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ABSTRACT. In this paper, we shall first show that the iteration {wx,} defined by (1.2)
below converges weakly to a fixed point of T when F is a uniformly convex Banach space
with Opial’s condition, which generalizes the recent theorem due to Takahashi and Kim
[11]. Next, we show that the weak limit points of subsequences of the iteration {z,}
defined by (1.5) are fixed points of T' (or S) when F is a uniformly convex Banach space,
which generalizes the recent theorem due to Takahashi and Tamura [12].

1. INTRODUCTION

Let E be a real Banach space and let C' be a closed convex subset of E. Then a mapping T'
of C into itself is called nonezpansive if ||[Tx — Ty|| < ||z — y|| for all z,y € C. Throughout
this paper, we denote by IN and R the set of positive integers and the set of real numbers
respectively. For a mapping T of C into itself, we consider the following iteration process:

T EC,

1.1
(1.1) g1 = o T[BnTayn + (1 — Br)en] + (1 — ap)z,

for all n € N, where {o,,} and {8,} are real sequences in [0, 1]. Such an iteration process
was introduced by Ishikawa [4]; see also Mann [6]. We consider a more general iterative
process of the type (cf., Xu [14]) emphasizing the randomness of errors as follows:

r € C,
(12) Tpnt1 = OpTp + ﬁnTyn + Inln,
Yn = aptn + BT, + 5,00,

where {an}, {Bn} {1}, {ah}, {8, }.{7}} are real sequences in [0, 1] satisfying

(1.3) an+ Bn+ v =a,+ 8, +~,=1forallne N,
(1.4) 3o A < ooand Y vl < oo,
n=1 n=1

and {un}, {v,} are two bounded sequences in C. If v, = +/, = 0 for all n € N, then
the iteration process (1.2) reduces to the Ishikawa iteration process, while setting 3/, = 0
and v/, = 0 for all n € N reduces to the Mann iteration process with errors, which is a
generalized case of the Mann iteration process [6]. For two mappings S, T of C into itself,
we also consider a more general iterative process of the type (cf. Das and Debata [2] and
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Xu [14]) emphasizing the randomness of error as follows:

x € C,
(15) Tp41 = Oplp + /anyn + Ynln,
Yn = OJ;lIn + /BLTLTWL + ’)/;lvny

where {an}, {Bn}, {7n}, {], 1, {8}, {7} } are real sequences in [0,1] satisfying (1.3) and
(1.4) and {un},{vn} are bounded sequences in C. If S = T, then the iterations (1.5) are
reduced to (1.2).

Recently Takahashi and Kim [11] proved the following result: Let C be a closed convex
subset of a uniformly convex Banach space E which satisfies Opial’s condition and let T
be a nonexpansive mapping of C into itself with a fixed point. Then for any initial data
71 € C, the iteration {z,} defined by (1.1) converges weakly to a fixed point of T under the
assumption that {a,} and {3,} are chosen satisfying that either a,, € [a,b] and 3,, € [0,0]
or o, € [a,1] and 8, € [a,b] for some a,b € R with 0 < a < b < 1. For other related
results, see Reich [8] and Tan and Xu [13]. On the other hand, Takahashi and Tamura [12]
proved the following result: Let E be a uniformly convex Banach space. Let C be a closed
convex subset of E and let S, T be nonexpansive mappings of C' into itself with a common
fixed point. Suppose that {z,} is given by = € C and

Tptl1 = anS[BnTxn + (1 - Bn)-rn] + (1 - O‘n)xn

for all n € N, where ay,, 3, € [0,1]. Then the following hold:
1. If o, € [a,b] and B, € [0,b] for some a,b € R with 0 < a < b < 1, 2,, — y implies

[
y € F(S);
2. If ap, € [a,1] and By, € [a,b] for some a,b € R with 0 < a < b < 1, z,, — y implies
y € F(T);
3. If a,,Bn € [a,b] for some a,b € R with 0 < a < b < 1, z,, — y implies y €
F(S)nF(T).

In this paper, we shall first show that the iteration {z,} defined by (1.2) converges
weakly to a fixed point of T when E is a uniformly convex Banach space with Opial’s
condition, which generalizes the recent theorem due to Takahashi and Kim [11]. Next, we
show that the weak limit points of subsequences of the iteration {x,} defined by (1.5) are
fixed points of T' (or S) when E is a uniformly convex Banach space, which generalizes
the recent theorem due to Takahashi and Tamura [12]. Finally, we shall show that if E
is uniformly convex and the union of the range of T and {u,} is contained in a compact
subset of C, the iteration {z,} defined by (1.2) converges strongly to a fixed point of T.

2. PRELIMINARIES

Throughout this paper we denote by E a real Banach space. Let C be a closed convex
subset of E and let T be a mapping of C into itself. Then we denote by F(T') the set of all
fixed points of T', i.e., F(T) = {z € C | Tx = x}. A Banach space E is called uniformly
convez if for each ¢ > 0 there is a ¢ > 0 such that for #,y € E with ||z, [ly]| < 1 and
e — y|| > e, it holds that ||a 4+ y|| < 2(1 —¢). When {x,} is a sequence in E, then 2, — x
(z, — ) will denote strong (weak) convergence of the sequence {z,} to . A Banach space
E is said to satisfy Opial’s condition [7] if for any sequence {z,} in F, x, — x implies that

h_mn—>oo ||$n - TH < hﬂn—)oo Hln — y”

for all y € E with y # 2. All Hilbert spaces and I? (1 < p < o0) satisfy Opial’s condition,
while L? with 1 < p # 2 < oo do not.
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Let C be a subset of a Banach space E. A mapping T of C' into FE is said to be demiclosed
ife, = 2in C and Tz, — y imply Tz = y.

Theorem 2.1 ([1]). Let C be a bounded closed convesx subset of a uniformly conver Banach
space E and let T be a nonezpansive mapping of C into E. Then I — T is demiclosed.

We immediately get the following:

Proposition 2.2. Let C be a closed convex subset of a uniformly convexr Banach space E
and let T be a nonezpansive mapping of C into E. If {x,} is a bounded sequence in C and
{zn — Tay} converges strongly to 0 as n — oo, then F(T) is nonempty.

Proof. Take Cy = co{z,}, where 6 A means the closed convex hull of a subset A of E.
Then Cjy is bounded closed convex and T'|¢, is a nonexpansive mapping of C into C. Let

Tp; — 2. Then we obtain z € F(T) by Theorem 2.1. |

Lemma 2.3 ([13]). Let {a,} and {b,} be two sequences of nonnegative real numbers such

that > by, < 0o and

n=1

An+41 S apn + bn
for alln € N. Then lim a, emxists.

n—o

Lemma 2.4 ([9]). Let E be a uniformly convexr Banach space, let 0 < b < t, <c¢ <1
for all n € N, and let {x,} and {y,} be sequences of E such that lim , o ||za|| < a,
Tim oo lynl] < a and lim 1oy eo ltnzn + (1 —tn)ynl| = a for some a > 0. Then, it holds
that 1i_>m lzn — ynll = 0.

Now, we'll prepare to discuss the convergences for the iterations defined by (1.2) and
(1.5). In this paper, the iterations defined by (1.2) and (1.5) are always assumed that
{ant, {Bn}, {vn},{al}. {5, }, {~.} are real sequences in [0, 1] satisfying (1.3) and (1.4) and

{un},{vn} are bounded sequences in C

Lemma 2.5. Let C be a closed convex subset of a Banach space E and let S, T be nonex-
pansive mappings of C into itself with F(S)NF(T) # (. Suppose a sequence {z,} is defined
by (1.5), then lm ||z, — z|| exists for any z € F(S)NF(T).

Proof. Since {u,} and {v, } are bounded in C, for a fixed z € F(S) N F(T), let

M = sup ||up — z|| V sup |Jv, — 2| (< o0).
neN neN

Since

(21) 1Sy — =1l < llyn — 2|
= |lahxn + B.Tx, +~ vn — 2|
<ol llon — 2l By I Ten — 2l 4 on — =]
< ap [l — 2l + By len — 2]l + 7 llon — =
< (L=~ len = 2|+ 44 lon = 2],

we have

l2nt1 — 2)| < llanzn + BnSyn + Yaun — 2|
<anllen = 2l 4+ B [|Syn — 2| + vn |lon — 2|
<ap[rn = 2]l + Bl (X =) llon — 2l + 95 llon — 2[1} 4 Yn [lon — =]
S (L= (yn + Bavp)) 1o — 2ll + 70 M + 4 M
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< Nlew = 2l + (7 + ) M.

By Lemma 2.3, we readily see that lim |z, — 2| exists. O
n—oo

Using Lemma 2.4, we have the following:
Lemma 2.6. Let C be a closed convex subset of a uniformly conver Banach space E and
let T' be nonexpansive mapping of C into itself with a fized point. Suppose the sequence
{zn} defined by (1.2) satisfies that either
1. ay €a,1], Bn €[a,b], B!, €0,b] for some a,b € R with 0 <a <b< 1, or
2. ol Bn €la, 1], Bl € la,b] for some a,b € R with 0 <a <b< 1.
Then {x,, — Tx,} converges strongly to 0 as n — oo.
Proof. Let r = lim ||xn — z|| which exists for a fixed z € F(T) by Lemma 2.5. If r =0, it is
n—>r0o0
clear that lim ||z, — Tz,|| = 0 and so we assume r > 0. Note that d,, = max{~y},,vn/a} =
n—>0C
0 as n — oo. Since {u,} and {v,} are bounded in C, let

M = sup ||up — 2| V sup |Jv, — 2| (< o0).
neN neEN

Now, we assume (1). Since [Ty, — z|| < ||z — z|| + dpM by the same calculus as (2.1)

and Antn Tnln _ z|| < |lown — 2| + duM, we have im n—oc || Tyn — 2|| < r and
O/n + fyn O/n + fyn
_— Updn InUn .
lim 00 + — z|| < r. On the other hand, it holds that
Oy + Tn Oy + Tn

r= lim ||zn+1 — 2|
n—oo

= lim |apzy, + GnTyn + Yntin — 2|

n—oo
. Aplnp TnUn
= lim ||Bn(Tyn —2)+ (1 — B, + —Z>H
n—oo ' ( y ) ( ) <0€n + In Qn + Yn
. . . ApTn TnUn .
Using Lemma 2.4, it holds that lim HTyn — — = 0, and so we obtain
n—o0 Qg + Yn Qg + Yn

lim ||[Tyn — xn|| = 0 by virtue of sup ||z, — up|| < oo. Since
n—>00 neN

[T2n = wnll < | Tan = Tynll + [|Tyn — wall
< tn — gl + T —
= |lzn — apan — BuTon — pvnll + [ Tyn — |
< BplTen — anll + v llen — vall + 1 Tyn — @l
we have
(22) (1= )| Ten — 2]l < (1= B | Ttn — 2l
< Ao llen = vall + 1Ty — 2l
<A M+ [Ty — 2l

where M’ = sup ||z, — va|| (< o0). It easily follows from (2.2) that
neN

(2.3) lim ||T%, — .| = 0.

n—roo

Next, assuming (2), we have
|‘xn+1 - Z” = ||an$n + /BnTyn + YnlUn — Z”
< an [[zn = 2|l + Bn | Tyn — 2l + n [un — 2|
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<oy len =2l + B llyn — 2| + 1M
< (L= Bn) lzn = 2l + Ba llyn = 2[ +va M
and hence
e 2 AW =2, o <y — ol 4+ 22

So, using ||y, — 2|| < |Jxn — z|| + dnM obtained by (2.1), we have
< it i — 2l < T oo g — 21 < T e flln — 2 M} = v
Hence
r= tim flyn - 2]

= limr Halnm + BLTth + W/L’Un — ZH

n—oo
! !
ol " ! Oénl’n fynvn

im
n—oo

By using Lemma 2.4 and sup ||z, — v, || < oo, we have (2.3). U
neN

The following is usefull for weak and strong convergence theorems for the iteration defined

by (1.5).

Theorem 2.7. Let C' be a closed conver subset of a Banach space E. Let S|T be non-
expansive mappings of C into itself such that F(S) N F(T) is nonempty. Suppose that
{zn} 1s defined by (1.5) and for every n € N a mapping Ty, of C into itself is defined by
Thw = anx + BpS[al,x + 81 Ta + ~la] + ynz for all w € C. If there are By, ), € [a,b] for
some a,b € R with 0 < a < b < 1, then {T,Tp_1---Thixy — xp41} converges strongly to 0
as n — oo.

Proof. Since
1 TwTho1 - Ti21 — Tyt
<o [[Tnoy - Tixy — |
+ Bul|S[e! Ty -+ Ty + BT Toq - Thay + 3 Tt - Thaq]
= Slajzn + B, Txy + vp0ulll + v | Tt - Thzn — ug||
< ay, HTn,l e Tixy — xn”
+ Bl Tt Thixy + BT Ty—1 -+ Thay + vy Toe - Thaq
— [ xn + 8, Ten + o0l + 3y [Taor -+ Tran — wy|
<o [ Toot - Thar — anl|
+ Bu{(af, + Bi) | Tt - - Ty — @ 4+ 5, (| T - - - Thwy — on|[}
+ Yn ||Tn71 Ty — UnH
< ay, HTn,l e Tixy — xn”
+ Bn{l| Ty Ty — xall + 5, 20 — vnll}
vl Tnr - Tiwy — 2pl[ 4 [z — uall}
<N Ta—1 - Tixy — @all + (v + 70) M,

where M = sup ||z, — u,|| V sup ||z, — v,|| which is finite by Lemma 2.5, we have the
N ne

ne
desired result by Lemma 2.3. O
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3. WEAK CONVERGENCE THEOREMS

In this section, we treat the weak convergences of the iterations defined by (1.2) and
(1.5). Our Theorem 3.2 carries over Theorem 1 of Takahashi and Kim [11] to a more
general Ishikawa type iteration.

Lemma 3.1. Let C be a closed convex subset of a uniformly convex Banach space E satis-

fying Opial’s condition and let T' be a nonezpansive mapping of C into itself. If the sequence

{zn} defined by (1.2) satisfies that lim ||z, — Tay,|| = 0, then {x,} converges weakly to
) n—>o0

some fized point of T.

Proof. Let 21,23 be weak subsequential limits of the sequence {x,}. We claim that the
conditions z,, — z; and x,, — 22 imply 21 = 23 € F(T). We first show that z1, 2z, € F(T).
If Tz, # z1, then, by Opial’s condition, we have

B sosoc [, — 21 < B iosoc o, — T2
< B s {2, — T ]| 4 [T, — Taa]))
< B s (e, — Tanll 4 la, — 21}
— B isoc i, — 2l

This is a contradiction. Hence we have Tz; = z; and so z; € F(T). Similarly, we have
z9 € F(T). Next, we show z; = z9. If not, by Lemma 2.5 and Opial’s condition, we obtain

lm ||zy — z1]] = lim ||on;, — 21]| < lUm ||z, — 22]|
n—00 11— 00 1—> 00

= lim ||;cn —z2|| < lim ||:vn — 21
j—oo J j—oo J

= lim ||zn —21]-
n—> 00

This is a contradiction. Hence we have z; = z3, which implies that {x,,} converges weakly
to a fixed point of T'. O

Theorem 3.2. Let C' be a closed convexr subset of a uniformly convex Banach space E
satisfying Opial’s condition and let T be a nonerpansive mapping of C into itself with a
fized point. Assume that the sequence {x,} defined by (1.2) satisfies that either

1. an €a,1], By € [a,b], B, €[0,b] for some a,b € R with 0 < a <b< 1, or

2. al, By €a,1], B, €la,b] for some a,b € R with 0 < a <b< 1.
Then {x,} converges weakly to some fized point of T.

Proof. Since lim ||z, — #|| exists for any z € F(T') by Lemma 2.5 and lim ||z, — Ta,||=0
n— oo n—oo
by Lemma 2.6, the conclusion follows from Lemma 3.1. |

Our Theorem 3.3 carries over Theorem 1 of Takahashi and Tamura [12] to a more general
Ishikawa type iteration.

Theorem 3.3. Let E be a uniformly convex Banach space. Let C be a closed conver subset
of E and let S,T be nonezpansive mappings of C into itself with a common fized point.
Suppose that a sequence {x,} is defined by (1.5). Then the following hold:
1 If an, o, € [a,1], Bn € [a,1], B, € [0,b] for some a,b € R with 0 < a < b < 1,
Tn, — y implies y € F(S);
2. If o, B, € [a,1] and B, € [a,b] for some a,b € R with 0 < a < b < 1 x,, —y
implies y € F(T);
3. If an, o, € [a,1] and By, 5!, € [a,b] for some a,b € R with0 < a <b< 1, z,, — vy
implies y € F(S) N F(T).
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Proof. Let @ € C and set U = F(S) N F(T). Then for w € U and r = ||z —w|, D =
C N B, [w] is a bounded closed convex subset of C' which is invariant under S and T', where
B.[w] denotes the closed ball centered at w with radius r. So, we may assume that C is
bounded. For a fixed z € F(S)NF(T), let r = nlil)lolo ||z — z|| which exists by Lemma 2.5.

If r =0, the conclusions are clear. So, we assume r > 0. We obtain
(3.1) [S@n = wnll < [[Swn = Synll + 1Sy — @nl

< len = ynll + [1Syn — @l

= |lzn — apan = BrTxn = vl + 1Syn —

< Bl Twn = wnll + 75 lln = vall + 1Syn — 2n]|

< Bp[Twn — anll + 4 M+ || Syn — xn]|
where M’ = sg}f\)f |2 — vn] (< o0). Since {un} and {v,} are bounded in C, let

n
M = sup |lup — 2| V sup |lv, — 2| (< o0).
neEN neN

First, we assume that 0 < a < a, < 1. Note that d, = max{v},,yn/a} = 0asn — oo. Since

ApTp Ynln
Syn — z|| < — d,M by (2.1 d —z|| < — d. M
190 = #1 < llen = 2]+ duM by (21) and |20 U2l < oy — 2] 4 d D,
ApTnp YnlUn

we have lim p_yoc 1Syn — #|| < and lim noee < r. Hence

—
4

An+Yn QO+ Tn

r= lim ||zp41 — 2]
n—o

. i ApTn TnlUUn
=1 Bn(Sy, — 1-p — .
Tim |1 8,(Syn —2) +( /")<an+7n+an+7n Z>H
. . . Aplp Ynln .
Using Lemma 2.4, it holds that lim |[Sy, — — = 0, and so we obtain
n—oo Qp + Yo Qp + Yo

lim ||[Syn — 24| = 0 by virtue of sup ||z, — un| < co. Next, if 0 < a < 3, <1, we have
n—>o0 neN

2nt1 — 2| = ln@n + BnSYn + ynun — 2|

< anllen =zl 4 Bn [|Syn = 2l + 70 [[un = 2|
< anllen = 2l + B g — 2] + 7
< (1= Bn)l[zn = 2l + Bu llyn = 2l + 72 M
and hence
[#nt1 — 2|l — lzn — =]
Bn
So, using ||y, — z|| < ||zn — 2|| + d, M obtained by (2.1), we have

tllen = 2l < g = 2l + =

Hence
(3.2) r= lim |y, — 2|
) n—oo

= lim |[a,x, + BTy + vpvn — 2|
n—oo

= lim
n—oo

7 4
ol ) . l Ay Tn YnUn .
OnlTn =2) + (1= 6n) (awvg T _)H
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Further, if 0 < a < !, <1, we get

(3.3) lim oy oo |IT2, — z|| <r and lim noeo <r

Oéln@n A/;livn i
antvn ont

as above. Now we prove (1). Assume z,, — y. Then, since 0 < 3! < b < 1 we have
h_mi_mcﬁ;” =0 or li_m,‘_wO,B:” > 0. If h_miqooﬁ,'” > 0, by using (3.2), (3.3) and Lemma
2.4, it follows that

14 /
) ol z,. A A,
‘llm HT{E,H _ - L3 z’ _ p L3 z/ _ )
10 ey + Yn; ey + Tn;
and so we obtain lim ||Ta,, — 2,,|| = 0 by virtue of sup ||z, — u,|| < co. Further, from
1—oc neN

(3.1), we have lim |[Sz,; — .|| = 0, which implies y € F(S) by the demiclosedness of
11— 00
I— 5. If limse0f3),, = 0, then by (3.1) we have a subsequence {mnij} of {x,,} such that

lim S:L‘mj —Tng || = 0. Since I — S is demiclosed, we have y € F(S). Next, we prove (2).

j—oo

By using Lemma 2.4 with (3.2) and (3.3), we have lim ||Tx, — x| = 0 similarly to the
n—o0

arguement above. Since x,, — y and I — T is demiclosed, we have y € F(T). (3) is obvious

from (1) and (2). O

Theorem 3.4 ([12]). Let C be a closed conver subset of a uniformly conver Banach space
E which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let S, T be
nonezpansive mappings of C into itself such that F(S) N F(T) is nonempty. Suppose that
{x,} 1s given by 21 € C and vpyy = 0, S[BTa, + (1 — Bn)en]+ (1 — ap)x, for alln € N,
where g, By € [a,b] for some a,b € R with 0 < a <b < 1. Then {x,} converges weakly to
a common fized point of S and T.

Combining Theorem 3.4 and Theorem 2.7, we immediately get the following.

Theorem 3.5. Let C be a closed convex subset of a uniformly convexr Banach space E which
satisfies Opial’s condition or whose norm s Fréchet differentiable. Let S, T be nonezpansive
mappings of C into itself such that F(S)N F(T) is nonempty. Suppose that {x,} is defined
by (1.5). If 8., € [a,b] for some a,b € R with 0 < a < b < 1, then {z,} converges
weakly to a common fixed point of S and T.

4. STRONG CONVERGENCE THEOREMS

In this section, we consider strong convergences of the iterations defined by (1.2) and
(1.5) in a Banach space.

Theorem 4.1. Let C be a closed convex subset of a uniformly convexr Banach space E
and let T be a nonexpansive mapping of C into itself with a fized point. Suppose that the
sequence {x,} defined by (1.2) satisfies that either

1. a, €la, 1], Bn €a,b], 8], €10,0] for some a,b € R with 0 < a<b< 1, or
2. o, By €a,1], Bl € la,b] for some a,b € R with0 < a<b< 1.
IFT(C)U{uy} is contained in a compact subset of C, then {x,} converges strongly to some

fized point of T as n — oo.

Proof. By Mazur’s theorem [3], co({z1 }UT(C)U{u,}) is a compact subset of C' containing
{x,}. Then, there exist a subsequence {z,,} of {z,} and a point z € C such that z,, — 2.
Since

e = Tl < 12 — 2,
<2z — xp,

+ [|zn; = Tan,
+ Hlm - Txm

+ [Tz, — T2
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=0 (i — o)
by using Lemma 2.6, we have z = T'z. By Lemma 2.5 lim ||z, — z|| exists, and so we have
n—>oo
lim ||z, — z]| = 0. U

n—>00

Theorem 4.2 ([12]). Let C be a closed conver subset of a strictly convez Banach space E.
Let S, T be nonezpansive mappings of C into itself such that S(C)UT(C) is contained in a
compact subset of C and F(S)N F(T) is nonempty. Suppose that {x,} is given by x1 € C
and 41 = anS[BnTxn + (1 — Bn)zn] + (1 — ap)z, for alln € N, where oy, 3, € [a,b] for
some a,b € R with 0 < a <b< 1. Then {x,} converges strongly to a common fized point
of S and T.

Combining Theorem 4.2 and Theorem 2.7, we immediately get the following.

Theorem 4.3. Let C be a closed convex subset of a strictly conver Banach space E. Let
S, T be nonexpansive mappings of C into itself such that S(C)U T(C) is contained in a
compact subset of C and F(S) N F(T) is nonempty. Suppose that {x,} is defined by (1.5).
If Bn, 3, € [a,b] for some a,b € R with 0 < a < b < 1, then {z,} converges strongly to a
common fized point of S and T.
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