A NOTE ON THE FIRST HOMOLOGY OF THE GROUP OF POLYNOMIAL AUTOMORPHISMS OF THE COORDINATE SPACE

Kazuhiko FUKUI*and Etsuko HIRAI

Received October 26, 2001

Abstract

We consider the group of all polynomial automorphisms of the coordinate space and its subgroups, and compute the first homologies of their groups. Our main result is that the first homology group of the group of all polynomial automorphisms of the coordinate plane is isomorphic to \mathbf{K}^{*}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C} and $\mathbf{K}^{*}=\mathbf{K}-\{0\}$. This fact relates mostly to the topology of transversely algebraic foliations.

§ 1. Introduction

In this note we shall study the structure of the group of polynomial automorphisms of the coordinate space $\mathbf{K}^{n}(\mathbf{K}=\mathbf{R}$ or $\mathbf{C})$ and its subgroups and compute the first homology groups of these groups, where the first homology group of a group G is defined by the quotient group of G by its commutator subgroup.

There are many results on commutators of the groups of automorphisms preserving a geometric structure such as volume structure, symplectic structure, foliated structure and so on (for example, see [A-F1],[A-F2],[B],[F],[F-I1],[F-I2],[T1],[T2], \cdots). In those cases, the first homology groups are not necessarily trivial. Then the calculation of the first homology is the next problem. The first homology groups are interesting for us because they are expected relating mostly to the fundamental geometric structures.

Our main result is as follows.

Theorem(Theorem 8). Let G_{2} be the group of all polynomial automorphisms of the coordinate plane \mathbf{K}^{2}. Then $H_{1}\left(G_{2}\right) \cong \mathbf{K}^{*}$, where $\mathbf{K}^{*}=\mathbf{K}-\{0\}$.

Let G_{n}^{δ} be the group of polynomial automorphisms of the coordinate space \mathbf{K}^{n} with the discrete topology and $B G_{n}^{\delta}$ denote the classifying space, by which transversely algebraic foliated \mathbf{K}^{n}-bundles are classified. Since $B G_{n}^{\delta}$ has the homotopy type of an EilenbergMaclane space $K\left(G_{n}, 1\right)$, we have the following as a corollary of Theorem.

Corollary. $\quad H_{1}\left(B G_{2}^{\delta}\right) \cong \mathbf{K}^{*}$.

[^0]
§ 2. First homologies of groups of polynomial automorphisms

Let G_{n} be the group of all polynomial automorphisms of the coordinate space \mathbf{K}^{n}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. By definition, an element g of G_{n} is a polynomial mapping

$$
\left(x_{1}, \cdots, x_{n}\right) \mapsto g\left(x, \cdots, x_{n}\right)=\left(X_{1}\left(x, \cdots, x_{n}\right), \cdots, X_{n}\left(x, \cdots, x_{n}\right)\right)
$$

from the coordinate space to itself which is bijective and has polynomial inverse. Then we note that the Jacobian determinant $\operatorname{det}(J(g))$ of an element g of G_{n} is constant.

Let $A_{n}\left(\subset G_{n}\right)$ be the group of all afine transformations. Let $E_{n}\left(\subset G_{n}\right)$ be the group of all polynomial automorphisms which are elementary mappings of the form

$$
\begin{aligned}
& e\left(x_{1}, \cdots, x_{n}\right) \\
& \quad=\quad\left(\alpha_{1} x_{1}+p_{1}\left(x_{2}, \cdots, x_{n}\right), \alpha_{2} x_{2}+p_{2}\left(x_{3}, \cdots, x_{n}\right)\right. \\
& \left.\quad \cdots, \alpha_{n-1} x_{n}+p_{n-1}\left(x_{n}\right), \alpha_{n} x_{n}+\beta\right)
\end{aligned}
$$

for some constants $\alpha_{i}(i=1,2, \cdots, n)$ and β with $\alpha_{1} \cdot \alpha_{2} \cdots \cdot \alpha_{n} \neq 0$, and for some polynomial functions $p_{i}\left(x_{i+1}, \cdots, x_{n}\right)(i=1,2, \cdots, n-1)$. Let \hat{G}_{n} denote the subgroup of G_{n} which is generated by A_{n} and E_{n}.

First we consider the first homology of A_{n}. Then we have the following.
Proposition 1. $H_{1}\left(A_{n}\right) \cong \mathbf{K}^{*}$ for $n \geq 2$, where $\mathbf{K}^{*}=\mathbf{K}-\{0\}$ is the multiplicative group.

We define a map $J: A_{n} \rightarrow G L(n, \mathbf{K})$ by $d(f)=J(f)$ for any $f \in A_{n}$, which is an epimorphism. Then we have the following proposition.

Proposition 2. $\quad \operatorname{ker} J=\left[\operatorname{ker} J, A_{n}\right]$.

Proof. Any $f \in \operatorname{ker} J$ is of the form $f\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}+b_{1}, \cdots, x_{n}+b_{n}\right)$. We put

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, x_{2}+b_{2}, \cdots, x_{n}+b_{n}\right)
$$

and

$$
f_{2}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}+b_{1}, x_{2}, \cdots, x_{n}\right)
$$

Then we have $f=f_{2} \circ f_{1}$. Put

$$
g_{1}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, \frac{1}{2} x_{2}, \cdots, \frac{1}{2} x_{n}\right)
$$

and

$$
g_{2}\left(x_{1}, \cdots, x_{n}\right)=\left(\frac{1}{2} x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Then we have $f_{i}=f_{i}^{-1} \circ g_{i}^{-1} \circ f_{i} \circ g_{i}=\left[f_{i}^{-1}, g_{i}^{-1}\right],(i=1,2)$. Thus f is contained in $\left[\operatorname{ker} J, A_{n}\right]$. This completes the proof.

Proof of Proposition 1. From the epimorphism $J: A_{n} \rightarrow G L(n, \mathbf{K})$, we have the following exact sequence

$$
\rightarrow \operatorname{ker} J /\left[\operatorname{ker} J, A_{n}\right] \rightarrow H_{1}\left(A_{n}\right) \rightarrow H_{1}(G L(n, \mathbf{K})) \rightarrow 1
$$

Hence we have $H_{1}\left(A_{n}\right) \cong H_{1}(G L(n, \mathbf{K})) \cong \mathbf{K}^{*}$ from Proposition 2. This completes the proof.

Secondly we consider the first homology of E_{n}. We have the following by easy computations.

Lemma 3. The commutator subgroup $\left[E_{n}, E_{n}\right]$ of E_{n} is the group consisting of elements of the form

$$
\begin{aligned}
& f\left(x_{1}, \cdots, x_{n}\right) \\
& \quad=\quad\left(x_{1}+p_{1}\left(x_{2}, \cdots, x_{n}\right), x_{2}+p_{2}\left(x_{3}, \cdots, x_{n}\right),\right. \\
& \left.\quad \cdots, x_{n-1}+p_{n-1}\left(x_{n}\right), x_{n}+\beta\right)
\end{aligned}
$$

for some constant β and for some polynomial functions $p_{i}\left(x_{i+1}, \cdots, x_{n}\right)(i=1,2, \cdots, n-$ $1)$.

Remark 4. E_{n} is a solvable group. In fact, the n-th commutator subgroup of E_{n} is the commutative subgroup consisting of elements of the form $f\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}+\right.$ $\left.p_{1}\left(x_{2}, \cdots, x_{n}\right), x_{2}, \cdots, x_{n}\right)(c f .[S-M])$.

Theorem 5. $\quad H_{1}\left(E_{n}\right) \cong\left(\mathbf{K}^{*}\right)^{n}$ for $n \geq 2$.

Proof. We easily see from Lemma 3 that the quotient group $E_{n} /\left[E_{n}, E_{n}\right]$ consists of cosets of the form $\left[f_{\alpha}\right]=f_{\alpha}\left[E_{n}, E_{n}\right]$, where f_{α} is of the form $f\left(x_{1}, \cdots, x_{n}\right)=$ $\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \cdots, \alpha_{n-1} x_{n}, \alpha_{n} x_{n}\right)$, where $\alpha_{1} \cdot \alpha_{2} \cdots \alpha_{n} \neq 0$. Thus we have $H_{1}\left(E_{n}\right) \cong$ $\left\{\left[f_{\alpha}\right]\right\} \cong\left\{\left.\left(\begin{array}{cccc}\alpha_{1} & 0 & \cdots & 0 \\ 0 & \alpha_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{n}\end{array}\right) \right\rvert\, \alpha_{i} \in \mathbf{K}^{*}\right\}$. This completes the proof.

Thirdly we consider the first homology of \hat{G}_{n}. Then we have the following.

Theorem 6. $\quad H_{1}\left(\hat{G}_{n}\right) \cong \mathbf{K}^{*}$ for $n \geq 2$.
We define a map $d: \hat{G}_{n} \rightarrow \mathbf{K}^{*}$ by $d(f)=\operatorname{det}(J(f))$ for any $f \in \hat{G}_{n}$, which is an epimorphism. Then we have the following.

Proposition 7. $\operatorname{ker} d=\left[\operatorname{ker} d, \hat{G}_{n}\right]$.

Proof. Any $f \in$ ker d is represented by elements of E_{n} and elements of A_{n} with Jacobian determinant $=1$.
(1) Case where f is an element of E_{n}. In this case, f has the form

$$
\begin{aligned}
& f\left(x_{1}, \cdots, x_{n}\right) \\
& \quad=\left(\alpha_{1} x_{1}+p_{1}\left(x_{2}, \cdots, x_{n}\right), \alpha_{2} x_{2}+p_{2}\left(x_{3}, \cdots, x_{n}\right)\right. \\
& \left.\quad \cdots, \alpha_{n-1} x_{n-1}+p_{n-1}\left(x_{n}\right), \alpha_{n} x_{n}+\beta\right)
\end{aligned}
$$

for some constants $\alpha_{i}(i=1,2, \cdots, n)$ and β with $\alpha_{1} \cdot \alpha_{2} \cdots \cdots \alpha_{n}=1$, and for some polynomial functions $p_{i}\left(x_{i+1}, \cdots, x_{n}\right)(i=1,2, \cdots, n-1)$. We define $f_{0}, f_{i}(i=1, \cdots, n-1)$ and f_{n} in the following :

$$
\begin{aligned}
& f_{0}\left(x_{1}, \cdots, x_{n}\right)=\left(\alpha_{1} x_{1}, \alpha_{2} x_{2}, \cdots, \alpha_{n-1} x_{n}, \alpha_{n} x_{n}\right) \\
& f_{i}\left(x_{1}, \cdots, x_{n}\right) \\
& =\left(x_{1}, x_{2}, \cdots, x_{i-1},\right. \\
& \left.\quad x_{i}+p_{i}\left(\frac{x_{i+1}}{\alpha_{i+1}}, \cdots, \frac{x_{n}}{\alpha_{n}}\right), x_{i+1}, \cdots, x_{n}\right)
\end{aligned}
$$

$(i=1, \cdots, n-1)$
and

$$
f_{n}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}+\beta\right)
$$

Then we have $f=f_{n} \circ f_{n-1} \circ \cdots \circ f_{1} \circ f_{0}$.
(a) f_{0} is of the form

$$
f_{0}\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)\right)=\left(\begin{array}{cccc}
\alpha_{1} & 0 & \cdots & 0 \\
0 & \alpha_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Note that the matrix $\left(\begin{array}{cccc}\alpha_{1} & 0 & \cdots & 0 \\ 0 & \alpha_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{n}\end{array}\right)$ belongs to $S L(n ; \mathbf{K})$. Since $S L(n ; \mathbf{K})$ is a simple group, f_{0} is expressed as a product of commutators of elements of A_{n} with Jacobian determinant $=1$ and zero constant term.
(b) Put $g_{i}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, x_{2}, \cdots, x_{i-1}, \frac{1}{2} x_{i}, x_{i+1}, \cdots, x_{n}\right),(i=1, \cdots, n-1)$. Then we have $f_{i}=\left[f_{i}^{-1}, g_{i}^{-1}\right](i=1, \cdots, n-1)$. Thus each f_{i} is contained in $\left[\operatorname{ker} d, \hat{G}_{n}\right]$.
(c) f_{n} is an element of ker J in Proposition 1. Thus f_{n} is contained in [ker $\left.d, \hat{G}_{n}\right]$.
(2) Case where f is an element of A_{n}. In this case, we can prove by the same argument as in Proposition 2 that f is contained in $\left[\operatorname{ker} d, \hat{G}_{n}\right]$.

This completes the proof.
Proof of Theorem 6. From the epimorphism $d: \hat{G}_{n} \rightarrow \mathbf{K}^{*}$, we have the following exact sequence

$$
\rightarrow \operatorname{ker} d /\left[\operatorname{ker} d, \hat{G}_{n}\right] \rightarrow H_{1}\left(\hat{G}_{n}\right) \rightarrow \mathbf{K}^{*} \rightarrow 1
$$

Hence we have $H_{1}\left(\hat{G}_{n}\right) \cong \mathbf{K}^{*}$ from Proposition 7. This completes the proof.

We have the following by Theorem of Jung([J]) stating that G_{2} is generated by A_{2} and E_{2}.

Theorem 8. $\quad H_{1}\left(G_{2}\right) \cong \mathbf{K}^{*}$.

References

[A-F1] Abe K. and Fukui K., On the structure of the group of equivariant diffeomorphisms of G-manifolds with codimension one orbit, to appear in Topology.
[A-F2] Abe K. and Fukui K., On the structure of the group of Lipschitz homeomorphisms and its subgroups, to appear in J. Math. Soc. Japan, 53 (2001).
[B] Banyaga A., Sur la structure du groupe des difféomorphismes qui réservant une form symplectique, Comm. Math. Helv., 53 (1978) 174-227.
[F] Fukui K., Commutators of foliation preserving homeomorphisms for certain compact foliations, Publ. RIMS. Kyoto Univ., 34 (1998) 65-73.
[F-I1] Fukui K. and Imanishi H., On commutators of foliation preserving homeomorphisms, J. Math. Soc. Japan, 51-1 (1999) 227-236.
[F-I2] Fukui K. and Imanishi H., On commutators of foliation preserving Lipschitz homeomorphisms, to appear in J. Math. Kyoto Univ.
[F-M] Frieland S. and Milnor J., Dynamical properties of plane polynomial automorphisms, Ergod. Th. and Dynm. Sys., 9 (1989) 67-99.
[J] Jung H. W. E., Über ganze birationale transformationen der Ebene, J. Reine Angew. Math. 184 (1942) 161-174.
[T1] Thurston W., Foliations and group of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974) 304-307.
[T2] Thurston W., On the structure of volume preserving diffeomorphisms (unpublished).

Kazuhiko FUKUI : Department of Mathematics, Kyoto Sangyo University, Kyoto, 6038555, Japan

E-mail : fukui@cc.kyoto-su.ac.jp
Etsuko HIRAI : Department of Mathematics, Kyoto Sangyo University, Kyoto, 603-8555, Japan

E-mail : hiraietu@cc.kyoto-su.ac.jp

[^0]: 2000 Mathematics Subject Classification. 57S99, 58D99, 32M17.
 Key words and phrases. polynomial automorphisms, elementary mapping, homology group, transversely algebraic foliated bundle.
 *This research was partially supported by Grant-in-Aid for Scientific Research (No. 12640094), Ministry of Education, Culture, Sports, Science and Technology, Japan.

