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AND ITS NUMERICAL STUDIES
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Abstract. Let fXtg be a stationary process with zero mean and true spectral density

g(�). We assume that all the values fXtg are known, except for the value X0. It is

important to interpolate missing value X0 by linear combination of fXt : t 6= 0g. In

this paper, we consider the misspeci�ed interpolation problems for fXtg under the con-
dition that the true structure g(�) is not completely speci�ed. Next we shall discuss

the interpolation problems for square-transformed process, Yt = X2

t and Hermite-

transformed process, Yt = Hq(Xt). Moreover, we compare the mean square interpola-

tion error for the respective results. Also, we numerically plot interpolators for missing

values, and illuminiate unexpected e�ects from the misspeci�cation of spectra. Finally,

as an example, we conclude the paper with applications to real data.

1 Introduction. An important problem of stationary processes is that of interpolating a

missing value of the process, which for some reason cannot be observed completely, in terms

of observed values of the same process. It should be noted that statistical analysis of the

data may require deletion of some of the observed values, for example, in outlier detection,

bootstrapping, and cross-validation etc. Suppose that fXtg is a stationary process with

zero mean and spectral density g(�). We shall interpolate the unknown value X0 by linear

combination of fXt; t 6= 0g where all valuesXt are known, except for the valueX0. However,

it is often that the true structure g(�) is not completely speci�ed. This leads us to a

misspeci�ed interpolation problem when a conjectured structure f(�) is �tted to g(�). It is

Grenander and Rosenblatt (1957) that �rst discussed the misspeci�ed prediction problem

which is evaluated on the basis of the conjectured spectral density f(�) although the true

one is g(�) (also see Choi and Taniguchi (2001a, 2001b)).

Regarding general polynomial transformations Hannan (1970) derived the autocovari-

ance function for Hermite polynomials of a Gaussian process. Granger and Newbold (1976)

discussed the problems of prediction for a class of nonlinear transformation T = T (�) of a
Gaussian process. Here T is assumed to be approximated by Hermite polynomials. Han-

nan (1970) mentioned the usual interpolation problem for a general vector linear process.

Taniguchi (1980) evaluated the interpolation error for stationary process with multiple miss-

ing time points when the interpolators are constructed by the true spectral density and a

conjectured spectral density, respectively. Pourahmadi (1989) gave an interpolator and its

error for a class of nondeterministic stationary processes with arbitrary number of missing

values.

The primary purpose of this paper is to evaluate the mean square error of misspeci�ed

interpolation for square-transformed process and Hermite-transformed process and to exam-

ine the behavior of MSE and interpolator numerically. This paper is organized as follows.

In the next section we give the asymptotic mean square error of interpolation for linear
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process with a single or multiple time points when an interpolator is constructed by a con-

jectured parametric spectral density. Here the parameter is estimated by the quasi-MLE. In

Section 3, under the assumption that fXtg is a Gaussian stationary process we evaluate the
mean square interpolation error of the squared process X2

t by a naive interpolator, i.e., (the

best linear interpolator of Xt)
2 and the bias adjusted mean square interpolation error for

square-transformed process when the best linear interpolators are constructed by the true

spectral density and a conjectured spectral density, respectively. Futhermore, this result is

extended to Hermite-transformed process. Section 4 illuminates some unexpected aspects

of the interpolation problems numerically. We actually interpolate missing data for a pro-

cess when the interpolators are constructed by the true spectral density and a conjectured

spectral density, respectively. Finally, we present results of analysis of a monthly accidental

death data in the United States.

2 Misspeci�ed Interpolation for Stationary Processes. We consider a misspeci�ed

interpolation of a missing value in time series. Let fXt : t = 0;�1;�2; : : : g be a non-

deterministic stationary process with mean zero and spectral density

g(�) =
1

2�
jc(e�i�)j2; jc(0)j2 = �2;(1)

which belongs to the class D = fg : g(�) is continuous and piecewise smooth on [�; �],

g(�) = g(��); g(�) > 0 for all � 2 [��; �]g. Here c(z) is a polynomial of z, i.e., c(z) =P
1

j=0 cjz
j . Suppose that all values Xt are known, except for the value X0. We shall

interpolate the unknown value X0 by linear combination of Xt; t 6= 0. We write the spectral

representation of Xt as

Xt =

Z �

��

eit�dz(�):(2)

Let M0f: : : g denote the closed linear manifold generated by elements in the braces with

respect to the mean-square norm. Then it is well known that the response function h(�) 2
M0fe�ij� : j 6= 0g of the best linear interpolator for X0 is given by

h(�) = 1� g(�)�1
�

1

2�

Z �

��

g(�)�1d�

�
�1

(e.g. Hannan (1970, p.163)). We can write the best linear interpolator of X0 as

X̂0 =

Z �

��

h(�)dz(�):(3)

Then the interpolation error is

EjX0 � X̂0j2 = E

����
Z �

��

dz(�) �
Z �

��

h(�)dz(�)

����
2

=

Z �

��

j1� h(�)j2g(�)d�

= 2�

�
1

2�

Z �

��

g(�)�1d�

�
�1

:(4)

We examine a simple numerical evaluation for the above result. Let g(�) = 1
2�
j1 �

�e�i�j�2, j�j < 1, i.e., Xt = �Xt�1 + �t, where �t's are i.i.d. (0; 1) random variables. In
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Figure 1. The interpolation error (4) for g(�) =
1

2�
j1� �e

�i�j�2
.

Figure 1 we plotted the interpolation error (4) for the model. Figure 1 shows that the

interpolation errors in this case are relatively small and stable with respect to �.

In most natural phenomena, it is often that the true spectral density g(�) is not com-

pletely speci�ed. Thus it is of considerable interest to see what happens when an interpolator

is computed on the basis of a conjectured spectral density f�(�) although the true one is

g(�). Here � is a parameter vector satisfying � 2 � � Rp. The response function h�(�) of

the interpolator based on f�(�) is given by

h�(�) = 1� f�(�)
�1

�
1

2�

Z �

��

f�(�)
�1d�

�
�1

:

Hence, the best linear interpolator X̂0 based on f�(�) is

X̂0 =

Z �

��

h�(�)dz(�):(5)

Then the interpolation error is

EjX0 � X̂0j2 = E

����
Z �

��

dz(�) �
Z �

��

h�(�)dz(�)

����
2

=

Z �

��

j1� h�(�)j2g(�)d�

=

�Z �

��

g(�)

f�(�)2
d�

��
1

2�

Z �

��

f�(�)
�1d�

�
�2

�M(�):(6)

To see e�ect of misspeci�cation of spectra for the interpolation, we also examine the

following example.

Example 1. Let the true spectral density and conjectured spectral density be g(�) =
1��2

2�
j1��e�i�j�2 and f(�) = 1��2

2�
j1��e�i�j2, j�j < 1, respectively. Then the interpolation

error (6) is
2(1+4�2+�4)

(1��2)3
. In Figure 2 we plotted M(�). From Figure 2, we see that if j�j % 1,

interpolation errors become very large. This implies that we have to be careful about the

misspeci�cation of spectra for interpolation. Therefore investigation of the misspeci�ed

interpolation problem seems important.
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Figure 2. The interpolation error (6) for Example 1.

Actually the parameter � in f�(�) is unknown. Suppose that we have an observed

stretch X 0

1; : : : ;X
0

T which has the same probability structure as fXtg and is independent of
fXtg. The unknown parameter � is estimated by a quasi-MLE �̂Q = (�̂n;1; : : : ; �̂n;p)

0 which

minimizes Z �

��

flog f�(�) + IT (�)f�(�)
�1gd�;

with respect to � 2 �, where

IT (�) =
1

2�T
j

TX
t=1

X 0

te
it�j2:

Then the estimated interpolator is given by

^̂
X0 =

Z �

��

h
�̂Q
(�)dz(�);(7)

and the interpolation error of
^̂
X0 is

EX [fX0 � ^̂
X0g2] =M(�̂Q);

where EX is the expectation with respect to fXtg: Here we set down some assumption on

f�.

Assumption 1. (i) The parameter � is innovation free.

(ii) f� is continuously three times di�erentiable with respect to � 2 �.

Expanding M(�̂Q) at � = � in a Taylor series we obtain

M(�̂Q) = M(�) +
@

@�0
M(�)(�̂Q � �)

+
1

2
tr

�
@2

@�@�0
M(�)(�̂Q � �)(�̂Q � �)0

�
+ lower order terms;(8)

where � = (�1; : : : ; �p)
0 = argmin�2�

R �
��

[log f�(�) + fg(�)f�(�)�1g]d�. To evaluate the

second term of the right hand side (RHS) of (8), we make the following assumption.
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Assumption 2. For � = 1; : : : ; p

E[
p
T (�̂n;� � ��)] = T�1=2�� + o(T�1);(9)

where ��'s are constants.

This assumption is natural because most of regular estimators satisfy it. For example,

Taniguchi andWatanabe (1994) evaluated E[
p
T (�̂n;����)] in the form of (9) for generalized

curved probability densities. To describe the asymptotics of �̂Q we need the following

regularity conditions.

Assumption 3. (A.1) fXtg is a linear process generated by

Xt =

1X
j=0

ajet�j ;

1X
j=0

a2j <1 and a0 = 1;

where fetg is a sequence of i.i.d. random variables with Eet = 0, Ee2t = �2 and �nite fourth

moment Ee4t <1;

(A.2) The spectral density g(�) of fXtg is square-integrable;

(A.3) g(�) 2 Lip(�); � > 1=2;

(A.4) � exists uniquely and � 2 Int�;

(A.5) The matrix

Mf =

Z �

��

�
@2

@�@�0
f�(�)

�1g(�) +
@2

@�@�0
log f�(�)

�
�

d�

is nonsingular.

By means of (8) we evaluate EfM(�̂Q)g, where Ef�g is the expectation with respect to

the asymptotic distribution of
p
T (�̂Q � �). We have placed the proofs of the propositions

in Appendix.

Proposition 1. Under the Assumptions 1, 2 and 3,

EfM(�̂Q)g = M(�) +
1

T

qX
�=1

��
�

@

@��
M(�)

�

+
1

2T
tr

�
@2

@�@�0
M(�)M�1

f
~VM�1

f

�
+ o(T�1);(10)

where

Mf =

Z �

��

�
@2

@�@�0
f�(�)

�1g(�) +
@2

@�@�0
log f�(�)

�
�

d�;

~V = 4�

Z �

��

�
g(�)

@

@�
ff�(�)g�1g(�) @

@�
ff�(�)g�1

�
�

d�

+2�

Z Z �

��

�
@

@�
f�1� (�1)

@

@�
f�1� (�2)

�
�

� ~QX(��1; �2;��2)d�1d�2;
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and ~QX(��1; �2;��2) is the fourth-order cumulant spectral density of the process fXtg.

Next, we consider a misspeci�ed interpolation problemwith multiple missing time points.

We denote by Z the set of all integers, and put Ap = f1; : : : ; pg. Let fXt : t 2 Zg be a

non-deterministic stationary process with true spectral density g(�) and mean zero. Denote

a conjectured spectral density by

f�(�) =
1

2�
jc�(e�i�)j2:(11)

We suppose that all values Xt are known, except for the values Xt; t 2 Ap. We shall

interpolate the unknown value XAp
� (X1; : : : ;Xp)

0. That is, we seek a vector whose

elements are linear combination of Xt; t 2 Z � Ap, and which minimize the trace of the

mean square interpolation error.

We can write the spectral representation of XAp
as

XAp
=

Z �

��

e(�)dz(�);(12)

where e(�) = (e�i�; : : : ; e�ip�)0. It is easy to see that the response function h�(�) of the

interpolator based on f�(�) is given by

h�(�) =

(
Ip � f�(�)

�1

�
1

2�

Z �

��

f�(�)
�1
F (�)d�

�
�1
)
e(�);(13)

where F (�) = e(�)e(�)�, and each component of h�(�) belongs toM0fe�ij� : j 2 Z�Apg.
We can construct the best interpolator of XAp

by

X̂t =

Z �

��

h�(�)dz(�):(14)

Then the interpolation error is

trE[fXAp
� X̂tgfXAp

� X̂tg0]

= trE

��Z �

��

e(�)dz(�) �
Z �

��

h�(�)dz(�)

��Z �

��

e(�)dz(�) �
Z �

��

h�(�)dz(�)

�
�
�

= tr

Z �

��

[e(�) � h�(�)]g(�)[e(�)� h�(�)]�d�

= tr

�
1

2�

Z �

��

f�(�)
�1
F (�)d�

�
�1�Z �

��

g(�)

f�(�)2
F (�)d�

�

�
�

1

2�

Z �

��

f�(�)
�1
F (�)d�

�
�1

�M (�); (say);(15)

(see Taniguchi (1980)).

Repeating the same arguments as in Proposition 1, we have the following proposition.
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Proposition 2. Under the Assumptions 1, 2 and 3,

EfM (�̂Q)g = M(�) +
1

T

qX
�=1

��
�

@

@��
M(�)

�

+
1

2T
tr

�
@2

@�@�0
M(�)M�1

f
~VM�1

f

�
+ o(T�1):(16)

Pourahmadi (1989) discussed how to interpolate missing observations and obtain the

mean square error of the interpolator. Let fXtg be a nondeterministic stationary process

with AR parameter fakg, and let X̂ 0

0;r be the best linear interpolator of X0 based on

fXt; t � r; t 6= 0g, where r is a positive integer. Then he showed

X̂ 0

0;r = X̂0 +

rX
k=1

ck;r(Xk � X̂k);(17)

where ck;r is the regression coeÆcient of X0 on Xk � X̂k given by

ck;r =

 
1 +

rX
i=1

a2i

!
�1 

ak �
r�kX
i=1

aiai+k

!
; (k = 1; 2; : : : ; r);

and X̂k (k � 0) is the best linear predictor of Xk based on the in�nite past X�1;X�2; : : : .

Using our approach, we can grasp the results of Pourahmadi's interpolator and interpo-

lation error. Let Xk be a stationary process with zero mean and spectral density g(�). For

g(�), we �t an AR-type spectral density

fk(�) =
1

2�
j1� �1e

i(k+1)! � � � � � �qe
i(k+q+1)! � � � � j�2(18)

as the conjectured spectral density fk(�). Here, f�q : q = 1; 2; : : : g are de�ned by (�1; : : : ; �q;
: : : ) � argmin�

R �
��

g(�)=fk(�)d�. Writing

fk(�) =
1

2�
jcfk(e�i�)j2;

we can construct the best linear predictor of Xk based on fk(�) as

X̂k =

Z �

��

eik�
cfk (e

�i�)� cfk(0)

cfk (e
�i�)

dz(�); cfk(0) = 1; k = 1; 2; : : : :(19)

Also, for k = 0,

X̂0 =

Z �

��

cf0(e
�i�) � cf0(0)

cf0(e
�i�)

dz(�); cf0(0) = 1:(20)

Next we seek the coeÆcients ck;r in our expression. Let a0 = [EfX0(X1 � X̂1)g,: : : ;EfX0(

Xr � X̂r)g]0. Then the k-th element of a is given by

EfX0(Xk � X̂k)g = E

"Z �

��

dz(�)

Z �

��

eik�
1

cfk(e
�i�)

dz(�)

#

=

Z �

��

eik�
g(�)

cfk(e
�i�)

d�:(21)
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Let A be the r � r matrix whose (l; k)th element is

Ef(Xl � X̂l)(Xk � X̂k)g = E

"Z �

��

eil�
1

cfl(e
�i�)

dz(�)

Z �

��

eik�
1

cfk(e
�i�)

dz(�)

#

=

Z �

��

ei(l�k)�
g(�)

cfl(e
�i�)cfk (e

�i�)
d�:(22)

Thus the coeÆcients ck;r's are given by the equation0
B@

c1;r
...

cr;r

1
CA = A�1a:(23)

Hence the best linear interpolator of Pourhmadi (1981) is expressed as

X̂ 0

0;r =

Z �

��

cf0(e
�i�)� cf0(0)

cf0(e
�i�)

dz(�) +

rX
k=1

ck;r

Z �

��

eik�
1

cfk (e
�i�)

dz(�);(24)

where ck;r's are de�ned by (23).

3 Interpolation Problems for Transformed Processes. In this section we consider

the problem of misspeci�ed interpolation for transformed process. First, we discuss the case

of square-transformation Yt = X2
t . Let fXtg be a Gaussian stationary process with zero

mean, and spectral density

g(�) =
1

2�
jc(e�i�)j2 jc(0)j2 = �2:

For simplicity we assume E(X2
t ) = 1. We write the spectral representation of fXtg as

Xt =

Z �

��

eit�dz(�):(25)

We suppose that all the values Xt are known, except for the value X0. As we saw in Section

2 the response function h(�) of the best linear interpolator for X0 is given by

hg(�) = 1� g(�)�1
�

1

2�

Z �

��

g(�)�1d�

�
�1

:

To interpolate X2
0 we use a naive interpolator X̂2

0 where

X̂0 =

Z �

��

hg(�)dz(�):(26)

Then the interpolation error of X̂2
0 for X2

0 is obtained

Proposition 3.

E[fX2
0 � X̂2

0g2]

= 8�

�Z �

��

g(�)d�

��
1

2�

Z �

��

g(�)�1d�

�
�1

� 4�2
�

1

2�

Z �

��

g(�)�1d�

�
�2

� IE1; (say):(27)
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Next we consider the bias adjusted interpolation. Solving E[X̂2
0 ] � b = 0 with respect

to b, we have

b = E

"Z �

��

hg(�)dz(�)

Z �

��

hg(�)dz(�)

#
=

Z �

��

hg(�)
2g(�)d�

=

Z �

��

g(�)d� � 2�

�
1

2�

Z �

��

g(�)�1d�

�
�1

:(28)

Then the interpolation error is given by

Proposition 4.

E[fX2
0 � 1� X̂2

0 + bg2] = IE1 � (1� b)2 � IE2; (say):(29)

From the above result we observe that the bias adjusted interpolator is better than the

naive interpolator.

In most of natural phenomena, the true spectral density g(�) is not known a priori. If

an interpolator is computed on the basis of a conjectured spectral density f(�) instead of

the true one, then the response function of the interpolator based on f(�) is given by

hf (�) = 1� f(�)�1
�

1

2�

Z �

��

f(�)�1d�

�
�1

:(30)

Letting

X̂0 =

Z �

��

hf (�)dz(�);(31)

we can evaluate the interpolation error of X̂2
0 . As in (27), it is seen that the interpolation

error of X̂2
0 for X2

0 is evaluated as follows.

Proposition 5.

E[fX2
0 � X̂2

0g2] =

�
1

2�

Z �

��

f(�)�1d�

�
�2
"
8

�Z �

��

g(�)

f(�)
d�

�2

� 12

�Z �

��

g(�)

f(�)
d�

��Z �

��

g(�)

f(�)2
d�

��
1

2�

Z �

��

f(�)�1d�

�
�1

+ 3

�Z �

��

g(�)

f(�)2
d�

�2�
1

2�

Z �

��

f(�)�1d�

�
�2

+4

�Z �

��

g(�)d�

��Z �

��

g(�)

f(�)2
d�

��
�MIE3; (say):(32)

Similarly we can discuss the bias adjusted misspeci�ed interpolation problem. Evaluat-

ing b = E[X̂2
0 ] we obtain

b =

Z �

��

g(�)d� � 2

�Z �

��

g(�)

f(�)
d�

��
1

2�

Z �

��

f(�)d�

�
�1

+

�Z �

��

g(�)

f(�)2
d�

��
1

2�

Z �

��

f(�)d�

�
�2

:(33)
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Then we have

Proposition 6.

E[fX2
0 � 1� X̂2

0 + bg2] = MIE3 � (1� b)2 �MIE4; (say):(34)

That is, the bias adjusted interpolator is better than the naive interpolator.

Let fXtg be a stationary Gaussian process with E(Xt) = 0 and EX2
t = 1. We now turn

our attention to an interpolation problem for Hermite-transformed process, Yt = Hq(Xt).

We write the spectral representation of Yt as

Yt =

Z �

��

eit�d!(�):

It is known that the spectral density of fYtg is given by p(�) = q!g�q(�), where g�q is the

q-fold convolution of g(�) (see Hannan (1970, p.83)). We suppose that all values of Yt
are known, except for the value Y0. Then the response function hg(�) of the best linear

interpolator based on Yt; t 6= 0 for Y0 is given by

hg(�) = 1� p(�)�1
�

1

2�

Z �

��

p(�)�1d�

�
�1

:(35)

We can write the best linear interpolator of Y0 as

Ŷ0 =

Z �

��

hg(�)d!(�):(36)

Then the interpolation error is

EjY0 � Ŷ0j2 = E

����
Z �

��

d!(�) �
Z �

��

hg(�)d!(�)

����
2

= 2�

�
1

2�

Z �

��

p(�)�1d�

�
�1

:(37)

To compare interpolation error of (29) with that of (37), we suppose that fXtg is gen-
erated by the �rst order autoregressive process

Xt = �Xt�1 + �t;

where j�j < 1 and � � i.i.d N(0; 1 � �2). For q = 2 in (37), the spectral density p(�) of

Hermite-transformed process Yt is given by

2

Z �

��

f(� � x)f(x)dx =
1

�

�
(1 � �2)(1 + �2)

(1 � �2e�i�)(1 � �2ei�)

�
:

Calculating the integral for the above two cases, we note that for q = 2, the interpolation

error of Hermite-transformed process is equal to that of bias-adjusted square-transformed

process.

We next consider the misspeci�ed interpolation problem for Hermite-transformed pro-

cess with true spectral density p(�) = q!g�q(�). Denoting a conjectured spectral density for

p(�) by

j(�) =
1

2�
ja(e�i�)j2;
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it is easy to see that the response function hj(�) of the interpolator based on j(�) is given

by

hj(�) = 1� j(�)�1
�

1

2�

Z �

��

j(�)�1d�

�
�1

:(38)

Based on j(�) we can construct the best linear interpolator of Y0 by

Ŷ0 =

Z �

��

hj(�)d!(�):(39)

Then the interpolation error is

EjY0 � Ŷ0j2 =
�Z �

��

p(�)

j(�)2
d�

��
1

2�

Z �

��

j(�)�1d�

�
�2

:(40)

Let fXtg be a stationary Gaussian process with E(Xt) = 0, EX2
t = 1, and spectral

density

g(�) =
1

2�
jc(e�i�)j2:

We next investigate an interpolation problem for Hermite-transformed process, Hq(Xt).

Then the response function hg(�) of the best linear interpolator based on Xt, t 6= 0 for X0

is given by

hg(�) = 1� g(�)�1
�

1

2�

Z �

��

g(�)�1d�

�
�1

:(41)

To interpolate Hq(X0) we use a naive interpolator Hq(X̂0), where

X̂0 =

Z �

��

hg(�)dz(�):

Here, letting ~X0 = BX̂0, we assume E[(BX̂0)
2] = 1. Hence

B =

"
1� 2�

�
1

2�

Z �

��

g(�)�1d�

�
�1
#
�

1

2

:(42)

Then we can provide the interpolation error of Hq( ~X0) for Hq(X0).

Proposition 7.

E[fHq(X0)�Hq( ~X0)g2] = 2q!

2
41�

(
1� 2�

�
1

2�

Z �

��

g(�)�1d�

�
�1
) q

2

3
5 :(43)

Furthermore, we may discuss the misspeci�ed interpolation problem. The response

function of the interpolator based on f(�) is given by

hf (�) = 1� f(�)�1
�

1

2�

Z �

��

f(�)�1d�

�
�1

:(44)



164 I. B. CHOI

-1 -0.5 0 0.5 1

0.5

1

1.5

2

2.5

3

3.5

IE_2

IE_1

�

Error

Figure 3. The plot of IE1 and IE2 for g(�) =
1��2

2�

1

j1��e�i�j2
, �1 < � < 1.

Similarly we have

B =

"
1� 2

�Z �

��

g(�)

f(�)
d�

��
1

2�

Z �

��

f(�)�1d�

�
�1

+

�Z �

��

g(�)

f(�)2
d�

��
1

2�

Z �

��

f(�)�1d�

�
�2
#
�

1

2

:(45)

Then the following proposition is obtained.

Proposition 8.

E[fHq(X0)�Hq( ~X0)g2]

= 2q!

"
1�Bq

(
1�

�Z �

��

g(�)

f(�)
d�

��
1

2�

Z �

��

f(�)�1d�

�
�1
)q#

:(46)

4 Numerical Studies. In this section, we illustrate the previous theoretical results nu-

merically. In Propositions 3 and 4, let

g(�) =
1� �2

2�

1

j1� �e�i�j2 ; j�j < 1:

Then, we obtain

IE1 =
4(1� �2)

1 + �2
� (1 � �2)2

(1 + �2)2
;

IE2 =
4(1� �2)

1 + �2
� 2(1 � �2)2

(1 + �2)2
:

In Figure 3 we plotted IE1 and IE2 for �1 < � < 1, respectively.

Next we examine e�ect of misspeci�cation of spectra for the interpolation in a trans-

formed process. In Propositions 5 and 6, let

g(�) =
1� �2

2�

1

j1� �e�i�j2 � 1 < � < 1; AR(1);

f(�) =
1� �2

2�
j1� �e�i�j2 � 1 < � < 1; MA(1):
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Figure 4. The plot of MIE3 and MIE4 for f(�) =
1��2

2�
j1 � �e

�i�j2, g(�) = 1��2

2�

1

j1��e�i�j2
, �1 < � < 1.

Then using the residual theorem we get

MIE3 =
4(1 + �2 + 38�4 + 52�6 + 13�8)

(�2 � 1)4
;

MIE4 =
4(1 + �2 + 22�4 + 36�6 + 9�8)

(�2 � 1)4
:

In Figure 4 we plotted MIE3 and MIE4 for �1 < � < 1, respectively. Then it is seen that

if j�j % 1, they become very large. This implies that we have to be careful about the

misspeci�cation of spectra for the unit root case.

Next we actually interpolate missing data or values of the series that, for some reasons,

can not be observed completely or measured accurately.

(1) We consider the following the �rst order autoregressive process (AR(1))

Xt = �Xt�1 + �t; j�j < 1;

where �t � i.i.d. N(0; 1). The true spectral density is given by g(�) = 1
2�
j1 � �e�i�j�2.

Then, from (3), it is easily seen that

X̂0 =
�

1 + �2
(X�1 +X1):

Moreover, denote the interpolation bounds for values of interpolators by �, 2�, 3�, respec-

tively, where from (4),

� =

s
2�

�
1

2�

Z �

��

g(�)�1d�

�
�1

=

r
1

1 + �2
:

We generate X1; : : : ;X100 from the above process. Suppose that X25, X50, and X85 are

missing.

In Figures 5 and 6 we plotted the values of interpolator for X25, X50, and X85, and also

gave interpolation bounds for them in the cases when � = 0:1 and � = 0:6, respectively.

Figures 5 and 6 show that the values of interpolator are o� the interpolation bound, �, as

� goes to 1.
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Figure 5. The plot of interpolation for � = 0:1 in the cases when X25, X50, and X85 are missing.
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Figure 6. The plot of interpolation for � = 0:6 in the cases when X25, X50, and X85 are missing.

(2) In order to examine e�ect of misspeci�cation for the interpolation, we now consider

the following the �rst order moving average process (MA(1))

Xt = �t + ��t�1; j�j < 1; (�t � i.i.d.N(0:1));

hence the true spectral density is g(�) = 1
2�
j1� �e�i�j2.

Suppose that an interpolator is constructed by the spectral density f(�) of AR(1) process

although the true one is g(�). Then the interpolator is

X̂0 =
�

1 + �2
(X�1 +X1):

We generate X1; : : : ;X100 from the above MA(1) process. Suppose that X25, X50, and

X85 are missing.

In Figures 7 and 8 we plotted the values of interpolator for X25, X50, and X85 in the

cases when � = 0:1 and � = 0:9, respectively. Figures 7 and 8 show that if � goes to 1, the

error between true values and interpolator values is very large. Thus, this implies that we

have to be careful about the misspeci�cation of spectra of interpolation.

To illustrate the ideas of the previous section, we investigate the following examples.
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Figure 7. The plot of interpolation for � = 0:1 in the cases when X25, X50, and X85 are missing.
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Figure 8. The plot of interpolation for � = 0:9 in the cases when X25, X50, and X85 are missing.

Example : Monthly accidental death data

The original data (N = 72) of Figure 9 is the number of the monthly accidental deaths in

the United States for the period January 1973 to December 1979, as reported in Brockwell

and Davis (1991). We use S-plus for Windows to make the whole calculations. To discuss

the interpolation and prediction problems from the original data, we use only observations

between January 1973 to December 1978 and assume that value of February 1976 is missing.

Therefore the number of data is 59, i.e., N = 59. If we �t an AR(p) model to these data

(N = 59) by using AIC criterion, the selected order p of the model is 15 and the estimated

coeÆcients are obtained by Yule-Walker equations. Also it is not diÆcult to show that the

best linear interpolator for AR(p) model is

X̂0 = �
0
@ pX

j=0

�2j

1
A
�1

pX
l=�p; l6=0

0
@p�jljX

j=0

�j�j+l

1
AXl:(47)

From (47) the value of February 1976 obtained from the interpolator for the �tted AR(15)

model is given in Figure 9. Fitting an AR(p) model to the interpolated data set (N = 60)

by AIC criterion, the selected order of the model is obtained 13. The predicted values
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Figure 9. The plot of interpolation and prediction based on true model and incorrectly �tted model for

the monthly accidental deaths data in the United States.

from January 1979 to December 1979 obtained by �tting an AR(13) model to the data

are displayed in Figure 9. Furthermore, we give the values of the interpolation and the

prediction obtained from incorrectly estimated AR(3) model and AR(11) model. Figure

9 also shows that the error of the values of interpolation and prediction in the case of

incorrectly estimated order.

5 Proofs. Proof of Proposition 1. Taking E of (8) we obtain

EfM(�̂Q)g = M(�) +
@

@�0
M(�)

1p
T
E[
p
T (�̂Q � �)]

+
1

2T
tr

�
@2

@�@�0
M(�)E[T (�̂Q � �)(�̂Q � �)0]

�
+ lower order: (A.1)

The asymptotic distribution of
p
T (�̂Q � �) is given by the following lemma.

Lemma 1 (Hosoya-Taniguchi (1982)). (i) p � limT!1 �̂Q = �;

(ii)
p
T (�̂Q � �)

L�! N(0;M�1
f

~VM�1
f ) under g.

Hence the result follows from (A.1) and Lemma 1.

Proof of Proposition 2. The proof follows from the same arguments as in the proof of

Proposition 1.



MISSPECIFIED INTERPOLATION FOR TIME SERIES 169

Proof of Proposition 3. Using (25), (26) and fundamental formula for higher order

moments, we obtain

E[fX2
0 � X̂2

0g2]
= E[f(X0 + X̂0)(X0 � X̂0)g2]
= 2[Ef(X0 + X̂0)(X0 � X̂0)g]2 +Ef(X0 + X̂0)

2gEf(X0 � X̂0)
2g

= 2

�
E

�Z �

��

(1 + hg(�))dz(�)

Z �

��

(1� hg(�))dz(�)

��2

+

�
E

�Z �

��

(1 + hg(�))dz(�)

Z �

��

(1 + hg(�))dz(�)

�

�E
�Z �

��

(1 � hg(�))dz(�)

Z �

��

(1� hg(�))dz(�)

��

= 2

�Z �

��

(1 + hg(�))(1 � hg(�))g(�)d�

�2

+

�Z �

��

(1 + hg(�))
2g(�)d�

��Z �

��

(1� hg(�))
2g(�)d�

�

= 8�

�Z �

��

g(�)d�

��
1

2�

Z �

��

g(�)�1d�

�
�1

� 4�2
�

1

2�

Z �

��

g(�)�1d�

�
�2

:

Proof of Proposition 4. Let b be the bias of the predictor given by (28). Then we have

E[fX2
0 � 1� X̂2

0 + bg2] = E[fX2
0 � X̂2

0 � (1� b)g2]
= EfX2

0 � X̂2
0g2 � 2(1� b)EfX2

0 � X̂2
0g+ (1 � b)2

= IE1 � (1 � b)2;

because EfX2
0 � X̂2

0g = 1� b.

Proof of Proposition 5. Using (31), we can prove the assertion similarly as in Propo-

sition 3.

Proof of Proposition 6. The proof follows from the same arguments as in the proof of

Proposition 4.

Proof of Proposition 7. Since the Hermite polynomials constitute an orthogonal

system with respect to the standard normal p.d.f., we see that Hq(X0) and Hq( ~X0) have

mean 0 and variance q!, respectively. Noting ~X0 = BX̂0 and
R �
��

g(�)d� = 1, we have

E[fHq(X0)�Hq( ~X0)g2]
= E[Hq(X0)

2]� 2E[Hq(X0)Hq( ~X0)] +E[Hq( ~X0)
2]

= q!� 2q!cov(X0; ~X0)
q + q!

= 2q!
h
1�

n
B cov(X0; X̂0)

oqi
= 2q!

�
1�

�
B

Z �

��

hg(�)g(�)d�

��

= 2q!

"
1�

(
B

Z �

��

(
g(�)�

�
1

2�

Z �

��

g(�)�1d�

�
�1
)
d�

)q#

= 2q!(1�B�q):
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Proof of Proposition 8. Noting (44) and (45), we have

E[fHq(X0)�Hq( ~X0)g2]
= q!� 2q![B cov(X0; X̂0)]

q + q!

= 2q!

"
1�Bq

(
1�

�Z �

��

g(�)

f(�)
d�

��
1

2�

Z �

��

f(�)�1d�

�
�1
)q#

:
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