ON ESSENTIALLY DEFINITE, AND SEMIDEFINITE TUPLES OF OPERATORS

Dedicated to Professor Masahiro Nakamura with respect and affection

TAKATERU OKAYASU AND YASUNORI UETA

Received July 27, 2001

ABSTRACT. Let $\mathcal{B}(\mathcal{H})^n$ be the space of *n*-tuples of operators in $\mathcal{B}(\mathcal{H})$, the algebra of bounded operators on a Hilbert space \mathcal{H} . Given a set \mathcal{G} of maps from $\mathcal{B}(\mathcal{H})^n$ into itself, which is appropriate for our situation, a tuple $T \in \mathcal{B}(\mathcal{H})^n$ is said to be \mathcal{G} -definite (resp., \mathcal{G} -semidefinite) if for any $\phi \in \mathcal{G}$, each term of $\phi(T)$ is zero (resp., positive), and essentially \mathcal{G} -definite (resp., essentially \mathcal{G} -semidefinite) if for any $\phi \in \mathcal{G}$, the image of each term of $\phi(T)$ by the canonical quotient map of $\mathcal{B}(\mathcal{H})$ into $\mathcal{B}(\mathcal{H})/\mathcal{C}(\mathcal{H})$, $\mathcal{C}(\mathcal{H})$ the algebra of compact operators on \mathcal{H} , is zero (resp., positive). We will show that any essentially \mathcal{G} -definite tuple can be decomposed into a direct sum of a \mathcal{G} -definite tuple and *irreducible* essentially \mathcal{G} -definite, non \mathcal{G} -definite tuples, and that the parallel statement is also true for essentially \mathcal{G} -semidefinite tuples.

1. Introduction.

Let \mathcal{H} be a separable Hilbert space. $\mathcal{B}(\mathcal{H})$ (resp., $\mathcal{C}(\mathcal{H})$) denotes the algebra of all bounded operators (resp., compact operators) on \mathcal{H} , π the quotient map of $\mathcal{B}(\mathcal{H})$ onto the Calkin algebra $\mathcal{B}(\mathcal{H})/\mathcal{C}(\mathcal{H})$. We say that $T \in \mathcal{B}(\mathcal{H})$ is essentially normal if it satisfies that

$$\pi(T^*T - TT^*) = O.$$

Behncke [1] proved that any essentially normal operator can be decomposed into a direct sum of a normal operator and irreducible essentially normal non normal operators.

Let \mathcal{G} be a set of polynomials in two noncommuting variables. We say that $T \in \mathcal{B}(\mathcal{H})$ is \mathcal{G} -definite (resp., \mathcal{G} -semidefinite) if it satisfies that

$$g(T, T^*) = O \ (\text{resp.}, g(T, T^*) \ge O)$$

for any $g \in \mathcal{G}$. It is observed in Fujii-Kajiwara-Kato-Kubo [4] that any $T \in \mathcal{B}(\mathcal{H})$ has a maximal subspace \mathcal{M} which reduces T such that the restriction $T|_{\mathcal{M}}$ of T on \mathcal{M} is \mathcal{G} -definite (resp., \mathcal{G} -semidefinite).

So, the question naturally arises: if T is essentially \mathcal{G} -definite (resp., \mathcal{G} -semidefinite), namely, T satisfies that

$$\pi(g(T,T^*))=O \ (\operatorname{resp.},\pi(g(T,T^*))\geq O)$$

for any $g \in \mathcal{G}$, does the restriction $T|_{\mathcal{M}^{\perp}}$ of T on \mathcal{M}^{\perp} admit a decomposition into a direct sum of irreducible essentially \mathcal{G} -definite (resp., \mathcal{G} -semidefinite), non \mathcal{G} -definite (resp., non \mathcal{G} -semidefinite) operators. In the present paper we will concern with this problem and give an affirmative answer, cf. Brown-Fong-Hadwin [2].

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A13; Secondary 47A56, 47A63.

Key words and phrases. Essentially normal operators, essentially definite tuple, irreducible operator.

But we rather like to put ourselves in a more general situation instead, dealing with sets of maps beyond polynomial calculi, and, with tuples of operators.

2. Essentially \mathcal{G} -definite, and \mathcal{G} -semidefinite tuples.

Let $\mathcal{B}(\mathcal{H})^n$ be the set of all *n*-tuples $T = (T_1, T_2, \ldots, T_n)$ of operators $T_1, T_2, \ldots, T_n \in \mathcal{B}(\mathcal{H})$. It may be considered as a C^* -algebra under the term-wise defined linear operations, multiplication, involution, and the norm

$$||T|| = \max\{||T_1||, ||T_2||, \dots, ||T_n||\}, T = (T_1, T_2, \dots, T_n).$$

Let \mathcal{E} be the set of all maps from $\mathcal{B}(\mathcal{H})^n$ into itself. \mathcal{E} is an algebra under the linear operations and multiplication defined in the usual manner. We further introduce to \mathcal{E} the pointwise norm topology. We may consider \mathcal{E} as the product space $\prod_{T \in \mathcal{B}(\mathcal{H})^n} X_T$ of X_T 's,

where $X_T = \mathcal{B}(\mathcal{H})^n$ for any $T \in \mathcal{B}(\mathcal{H})^n$, then the pointwise norm topology for \mathcal{E} coincides with the Tihonov topology for $\prod_{T \in \mathcal{B}(\mathcal{H})^n} X_T$, where each X_T is equipped with the norm

topology introduced above.

 \mathcal{E} is a topological algebra, in the sense that \mathcal{E} is a locally convex topological linear space and the multiplication is a continuous map of each of the factors for a fixed second factor.

For given *n*-tuples $A = (A_1, A_2, \ldots, A_n), B = (B_1, B_2, \ldots, B_n) \in \mathcal{B}(\mathcal{H})^n$, we put

$$\lambda_{A B}(T) = (A_1T_1B_1, A_2T_2B_2, \dots, A_nT_nB_n)$$

for $T = (T_1, T_2, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^n$, and for a given *n*-tuple $p = (p_1, p_2, \ldots, p_n)$ of polynomials in 2n noncommuting variables, we put

$$\psi_p(T) = (p_1(T_1, \dots, T_n, T_1^*, \dots, T_n^*), p_2(T_1, \dots, T_n, T_1^*, \dots, T_n^*), \dots, p_n(T_1, \dots, T_n, T_1^*, \dots, T_n^*))$$

for $T = (T_1, T_2, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^n$.

We say that a subspace (which means closed one throughout) \mathcal{M} of \mathcal{H} reduces a tuple $T = (T_1, T_2, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^n$ if \mathcal{M} reduces each of the terms T_1, T_2, \ldots, T_n of T. In the case, we have the restricted tuple $T|_{\mathcal{M}} = (T_1|_{\mathcal{M}}, T_2|_{\mathcal{M}}, \ldots, T_n|_{\mathcal{M}})$. If $\phi = \lambda_{A,B}$ and \mathcal{M} reduces tuples A, B, then we have a map $\phi_{\mathcal{M}} = \lambda_{A|_{\mathcal{M}},B|_{\mathcal{M}}}$ from $\mathcal{B}(\mathcal{M})^n$ into itself; if $\psi = \psi_p$, then we have a map $\psi_{\mathcal{M}} = \psi_p|_{\mathcal{B}(\mathcal{M})^n}$ from $\mathcal{B}(\mathcal{M})^n$ into itself.

Let S be a subset of $\mathcal{B}(\mathcal{H})$ which contains the identity operator I on \mathcal{H} , and S^n the set of all *n*-tuples $T = (T_1, T_2, \ldots, T_n)$ with $T_1, T_2, \ldots, T_n \in S$. We denote by \mathcal{E}_S the pointwise norm closed subalgebra generated by the maps $\lambda_{A,B}$, $A, B \in S^n$, and ψ_p , $p \in \mathcal{P}^n$, where \mathcal{P}^n denotes the set of all *n*-tuples of polynomials in 2n noncommuting variables.

We call the *n*-tuple $O = (O, O, \ldots, O)$ the zero tuple, and say that an *n*-tuple $T = (T_1, T_2, \ldots, T_n)$ is positive if $T_j \ge O$ for $j = 1, 2, \ldots, n$; we say that an *n*-tuple $T = (T_1, T_2, \ldots, T_n)$ is essentially zero (resp., essentially positive) if $\pi(T_j) = O$ (resp., $\pi(T_j) \ge O$) for $j = 1, 2, \ldots, n$.

Now let \mathcal{G} be a subset of $\mathcal{E}_{\mathcal{S}}$. We say that a tuple T is \mathcal{G} -definite (resp., \mathcal{G} -semidefinite) if for any $\phi \in \mathcal{G}$ the tuple $\phi(T)$ is zero (resp., positive), and essentially \mathcal{G} -definite (resp., essentially \mathcal{G} -semidefinite) if for any $\phi \in \mathcal{G}$ the tuple $\phi(T)$ is essentially zero (resp., essentially positive).

If a subspace \mathcal{M} of \mathcal{H} reduces any operator in \mathcal{S} , then $\phi \in \mathcal{G}$ induces the map $\phi_{\mathcal{M}}$ from $\mathcal{B}(\mathcal{M})^n$ into itself by the familiar procedure. We put $\mathcal{G}_{\mathcal{M}} = \{\phi_{\mathcal{M}} : \phi \in \mathcal{G}\}$. If \mathcal{M} reduces a tuple T, then it makes sense to ask whether the restriction $T|_{\mathcal{M}}$ is $\mathcal{G}_{\mathcal{M}}$ -definite (resp., $\mathcal{G}_{\mathcal{M}}$ -semidefinite) or not, and essentially $\mathcal{G}_{\mathcal{M}}$ -definite (resp., $\mathcal{G}_{\mathcal{M}}$ -semidefinite) or not.

A key step to our main result is the following

Theorem 1. Let \mathcal{A} be a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ which contains the identity operator on \mathcal{H} , and \mathcal{G} a subset of \mathcal{A} . If any operator in \mathcal{G} is essentially zero (resp., essentially positive), then there exists an orthogonal family $\{\mathcal{H}_m : m \geq 0\}$ of subspaces of \mathcal{H} which satisfies the following statements:

(i) $\mathcal{H} = \bigoplus_{m \ge 0} \mathcal{H}_m$, \mathcal{H}_m reduces \mathcal{A} if $m \ge 0$, and $\mathcal{A}|_{\mathcal{H}_m}$ is irreducible if $m \ge 1$.

(ii) \mathcal{H}_0 is the maximal subspace of \mathcal{H} which reduces \mathcal{A} such that $T|_{\mathcal{H}_0} = O$ (resp., $T|_{\mathcal{H}_0} \geq O$) for any $T \in \mathcal{G}$.

Therefore, if $m \geq 1$, $T|_{\mathcal{H}_m}$ is essentially zero (resp., essentially positive) for all $T \in \mathcal{G}$, but $T|_{\mathcal{H}_m} \neq O$ (resp., $T|_{\mathcal{H}_m}$ is not positive) for some $T \in \mathcal{G}$.

Proof. It suffices to prove the case where any operator in \mathcal{G} is essentially positive, because any operator in \mathcal{G} is essentially zero if and only if any operator in $\mathcal{G} \cup -\mathcal{G}$ is essentially positive, where $-\mathcal{G} = \{-T : T \in \mathcal{G}\}$.

Put $\mathcal{J} = \mathcal{A} \cap \mathcal{C}(\mathcal{H})$. Since

$$\pi(T) = |\pi(T)| = \pi(|T|),$$

we have that $T - |T| \in \mathcal{J}$ for any $T \in \mathcal{G}$. We may assume that $T - |T| \neq O$ for some $T \in \mathcal{G}$, and so, $\mathcal{J} \neq \{O\}$. Let \mathcal{M} be the closure of $\mathcal{JH} = \{Ax : A \in \mathcal{J}, x \in \mathcal{H}\}$, and put $\mathcal{R}_0 = \mathcal{M}^{\perp}$. Then both \mathcal{M} and \mathcal{R}_0 reduce \mathcal{A} . Since $J|_{\mathcal{R}_0}$ is zero for any $J \in \mathcal{J}$, we have $\mathcal{J}|_{\mathcal{R}_0} = \{O\}$ which implies that

$$|T|_{\mathcal{R}_0} = |T||_{\mathcal{R}_0} \ge O$$

for any $T \in \mathcal{G}$.

Consider next the restriction map ρ :

$$\rho(J) = J|_{\mathcal{M}} \text{ for } J \in \mathcal{J}.$$

This is a nondegenerate representation of \mathcal{J} , and becomes a direct sum of irreducible representations. So, we have an orthogonal family $\{\mathcal{R}_k : k \geq 1\}$ of subspaces of \mathcal{M} such that

$$\mathcal{M} = \bigoplus_{k \ge 1} \mathcal{R}_k,$$

 \mathcal{R}_k reduces \mathcal{J} , and, $\mathcal{J}|_{\mathcal{R}_k}$ is non zero and irreducible. Therefore $\mathcal{J}|_{\mathcal{R}_k} = \mathcal{C}(\mathcal{R}_k)$, which shows that \mathcal{R}_k reduces \mathcal{A} . Hence we conclude that $\mathcal{A}|_{\mathcal{R}_k}$ is irreducible.

On the other hand, it occurs either that

(1)
$$T|_{\mathcal{R}_k} = |T||_{\mathcal{R}_k} \text{ for any } T \in \mathcal{G}$$

or that

(2)
$$T|_{\mathcal{R}_k} \neq |T||_{\mathcal{R}_k} \text{ for some } T \in \mathcal{G}$$

Now denote the direct sum of \mathcal{R}_0 and all \mathcal{R}_k which satisfy (1) by \mathcal{H}_0 , and denote \mathcal{R}_k which satisfy (2) by \mathcal{H}_m , $m \ge 1$, giving them new letters with new indices. Then, we have an orthogonal family $\{\mathcal{H}_m : m \ge 0\}$ of subspaces of \mathcal{H} which satisfies (i) and (ii) stated in Theorem 1.

Now we state the aimed

Theorem 2. Let \mathcal{G} be a subset of $\mathcal{E}_{\mathcal{S}}$. If a tuple $T = (T_1, T_2, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^n$ is essentially \mathcal{G} -definite (resp., \mathcal{G} -semidefinite), then there exists an orthogonal family $\{\mathcal{H}_m : m \geq 0\}$ of subspaces of \mathcal{H} which satisfies the following statements:

(i) $\mathcal{H} = \bigoplus_{m \ge 0} \mathcal{H}_m$, \mathcal{H}_m reduces T and each member of S if $m \ge 0$, and, there is no

nontrivial subspace of \mathcal{H}_m which reduces T and each member of S if $m \geq 1$.

(ii) \mathcal{H}_0 is the maximal subspace which reduces T and each member of S such that $T|_{\mathcal{H}_0}$ is $\mathcal{G}_{\mathcal{H}_0}$ -definite (resp., $\mathcal{G}_{\mathcal{H}_0}$ -semidefinite).

Therefore, if $m \geq 1$, $T|_{\mathcal{H}_m}$ is essentially $\mathcal{G}_{\mathcal{H}_m}$ -definite (resp., $\mathcal{G}_{\mathcal{H}_m}$ -semidefinite), but not $\mathcal{G}_{\mathcal{H}_m}$ -definite (resp., $\mathcal{G}_{\mathcal{H}_m}$ -semidefinite).

Proof. Let \mathcal{A} be the C^* -subalgebra generated by T_1, T_2, \ldots, T_n and \mathcal{S} and the identity operator I on \mathcal{H} , and put

$$\tilde{\mathcal{G}} = \{ \tau_i(\phi(T)) : \phi \in \mathcal{G} \text{ and } 1 \le j \le n \},\$$

where $\tau_j \ (1 \le j \le n)$ means the projection:

$$\tau_j(A) = A_j, \quad A = (A_1, A_2, \dots, A_n).$$

We then apply Theorem 1 to \mathcal{A} and $\tilde{\mathcal{G}}$ to obtain an orthogonal family $\{\mathcal{H}_m : m \geq 0\}$ of subspaces of \mathcal{H} which satisfies (i) and (ii) in Theorem 2.

In fact, $\mathcal{H} = \bigoplus_{m \ge 0} \mathcal{H}_m$, \mathcal{H}_m reduces \mathcal{A} if $m \ge 0$, $\mathcal{A}|_{\mathcal{H}_m}$ is irreducible if $m \ge 1$, and \mathcal{H}_0 is

the maximal subspace which reduces ${\mathcal A}$ such that, for any $\phi \in {\mathcal G},$

$$\tau_j(\phi_{\mathcal{H}_0}(T|_{\mathcal{H}_0})) = O \text{ (resp., } \tau_j(\phi_{\mathcal{H}_0}(T|_{\mathcal{H}_0})) \ge O), \quad 1 \le j \le n.$$

So \mathcal{H}_0 is the maximal subspace of \mathcal{H} which reduces T and each member of \mathcal{S} such that $T|_{\mathcal{H}_0}$ is $\mathcal{G}_{\mathcal{H}_0}$ -definite (resp., $\mathcal{G}_{\mathcal{H}_0}$ -semidefinite).

3. Several examples.

We show that Theorem 2 is not vacuous, giving examples of an operator which is essentially \mathcal{G} -definite, but not \mathcal{G} -definite, and an operator which is essentially \mathcal{G} -semidefinite, but not \mathcal{G} -semidefinite. In fact, in Example 1 we have an irreducible, essentially normal, non hyponormal operator, and in Example 2 an essentially subnormal, non essentially normal, non hyponormal operator.

Example 1. The weighted shift T with weights $\lambda_0, \lambda_1, \lambda_2, \ldots$, where

$$\lambda_0 = 1, \quad \lambda_n = \left(1 - \sum_{k=1}^n 1/2^k\right)^{1/2} \text{ for } n \ge 1,$$

on the Hilbert space $\mathcal{H} = l^2$ is an essentially normal, non hyponormal operator.

In fact, $T^*T - TT^*$ turns out to be a diagonal operator with diagonal

$$1, -/2, -1/2^2, -1/2^3, \ldots$$

So, $T^*T - TT^*$ is compact, but not positive.

Furthermore, since $\lambda_n \neq 0$ for all $n \geq 0$, it follows that T is irreducible.

Example 2. Let \mathcal{H} be a countably infinite direct sum of copies of l^2 . Define $X, K \in \mathcal{B}(\mathcal{H})$ by the operator matrices

$$X = \begin{pmatrix} O & & & \\ I & O & & \\ & I & \ddots & \\ & & \ddots & \end{pmatrix}, \quad K = \begin{pmatrix} O & & & \\ A & O & & \\ & O & \ddots & \\ & & \ddots & \end{pmatrix},$$

resp., where A is the diagonal operator on l^2 with diagonal 1, $1/2, 1/3, \ldots$ Then the operator T = X + K is an essentially subnormal, non essentially normal, non hyponormal operator. In fact, since X is subnormal, X satisfies that for any $A_1, A_2, \ldots, A_n (n \ge 1)$ in the C^* -algebra generated by X and I,

$$\sum_{j, k=0}^{n} A_{j}^{*} X^{*k} X^{j} A_{k} \ge O,$$

see [3]. So we have

$$\sum_{j, k=0}^{n} \pi(A_j)^* \pi(X)^{*k} \pi(X)^j \pi(A_k) = \pi\left(\sum_{j, k=0}^{n} A_j^* X^{*k} X^j A_k\right) \ge O$$

But the image by π of the C^* -algebra $C^*(T)$ generated by T and I makes the C^* -algebra $C^*(\pi(T))$ generated by $\pi(T)$ and $\pi(I)$ full, it follows that T is essentially subnormal.

Meanwhile, since $X^*X - XX^*$ is a positive diagonal operator with diagonal I, O, O, O, \ldots , we have

$$\pi(T^*T-TT^*)=\pi(X^*X-XX^*)\neq O$$

which implies that T is non essentially normal. Since $T^*T - TT^*$ is a diagonal operator with diagonal

$$(I+A)^2, I - (I+A)^2, O, O, \dots,$$

 $T^*T - TT^*$ is not positive, and hence T is non hyponormal.

Next we see the following

Example 3. We have pairs A_1 , B_1 and A_2 , B_2 of $n \times n$ self-adjoint matrices, by which each C^* -algebra generated is the algebra of all $n \times n$ matrices, the former of which satisfies $A_1 \geq B_1$, but on the contrary the latter fails to satisfy $A_2 \geq B_2$, e.g., for n = 2,

$$A_1 = B_2 = \begin{pmatrix} 3 & 0 \\ 0 & 3/2 \end{pmatrix}, \quad B_1 = A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Let us put

$$\mathcal{H}_0 = C^n \otimes l^2, \quad \mathcal{H}_1 = C^n \text{ and } \mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1;$$

and

$$T_1 = (A_1 \otimes I) \oplus A_2, \quad T_2 = (B_1 \otimes I) \oplus B_2,$$

I the identity operator on l^2 . Then, the inequality $T_1 \geq T_2$ does not hold, but it holds essentially, that is, $T_1 - T_2$ is essentially positive. Furthermore, \mathcal{H}_0 and \mathcal{H}_1 reduces both T_1 and T_2 , \mathcal{H}_0 is the maximal subspace which reduces both T_1 and T_2 such that the inequality $T_1|_{\mathcal{H}_0} \geq T_2|_{\mathcal{H}_0}$ holds, and there is no nontrivial subspace of \mathcal{H}_1 which reduces both A_2 and B_2 .

It, however, may be seen as in the following corollary, that what we observed in Example 3 commonly occurs.

Corollary 3. Let $T_1, T_2 \in \mathcal{B}(\mathcal{H})$ be self-adjoint. If $T_1 \geq T_2$ holds essentially, then there exists an orthogonal family $\{\mathcal{H}_m : m \geq 0\}$ of subspaces of \mathcal{H} which satisfies the following statements:

(i) $\mathcal{H} = \bigoplus_{m \ge 0} \mathcal{H}_m$, \mathcal{H}_m reduces both T_1 and T_2 if $m \ge 0$, and, there is no nontrivial subspace of $\mathcal{H}_m^{m \ge 0}$ which reduces both T_1 and T_2 if $m \ge 1$.

(ii) \mathcal{H}_0 is the maximal subspace which reduces T_1 and T_2 such that $T_1|_{\mathcal{H}_0} \geq T_2|_{\mathcal{H}_0}$ holds.

Therefore, if $m \geq 1$, $T_1|_{\mathcal{H}_m} \geq T_2|_{\mathcal{H}_m}$ holds essentially, but $T_1|_{\mathcal{H}_m} \geq T_2|_{\mathcal{H}_m}$ does not hold.

References

- [1] H. Behncke, Structure of certain nonnormal operators, J. Math. Mech. 18 (1968), 103–107.
- [2] A. Brown, C. K. Fong and D. W. Hadwin, Parts of operators on Hilbert space, Ill. J. Math. **22**(1978), 306-314.
- [3] J. Bunce and J. A. Deddens, On the normal spectrum of a subnormal operator, Proc. Amer. Math. Soc. **63**(1977), 107–110.
- [4] M. Fujii, M. Kajiwara, Y. Kato and F. Kubo, Decompositions of operators in Hilbert spaces, Math. Japonica 21 (1976), 117-120.

Takateru Okayasu and Yasunori Ueta Department of Mathematical Sciences Faculty of Science Yamagata University Yamagata 980-8560, Japan