I_2$ (that is, $I_1 \longrightarrow I_2 = \sup\{I \in I(A) : I_1 \cap I \subseteq I_2\}$). Proof (i) Since $(0] \cap I_1 \subseteq I_2$ we deduce that $0 \in I_1 \longrightarrow I_2$. If $x, y \in A$, $x \leq y$ and $y \in I_1 \longrightarrow I_2$, then $(y] \cap I_1 \subseteq I_2$. Since $(x] \subseteq (y]$ we deduce that $(x] \cap I_1 \subseteq (y] \cap I_1 \subseteq I_2$, hence $x \in I_1 \longrightarrow I_2$. Let now $x, y \in I_1 \longrightarrow I_2$; then $(x] \cap I_1 \subseteq I_2$ and $(y] \cap I_1 \subseteq I_2$. We deduce $((x] \cap I_1) \lor ((y] \cap I_1) \subseteq I_2$ hence $((x] \lor (y]) \cap I_1 \subseteq I_2$, so $(x+y] \cap I_1 \subseteq I_2$ (by Corollary 2.4.), that is $x + y \in I_1 \longrightarrow I_2$.

(ii) (\Longrightarrow) Let $I \in I(A)$; then $I_1 \cap I \subseteq I_2$. If $x \in I$ then $(x] \cap I_1 \subseteq I \cap I_1 \subseteq I_2$ hence $x \in I_1 \longrightarrow I_2$, that is $I \subseteq I_1 \longrightarrow I_2$.

 (\Leftarrow) We suppose $I \subseteq I_1 \longrightarrow I_2$ and let $x \in I_1 \cap I$; then $x \in I$, hence $x \in I_1 \longrightarrow I_2$, that is $(x] \cap I_1 \subseteq I_2$. Since $x \in (x] \cap I_1$, then $x \in I_2$, that is $I_1 \cap I \subseteq I_2$.

Remark 4 *iFrom Lemma 2.5. we deduce that* $(I(A), \lor, \land, -\rightarrow, \{0\}, A)$ *is a Heyting algebra; for* $I \in I(A)$, $I^* = I \rightarrow \{0\} = \{x \in A : (x] \cap I = \{0\}\}$.

Corollary 2.6 (i) For every $I \in I(A)$, $I^* = \{x \in A : x \land y = 0 \text{ for every } y \in I\}$ (see[4, p.114])

(ii) For any $x \in A$, $(x]^* = \{y \in A : (y] \cap (x] = \{0\} = \{y \in A : x \land y = 0\}$ (by Proposition 2.2., (iii)).

We recall that for a bounded distributive lattice L, following tradition, by B(L) we denoted the *Boolean lattice* of complemented elements in L.

For an *MV*-algebra (A, +, *, 0, 1) we shall denote by B(A) the Boolean lattice associated with the bounded distributive lattice $(A, \lor, \land, 0, 1)$.

Proposition 2.7 [4, p. 127] For every $x \in A$, the following conditions are equivalent:

(i) $x \in B(A)$ (ii) x + x = x(iii) $x \cdot x = x$ (iv) $x \wedge x^* = 0$ (v) $x \vee x^* = 1$.

Theorem 2.8 If A is an MV-algebra, then the following conditions are equivalent: (i) $(I(A), \lor, \land, ^*, \{0\}, A)$ is a Boolean lattice (ii) $(A, \lor, \land, ^*, 0, 1)$ is a finite Boolean lattice.

Proof (i)⇒(ii). Let $x \in A$; since I(A) is a Boolean lattice then $(x] \lor (x]^* = A$. By Proposition 2.3. and Corollary 2.6. (ii), we have $(x] \lor (x]^* = (x]^*(x) = \{y \in A : y - x \in (x]^*\} = \{y \in A : (y - x) \land x = 0\}$. Since $(x] \lor (x]^* = A$, then $1 \in (x] \lor (x]^*$, hence $(1 - x) \land x = 0$. We obtain that $x^* \land x = 0$, hence $x \in B(A)$ (by Proposition 2.7.(iii)), that is $(A, \lor, \land, ^*, 0, 1)$ is a Boolean lattice. To show that A is finite it suffices to prove that every ideal of A is principal ([5, p.77]). If $I \in I(A)$, because I(A) is supposed Boolean lattice then $I \lor I^* = A$, hence $1 \in I \lor I^*$. By Proposition 2.2. (ii), 1 = a + b with $a \in I$ and $b \in I^*$. By Corrollary 2.6.(i), $x \land b = 0$ for every $x \in I$. So $(x^* \lor b^*)^* = 0 \iff x^* \lor b^* = 1 \iff (x + b^*)^* + b^* = 1 \iff x + b^* \le b^* \iff x + b^* = b^*$ for every $x \in I$. Since a + b = 1 we obtain $b^* \le a$ hence $x + b^* = b^* \le a$ for every $x \in I$. Finally, we obtain $x \le x + b^* \le a$, hence $x \le a$ for every $x \in I$, that is I = (a].

(ii) \Longrightarrow (i). Suppose $(A, \lor, \land, *, 0, 1)$ is a finite Boolean lattice. By Remark 4, I(A) is a Heyting algebra. To prove I(A) is a Boolean lattice we must show $I^* = \{0\}$ only for I = A ([1, p.175]). Since in finite Boolean lattice every ideal is principal, then I = (a] for some $a \in A$. By Corollary 2.6. (ii), $I^* = (a]^* = \{x \in A : x \land a = 0\}$. Since $I^* = \{0\}$ and $a^* \land a = 0$, then $a^* = 0$, hence a = 1 so I = (1] = A.

References

- [1] R. Balbes, Ph. Dwinger: Distributive lattices, University of Missouri Press, 1974
- [2] C. C. Chang: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958) pp 467-490
- [3] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic fundation of many -valued Reasoning, Kluwer Academic Publ., Dordrecht, 2000
- [4] G.Georgescu, A. Iorgulescu: Pseudo- MV algebras, Multi. Val. Logic, 2001, vol 6, pp.95-135
- [5] G. Grätzer: Lattice theory, W.H. Freeman and Company, San Francisco, 1979

Department of Mathematics, University of Craiova, A. I. Cuza Street, 13, 1100-Craiova, Romania Phone: 40 51 412673, Fax: 40 51 412673 E-mail: busneag@central.ucv.ro, danap@central.ucv.ro