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Abstract. In this paper, we shall �rst show that the iteration fxng de�ned by (1.2)

below converges weakly to a �xed point of T when E is a uniformly convex Banach space

with Opial's condition, which generalizes the recent theorem due to Takahashi and Kim

[11]. Next, we show that the weak limit points of subsequences of the iteration fxng
de�ned by (1.5) are �xed points of T (or S) when E is a uniformly convex Banach space,

which generalizes the recent theorem due to Takahashi and Tamura [12].

1. Introduction

Let E be a real Banach space and let C be a closed convex subset of E. Then a mapping T

of C into itself is called nonexpansive if kTx � Tyk � kx� yk for all x; y 2 C. Throughout

this paper, we denote by N and R the set of positive integers and the set of real numbers

respectively. For a mapping T of C into itself, we consider the following iteration process:(
x1 2 C;

xn+1 = �nT [�nTxn + (1 � �n)xn] + (1� �n)xn
(1.1)

for all n 2 N , where f�ng and f�ng are real sequences in [0; 1]. Such an iteration process

was introduced by Ishikawa [4]; see also Mann [6]. We consider a more general iterative

process of the type (cf., Xu [14]) emphasizing the randomness of errors as follows:8><
>:

x1 2 C;

xn+1 = �nxn + �nTyn + 
nun;

yn = �0
n
xn + �0

n
Txn + 
0

n
vn;

(1.2)

where f�ng; f�ng; f
ng; f�
0

n
g; f�0

n
g; f
0

n
g are real sequences in [0; 1] satisfying

�n + �n + 
n = �0
n
+ �0

n
+ 
0

n
= 1 for all n 2N ;(1.3)

1P
n=1


n <1 and
1P
n=1


0
n
<1;(1.4)

and fung; fvng are two bounded sequences in C. If 
n = 
0
n
= 0 for all n 2 N , then

the iteration process (1.2) reduces to the Ishikawa iteration process, while setting �0
n
= 0

and 
0
n
= 0 for all n 2 N reduces to the Mann iteration process with errors, which is a

generalized case of the Mann iteration process [6]. For two mappings S; T of C into itself,

we also consider a more general iterative process of the type (cf. Das and Debata [2] and
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Xu [14]) emphasizing the randomness of error as follows:8><
>:

x1 2 C;

xn+1 = �nxn + �nSyn + 
nun;

yn = �0
n
xn + �0

n
Txn + 
0

n
vn;

(1.5)

where f�ng; f�ng; f
ng; f�0ng; f�
0

n
g; f
0

n
g are real sequences in [0; 1] satisfying (1.3) and

(1.4) and fung; fvng are bounded sequences in C. If S = T , then the iterations (1.5) are

reduced to (1.2).

Recently Takahashi and Kim [11] proved the following result: Let C be a closed convex

subset of a uniformly convex Banach space E which satis�es Opial's condition and let T

be a nonexpansive mapping of C into itself with a �xed point. Then for any initial data

x1 2 C, the iteration fxng de�ned by (1.1) converges weakly to a �xed point of T under the

assumption that f�ng and f�ng are chosen satisfying that either �n 2 [a; b] and �n 2 [0; b]

or �n 2 [a; 1] and �n 2 [a; b] for some a; b 2 R with 0 < a � b < 1. For other related

results, see Reich [8] and Tan and Xu [13]. On the other hand, Takahashi and Tamura [12]

proved the following result: Let E be a uniformly convex Banach space. Let C be a closed

convex subset of E and let S; T be nonexpansive mappings of C into itself with a common

�xed point. Suppose that fxng is given by x1 2 C and

xn+1 = �nS[�nTxn + (1 � �n)xn] + (1 � �n)xn

for all n 2N , where �n; �n 2 [0; 1]. Then the following hold:

1. If �n 2 [a; b] and �n 2 [0; b] for some a; b 2 R with 0 < a � b < 1, xni
* y implies

y 2 F (S);

2. If �n 2 [a; 1] and �n 2 [a; b] for some a; b 2 R with 0 < a � b < 1, xni
* y implies

y 2 F (T );

3. If �n; �n 2 [a; b] for some a; b 2 R with 0 < a � b < 1, xni
* y implies y 2

F (S) \ F (T ).

In this paper, we shall �rst show that the iteration fxng de�ned by (1.2) converges

weakly to a �xed point of T when E is a uniformly convex Banach space with Opial's

condition, which generalizes the recent theorem due to Takahashi and Kim [11]. Next, we

show that the weak limit points of subsequences of the iteration fxng de�ned by (1.5) are

�xed points of T (or S) when E is a uniformly convex Banach space, which generalizes

the recent theorem due to Takahashi and Tamura [12]. Finally, we shall show that if E

is uniformly convex and the union of the range of T and fung is contained in a compact

subset of C, the iteration fxng de�ned by (1.2) converges strongly to a �xed point of T .

2. Preliminaries

Throughout this paper we denote by E a real Banach space. Let C be a closed convex

subset of E and let T be a mapping of C into itself. Then we denote by F (T ) the set of all

�xed points of T , i.e., F (T ) = fx 2 C j Tx = xg. A Banach space E is called uniformly

convex if for each " > 0 there is a Æ > 0 such that for x; y 2 E with kxk ; kyk � 1 and

kx � yk � ", it holds that kx + yk � 2(1� Æ). When fxng is a sequence in E, then xn ! x

(xn * x) will denote strong (weak) convergence of the sequence fxng to x. A Banach space

E is said to satisfy Opial's condition [7] if for any sequence fxng in E, xn * x implies that

limn!1 kxn � xk < limn!1 kxn � yk

for all y 2 E with y 6= x. All Hilbert spaces and lp (1 < p <1) satisfy Opial's condition,

while Lp with 1 < p 6= 2 <1 do not.
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Let C be a subset of a Banach space E. A mapping T of C into E is said to be demiclosed

if xn * x in C and Txn ! y imply Tx = y.

Theorem 2.1 ([1]). Let C be a bounded closed convex subset of a uniformly convex Banach

space E and let T be a nonexpansive mapping of C into E. Then I � T is demiclosed.

We immediately get the following:

Proposition 2.2. Let C be a closed convex subset of a uniformly convex Banach space E

and let T be a nonexpansive mapping of C into E. If fxng is a bounded sequence in C and

fxn � Txng converges strongly to 0 as n!1, then F (T ) is nonempty.

Proof. Take C0 = cofxng, where coA means the closed convex hull of a subset A of E.

Then C0 is bounded closed convex and T jC0
is a nonexpansive mapping of C0 into C. Let

xni
* z. Then we obtain z 2 F (T ) by Theorem 2.1.

Lemma 2.3 ([13]). Let fang and fbng be two sequences of nonnegative real numbers such

that
1P
n=1

bn <1 and

an+1 � an + bn

for all n 2N . Then lim
n!1

an exists.

Lemma 2.4 ([9]). Let E be a uniformly convex Banach space, let 0 < b � tn � c < 1

for all n 2 N , and let fxng and fyng be sequences of E such that lim n!1 kxnk � a,

lim n!1 kynk � a and limn!1 ktnxn + (1� tn)ynk = a for some a � 0. Then, it holds

that lim
n!1

kxn � ynk = 0.

Now, we'll prepare to discuss the convergences for the iterations de�ned by (1.2) and

(1.5). In this paper, the iterations de�ned by (1.2) and (1.5) are always assumed that

f�ng; f�ng; f
ng; f�0ng; f�
0

n
g; f
0

n
g are real sequences in [0; 1] satisfying (1.3) and (1.4) and

fung; fvng are bounded sequences in C

Lemma 2.5. Let C be a closed convex subset of a Banach space E and let S; T be nonex-

pansive mappings of C into itself with F (S)\F (T ) 6= ;. Suppose a sequence fxng is de�ned

by (1.5), then lim
n!1

kxn � zk exists for any z 2 F (S) \ F (T ).

Proof. Since fung and fvng are bounded in C, for a �xed z 2 F (S) \ F (T ), let

M = sup
n2N

kun � zk _ sup
n2N

kvn � zk (<1):

Since

kSyn � zk � kyn � zk(2.1)

= k�0
n
xn + �0

n
Txn + 
0

n
vn � zk

� �0
n
kxn � zk+ �0

n
kTxn � zk+ 
0

n
kvn � zk

� �0
n
kxn � zk+ �0

n
kxn � zk+ 
0

n
kvn � zk

� (1� 
0
n
) kxn � zk+ 
0

n
kvn � zk ;

we have

kxn+1 � zk � k�nxn + �nSyn + 
nun � zk

� �n kxn � zk+ �n kSyn � zk + 
n kvn � zk

� �n kxn � zk+ �nf(1 � 
0
n
) kxn � zk + 
0

n
kvn � zkg+ 
n kvn � zk

� (1 � (
n + �n

0

n
)) kxn � zk+ 
0

n
M + 
nM
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� kxn � zk+ (
0
n
+ 
n)M:

By Lemma 2.3, we readily see that lim
n!1

kxn � zk exists.

Using Lemma 2.4, we have the following:

Lemma 2.6. Let C be a closed convex subset of a uniformly convex Banach space E and

let T be nonexpansive mapping of C into itself with a �xed point. Suppose the sequence

fxng de�ned by (1.2) satis�es that either

1. �n 2 [a; 1]; �n 2 [a; b]; �0
n
2 [0; b] for some a; b 2 R with 0 < a � b < 1, or

2. �0
n
; �n 2 [a; 1]; �0

n
2 [a; b] for some a; b 2 R with 0 < a � b < 1.

Then fxn � Txng converges strongly to 0 as n!1.

Proof. Let r = lim
n!1

kxn � zk which exists for a �xed z 2 F (T ) by Lemma 2.5. If r = 0, it is

clear that lim
n!1

kxn � Txnk = 0 and so we assume r > 0. Note that dn � maxf
0
n
; 
n=ag !

0 as n!1. Since fung and fvng are bounded in C, let

M = sup
n2N

kun � zk _ sup
n2N

kvn � zk (<1):

Now, we assume (1). Since kTyn � zk � kxn � zk + dnM by the same calculus as (2.1)

and





 �nxn

�n + 
n
+


nun

�n + 
n
� z





 � kxn � zk + dnM , we have lim n!1 kTyn � zk � r and

lim n!1





 �nxn

�n + 
n
+


nun

�n + 
n
� z





 � r. On the other hand, it holds that

r = lim
n!1

kxn+1 � zk

= lim
n!1

k�nxn + �nTyn + 
nun � zk

= lim
n!1





�n(Tyn � z) + (1 � �n)

�
�nxn

�n + 
n
+


nun

�n + 
n
� z

�



 :
Using Lemma 2.4, it holds that lim

n!1





Tyn � �nxn

�n + 
n
�


nun

�n + 
n





 = 0, and so we obtain

lim
n!1

kTyn � xnk = 0 by virtue of sup
n2N

kxn � unk <1. Since

kTxn � xnk � kTxn � Tynk+ kTyn � xnk

� kxn � ynk+ kTyn � xnk

= kxn � �0
n
xn � �0

n
Txn � 
0

n
vnk+ kTyn � xnk

� �0
n
kTxn � xnk+ 
0

n
kxn � vnk+ kTyn � xnk ;

we have

(1� b) kTxn � xnk � (1� �0
n
) kTxn � xnk(2.2)

� 
0
n
kxn � vnk+ kTyn � xnk

� 
0
n
M 0 + kTyn � xnk ;

where M 0 = sup
n2N

kxn � vnk (<1). It easily follows from (2.2) that

lim
n!1

kTxn � xnk = 0:(2.3)

Next, assuming (2), we have

kxn+1 � zk = k�nxn + �nTyn + 
nun � zk

� �n kxn � zk+ �n kTyn � zk+ 
n kun � zk
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� �n kxn � zk+ �n kyn � zk+ 
nM

� (1 � �n) kxn � zk+ �n kyn � zk+ 
nM

and hence
kxn+1 � zk � kxn � zk

�n
+ kxn � zk � kyn � zk+


n

a
M:

So, using kyn � zk � kxn � zk+ dnM obtained by (2.1), we have

r � lim n!1 kyn � zk � limn!1 kyn � zk � limn!1fkxn � zk + dnMg = r:

Hence

r = lim
n!1

kyn � zk

= lim
n!1

k�0
n
xn + �0

n
Txn + 
0

n
vn � zk

= lim
n!1





�0n(Txn � z) + (1 � �0
n
)

�
�0
n
xn

�0
n
+ 
0

n

+

0
n
vn

�0
n
+ 
0

n

� z

�



 :
By using Lemma 2.4 and sup

n2N

kxn � vnk <1, we have (2.3).

The following is usefull for weak and strong convergence theorems for the iteration de�ned

by (1.5).

Theorem 2.7. Let C be a closed convex subset of a Banach space E. Let S; T be non-

expansive mappings of C into itself such that F (S) \ F (T ) is nonempty. Suppose that

fxng is de�ned by (1.5) and for every n 2 N a mapping Tn of C into itself is de�ned by

Tnx = �nx + �nS[�
0

n
x + �0

n
Tx + 
0

n
x] + 
nx for all x 2 C. If there are �n; �

0

n
2 [a; b] for

some a; b 2 R with 0 < a � b < 1, then fTnTn�1 � � �T1x1 � xn+1g converges strongly to 0

as n!1.

Proof. Since

kTnTn�1 � � � T1x1 � xn+1k

� �n kTn�1 � � � T1x1 � xnk

+ �nkS[�
0

n
Tn�1 � � �T1x1 + �0

n
TTn�1 � � �T1x1 + 
0

n
Tn�1 � � �T1x1]

� S[�0
n
xn + �0

n
Txn + 
0

n
vn]k+ 
n kTn�1 � � � T1x1 � unk

� �n kTn�1 � � � T1x1 � xnk

+ �nk�
0

n
Tn�1 � � � T1x1 + �0

n
TTn�1 � � �T1x1 + 
0

n
Tn�1 � � �T1x1

� [�0
n
xn + �0

n
Txn + 
0

n
vn]k+ 
n kTn�1 � � �T1x1 � unk

� �n kTn�1 � � � T1x1 � xnk

+ �nf(�
0

n
+ �0

n
) kTn�1 � � � T1x1 � xnk+ 
0

n
kTn�1 � � �T1x1 � vnkg

+ 
n kTn�1 � � � T1x1 � unk

� �n kTn�1 � � � T1x1 � xnk

+ �nfkTn�1 � � � T1x1 � xnk+ 
0
n
kxn � vnkg

+ 
nfkTn�1 � � �T1x1 � xnk+ kxn � unkg

� kTn�1 � � �T1x1 � xnk+ (
n + 
0
n
)M;

where M = sup
n2N

kxn � unk _ sup
n2N

kxn � vnk which is �nite by Lemma 2.5, we have the

desired result by Lemma 2.3.
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3. Weak convergence theorems

In this section, we treat the weak convergences of the iterations de�ned by (1.2) and

(1.5). Our Theorem 3.2 carries over Theorem 1 of Takahashi and Kim [11] to a more

general Ishikawa type iteration.

Lemma 3.1. Let C be a closed convex subset of a uniformly convex Banach space E satis-

fying Opial's condition and let T be a nonexpansive mapping of C into itself. If the sequence

fxng de�ned by (1.2) satis�es that lim
n!1

kxn � Txnk = 0, then fxng converges weakly to

some �xed point of T .

Proof. Let z1; z2 be weak subsequential limits of the sequence fxng. We claim that the

conditions xni
* z1 and xnj

* z2 imply z1 = z2 2 F (T ). We �rst show that z1; z2 2 F (T ).

If Tz1 6= z1, then, by Opial's condition, we have

lim i!1 kxni
� z1k < lim i!1 kxni

� Tz1k

� lim i!1fkxni
� Txni

k+ kTxni
� Tz1kg

� lim i!1fkxni
� Txni

k+ kxni
� z1kg

= lim i!1 kxni
� z1k :

This is a contradiction. Hence we have Tz1 = z1 and so z1 2 F (T ). Similarly, we have

z2 2 F (T ). Next, we show z1 = z2. If not, by Lemma 2.5 and Opial's condition, we obtain

lim
n!1

kxn � z1k = lim
i!1

kxni
� z1k < lim

i!1

kxni
� z2k

= lim
j!1



xnj
� z2



 < lim
j!1



xnj
� z1




= lim

n!1

kxn � z1k :

This is a contradiction. Hence we have z1 = z2, which implies that fxng converges weakly

to a �xed point of T .

Theorem 3.2. Let C be a closed convex subset of a uniformly convex Banach space E

satisfying Opial's condition and let T be a nonexpansive mapping of C into itself with a

�xed point. Assume that the sequence fxng de�ned by (1.2) satis�es that either

1. �n 2 [a; 1]; �n 2 [a; b]; �0
n
2 [0; b] for some a; b 2 R with 0 < a � b < 1, or

2. �0
n
; �n 2 [a; 1]; �0

n
2 [a; b] for some a; b 2 R with 0 < a � b < 1.

Then fxng converges weakly to some �xed point of T .

Proof. Since lim
n!1

kxn � zk exists for any z 2 F (T ) by Lemma 2.5 and lim
n!1

kxn � Txnk = 0

by Lemma 2.6, the conclusion follows from Lemma 3.1.

Our Theorem 3.3 carries over Theorem 1 of Takahashi and Tamura [12] to a more general

Ishikawa type iteration.

Theorem 3.3. Let E be a uniformly convex Banach space. Let C be a closed convex subset

of E and let S; T be nonexpansive mappings of C into itself with a common �xed point.

Suppose that a sequence fxng is de�ned by (1.5). Then the following hold :

1. If �n; �
0

n
2 [a; 1]; �n 2 [a; 1]; �0

n
2 [0; b] for some a; b 2 R with 0 < a � b < 1,

xni
* y implies y 2 F (S);

2. If �0
n
; �n 2 [a; 1] and �0

n
2 [a; b] for some a; b 2 R with 0 < a � b < 1, xni

* y

implies y 2 F (T );

3. If �n; �
0

n
2 [a; 1] and �n; �

0

n
2 [a; b] for some a; b 2 R with 0 < a � b < 1, xni

* y

implies y 2 F (S) \ F (T ).
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Proof. Let x 2 C and set U = F (S) \ F (T ). Then for w 2 U and r = kx �wk, D =

C \Br[w] is a bounded closed convex subset of C which is invariant under S and T , where

Br[w] denotes the closed ball centered at w with radius r. So, we may assume that C is

bounded. For a �xed z 2 F (S) \ F (T ), let r = lim
n!1

kxn � zk which exists by Lemma 2.5.

If r = 0, the conclusions are clear. So, we assume r > 0. We obtain

kSxn � xnk � kSxn � Synk+ kSyn � xnk(3.1)

� kxn � ynk+ kSyn � xnk

= kxn � �0
n
xn � �0

n
Txn � 
0

n
vnk+ kSyn � xnk

� �0
n
kTxn � xnk+ 
0

n
kxn � vnk+ kSyn � xnk

� �0
n
kTxn � xnk+ 
0

n
M 0 + kSyn � xnk ;

where M 0 = sup
n2N

kxn � vnk (<1). Since fung and fvng are bounded in C, let

M = sup
n2N

kun � zk _ sup
n2N

kvn � zk (<1):

First, we assume that 0 < a � �n � 1. Note that dn � maxf
0
n
; 
n=ag ! 0 as n!1. Since

kSyn � zk � kxn � zk + dnM by (2.1) and





 �nxn

�n + 
n
+


nun

�n + 
n
� z





 � kxn � zk + dnM ,

we have limn!1 kSyn � zk � r and limn!1





 �nxn

�n + 
n
+


nun

�n + 
n
� z





 � r. Hence

r = lim
n!1

kxn+1 � zk

= lim
n!1

k�nxn + �nSyn + 
nun � zk

= lim
n!1





�n(Syn � z) + (1� �n)

�
�nxn

�n + 
n
+


nun

�n + 
n
� z

�



 :
Using Lemma 2.4, it holds that lim

n!1





Syn � �nxn

�n + 
n
�


nun

�n + 
n





 = 0, and so we obtain

lim
n!1

kSyn � xnk = 0 by virtue of sup
n2N

kxn � unk <1. Next, if 0 < a � �n � 1, we have

kxn+1 � zk = k�nxn + �nSyn + 
nun � zk

� �n kxn � zk + �n kSyn � zk+ 
n kun � zk

� �n kxn � zk + �n kyn � zk + 
nM

� (1� �n) kxn � zk + �n kyn � zk + 
nM

and hence
kxn+1 � zk � kxn � zk

�n
+ kxn � zk � kyn � zk+


n

a
M:

So, using kyn � zk � kxn � zk+ dnM obtained by (2.1), we have

r � lim n!1 kyn � zk � limn!1 kyn � zk � limn!1fkxn � zk + dnMg = r:

Hence

r = lim
n!1

kyn � zk(3.2)

= lim
n!1

k�0
n
xn + �0

n
Txn + 
0

n
vn � zk

= lim
n!1





�0n(Txn � z) + (1 � �0
n
)

�
�0
n
xn

�0
n
+ 
0

n

+

0
n
vn

�0
n
+ 
0

n

� z

�



 :
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Further, if 0 < a � �0
n
� 1, we get

lim n!1 kTxn � zk � r and lim n!1





 �0
n
xn

�0
n
+ 
0

n

+

0
n
vn

�0
n
+ 
0

n

� z





 � r(3.3)

as above. Now we prove (1). Assume xni
* y. Then, since 0 � �0

n
� b < 1 we have

lim i!1�
0

ni
= 0 or lim i!1�

0

ni
> 0. If lim i!1�

0

ni
> 0, by using (3.2), (3.3) and Lemma

2.4, it follows that

lim
i!1





Txni
�

�0
ni
xni

�0
ni
+ 
0

ni

�

0
ni
uni

�0
ni
+ 
0

ni





 = 0;

and so we obtain lim
i!1

kTxni
� xni

k = 0 by virtue of sup
n2N

kxn � unk < 1. Further, from

(3.1), we have lim
i!1

kSxni
� xni

k = 0, which implies y 2 F (S) by the demiclosedness of

I � S. If lim i!1�
0

ni
= 0, then by (3.1) we have a subsequence fxnij

g of fxni
g such that

lim
j!1




Sxnij
� xnij




 = 0. Since I �S is demiclosed, we have y 2 F (S). Next, we prove (2).

By using Lemma 2.4 with (3.2) and (3.3), we have lim
n!1

kTxn � xnk = 0 similarly to the

arguement above. Since xni
* y and I �T is demiclosed, we have y 2 F (T ). (3) is obvious

from (1) and (2).

Theorem 3.4 ([12]). Let C be a closed convex subset of a uniformly convex Banach space

E which satis�es Opial's condition or whose norm is Fr�echet di�erentiable. Let S; T be

nonexpansive mappings of C into itself such that F (S) \ F (T ) is nonempty. Suppose that

fxng is given by x1 2 C and xn+1 = �nS[�nTxn+ (1��n)xn] + (1��n)xn for all n 2N ,

where �n; �n 2 [a; b] for some a; b 2 R with 0 < a � b < 1. Then fxng converges weakly to

a common �xed point of S and T .

Combining Theorem 3.4 and Theorem 2.7, we immediately get the following.

Theorem 3.5. Let C be a closed convex subset of a uniformly convex Banach space E which

satis�es Opial's condition or whose norm is Fr�echet di�erentiable. Let S; T be nonexpansive

mappings of C into itself such that F (S)\F (T ) is nonempty. Suppose that fxng is de�ned

by (1.5). If �n; �
0

n
2 [a; b] for some a; b 2 R with 0 < a � b < 1, then fxng converges

weakly to a common �xed point of S and T .

4. Strong convergence theorems

In this section, we consider strong convergences of the iterations de�ned by (1.2) and

(1.5) in a Banach space.

Theorem 4.1. Let C be a closed convex subset of a uniformly convex Banach space E

and let T be a nonexpansive mapping of C into itself with a �xed point. Suppose that the

sequence fxng de�ned by (1.2) satis�es that either

1. �n 2 [a; 1]; �n 2 [a; b]; �0
n
2 [0; b] for some a; b 2 R with 0 < a � b < 1, or

2. �0
n
; �n 2 [a; 1]; �0

n
2 [a; b] for some a; b 2 R with 0 < a � b < 1.

If T (C)[fung is contained in a compact subset of C, then fxng converges strongly to some

�xed point of T as n!1.

Proof. By Mazur's theorem [3], co(fx1g[T (C)[fung) is a compact subset of C containing

fxng. Then, there exist a subsequence fxni
g of fxng and a point z 2 C such that xni

! z.

Since

kz � Tzk � kz � xni
k+ kxni

� Txni
k+ kTxni

� Tzk

� 2 kz � xni
k+ kxni

� Txni
k
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! 0 (i!1)

by using Lemma 2.6, we have z = Tz. By Lemma 2.5 lim
n!1

kxn � zk exists, and so we have

lim
n!1

kxn � zk = 0.

Theorem 4.2 ([12]). Let C be a closed convex subset of a strictly convex Banach space E.

Let S; T be nonexpansive mappings of C into itself such that S(C)[ T (C) is contained in a

compact subset of C and F (S) \ F (T ) is nonempty. Suppose that fxng is given by x1 2 C

and xn+1 = �nS[�nTxn + (1� �n)xn] + (1��n)xn for all n 2N , where �n; �n 2 [a; b] for

some a; b 2 R with 0 < a � b < 1. Then fxng converges strongly to a common �xed point

of S and T .

Combining Theorem 4.2 and Theorem 2.7, we immediately get the following.

Theorem 4.3. Let C be a closed convex subset of a strictly convex Banach space E. Let

S; T be nonexpansive mappings of C into itself such that S(C) [ T (C) is contained in a

compact subset of C and F (S) \ F (T ) is nonempty. Suppose that fxng is de�ned by (1.5).

If �n; �
0

n
2 [a; b] for some a; b 2 R with 0 < a � b < 1, then fxng converges strongly to a

common �xed point of S and T .
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