ON ESSENTIALLY DEFINITE, AND SEMIDEFINITE TUPLES OF OPERATORS

Dedicated to Professor Masahiro Nakamura with respect and affection

Takateru Okayasu and Yasunori Ueta
Received July 27, 2001

Abstract

Let $\mathcal{B}(\mathcal{H})^{n}$ be the space of n-tuples of operators in $\mathcal{B}(\mathcal{H})$, the algebra of bounded operators on a Hilbert space \mathcal{H}. Given a set \mathcal{G} of maps from $\mathcal{B}(\mathcal{H})^{n}$ into itself, which is appropriate for our situation, a tuple $T \in \mathcal{B}(\mathcal{H})^{n}$ is said to be \mathcal{G}-definite (resp., \mathcal{G}-semidefinite) if for any $\phi \in \mathcal{G}$, each term of $\phi(T)$ is zero (resp., positive), and essentially \mathcal{G}-definite (resp., essentially \mathcal{G}-semidefinite) if for any $\phi \in \mathcal{G}$, the image of each term of $\phi(T)$ by the canonical quotient map of $\mathcal{B}(\mathcal{H})$ into $\mathcal{B}(\mathcal{H}) / \mathcal{C}(\mathcal{H}), \mathcal{C}(\mathcal{H})$ the algebra of compact operators on \mathcal{H}, is zero (resp., positive). We will show that any essentially \mathcal{G}-definite tuple can be decomposed into a direct sum of a \mathcal{G}-definite tuple and irreducible essentially \mathcal{G}-definite, non \mathcal{G}-definite tuples, and that the parallel statement is also true for essentially \mathcal{G}-semidefinite tuples.

1. Introduction.

Let \mathcal{H} be a separable Hilbert space. $\mathcal{B}(\mathcal{H})$ (resp., $\mathcal{C}(\mathcal{H})$) denotes the algebra of all bounded operators (resp., compact operators) on \mathcal{H}, π the quotient map of $\mathcal{B}(\mathcal{H})$ onto the Calkin algebra $\mathcal{B}(\mathcal{H}) / \mathcal{C}(\mathcal{H})$. We say that $T \in \mathcal{B}(\mathcal{H})$ is essentially normal if it satisfies that

$$
\pi\left(T^{*} T-T T^{*}\right)=O
$$

Behncke [1] proved that any essentially normal operator can be decomposed into a direct sum of a normal operator and irreducible essentially normal non normal operators.

Let \mathcal{G} be a set of polynomials in two noncommuting variables. We say that $T \in \mathcal{B}(\mathcal{H})$ is \mathcal{G}-definite (resp., \mathcal{G}-semidefinite) if it satisfies that

$$
g\left(T, T^{*}\right)=O\left(\operatorname{resp} ., g\left(T, T^{*}\right) \geq O\right)
$$

for any $g \in \mathcal{G}$. It is observed in Fujii-Kajiwara-Kato-Kubo [4] that any $T \in \mathcal{B}(\mathcal{H})$ has a maximal subspace \mathcal{M} which reduces T such that the restriction $\left.T\right|_{\mathcal{M}}$ of T on \mathcal{M} is \mathcal{G}-definite (resp., \mathcal{G}-semidefinite).

So, the question naturally arises: if T is essentially \mathcal{G}-definite (resp., \mathcal{G}-semidefinite), namely, T satisfies that

$$
\pi\left(g\left(T, T^{*}\right)\right)=O \quad\left(\operatorname{resp} ., \pi\left(g\left(T, T^{*}\right)\right) \geq O\right)
$$

for any $g \in \mathcal{G}$, does the restriction $\left.T\right|_{\mathcal{M}^{\perp}}$ of T on \mathcal{M}^{\perp} admit a decomposition into a direct sum of irreducible essentially \mathcal{G}-definite (resp., \mathcal{G}-semidefinite), non \mathcal{G}-definite (resp., non \mathcal{G}-semidefinite) operators. In the present paper we will concern with this problem and give an affirmative answer, cf. Brown-Fong-Hadwin [2].

[^0]But we rather like to put ourselves in a more general situation instead, dealing with sets of maps beyond polynomial calculi, and, with tuples of operators.

2. Essentially \mathcal{G}-definite, and \mathcal{G}-semidefinite tuples.

Let $\mathcal{B}(\mathcal{H})^{n}$ be the set of all n-tuples $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ of operators $T_{1}, T_{2}, \ldots, T_{n} \in$ $\mathcal{B}(\mathcal{H})$. It may be considered as a C^{*}-algebra under the term-wise defined linear operations, multiplication, involution, and the norm

$$
\|T\|=\max \left\{\left\|T_{1}\right\|,\left\|T_{2}\right\|, \ldots,\left\|T_{n}\right\|\right\}, \quad T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)
$$

Let \mathcal{E} be the set of all maps from $\mathcal{B}(\mathcal{H})^{n}$ into itself. \mathcal{E} is an algebra under the linear operations and multiplication defined in the usual manner. We further introduce to \mathcal{E} the pointwise norm topology. We may consider \mathcal{E} as the product space $\prod X_{T}$ of X_{T} 's, $T \in \mathcal{B}(\mathcal{H})^{n}$
where $X_{T}=\mathcal{B}(\mathcal{H})^{n}$ for any $T \in \mathcal{B}(\mathcal{H})^{n}$, then the pointwise norm topology for \mathcal{E} coincides with the Tihonov topology for $\prod_{T \in \mathcal{B}(\mathcal{H})^{n}} X_{T}$, where each X_{T} is equipped with the norm
topology introduced above.
\mathcal{E} is a topological algebra, in the sense that \mathcal{E} is a locally convex topological linear space and the multiplication is a continuous map of each of the factors for a fixed second factor.

For given n-tuples $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right), B=\left(B_{1}, B_{2}, \ldots, B_{n}\right) \in \mathcal{B}(\mathcal{H})^{n}$, we put

$$
\lambda_{A, B}(T)=\left(A_{1} T_{1} B_{1}, A_{2} T_{2} B_{2}, \ldots, A_{n} T_{n} B_{n}\right)
$$

for $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right) \in \mathcal{B}(\mathcal{H})^{n}$, and for a given n-tuple $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of polynomials in $2 n$ noncommuting variables, we put

$$
\begin{aligned}
& \psi p(T) \\
& \quad=\left(p_{1}\left(T_{1}, \ldots, T_{n}, T_{1}^{*}, \ldots, T_{n}^{*}\right), p_{2}\left(T_{1}, \ldots, T_{n}, T_{1}^{*}, \ldots, T_{n}^{*}\right), \ldots, p_{n}\left(T_{1}, \ldots, T_{n}, T_{1}^{*}, \ldots, T_{n}^{*}\right)\right)
\end{aligned}
$$

for $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right) \in \mathcal{B}(\mathcal{H})^{n}$.
We say that a subspace (which means closed one throughout) \mathcal{M} of \mathcal{H} reduces a tuple $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right) \in \mathcal{B}(\mathcal{H})^{n}$ if \mathcal{M} reduces each of the terms $T_{1}, T_{2}, \ldots, T_{n}$ of T. In the case, we have the restricted tuple $\left.T\right|_{\mathcal{M}}=\left(\left.T_{1}\right|_{\mathcal{M}},\left.T_{2}\right|_{\mathcal{M}}, \ldots,\left.T_{n}\right|_{\mathcal{M}}\right)$. If $\phi=\lambda_{A, B}$ and \mathcal{M} reduces tuples A, B, then we have a map $\phi_{\mathcal{M}}=\lambda_{A_{\mathcal{M}},\left.B\right|_{\mathcal{M}}}$ from $\mathcal{B}(\mathcal{M})^{n}$ into itself; if $\psi=\psi_{p}$, then we have a map $\psi_{\mathcal{M}}=\left.\psi_{p}\right|_{\mathcal{B}(\mathcal{M})^{n}}$ from $\mathcal{B}(\mathcal{M})^{n}$ into itself.

Let \mathcal{S} be a subset of $\mathcal{B}(\mathcal{H})$ which contains the identity operator I on \mathcal{H}, and \mathcal{S}^{n} the set of all n-tuples $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ with $T_{1}, T_{2}, \ldots, T_{n} \in \mathcal{S}$. We denote by $\mathcal{E}_{\mathcal{S}}$ the pointwise norm closed subalgebra generated by the maps $\lambda_{A, B}, A, B \in \mathcal{S}^{n}$, and $\psi_{p}, p \in \mathcal{P}^{n}$, where \mathcal{P}^{n} denotes the set of all n-tuples of polynomials in $2 n$ noncommuting variables.

We call the n-tuple $O=(O, O, \ldots, O)$ the zero tuple, and say that an n-tuple $T=$ $\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is positive if $T_{j} \geq O$ for $j=1,2, \ldots, n$; we say that an n-tuple $T=$ $\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is essentially zero (resp., essentially positive) if $\pi\left(T_{j}\right)=O$ (resp., $\left.\pi\left(T_{j}\right) \geq O\right)$ for $j=1,2, \ldots, n$.

Now let \mathcal{G} be a subset of $\mathcal{\mathcal { E } _ { \mathcal { S } }}$. We say that a tuple T is \mathcal{G}-definite (resp., \mathcal{G}-semidefinite) if for any $\phi \in \mathcal{G}$ the tuple $\phi(T)$ is zero (resp., positive), and essentially \mathcal{G}-definite (resp., essentially \mathcal{G}-semidefinite) if for any $\phi \in \mathcal{G}$ the tuple $\phi(T)$ is essentially zero (resp., essentially positive).

If a subspace \mathcal{M} of \mathcal{H} reduces any operator in \mathcal{S}, then $\phi \in \mathcal{G}$ induces the map $\phi_{\mathcal{M}}$ from $\mathcal{B}(\mathcal{M})^{n}$ into itself by the familiar procedure. We put $\mathcal{G}_{\mathcal{M}}=\left\{\phi_{\mathcal{M}}: \phi \in \mathcal{G}\right\}$. If \mathcal{M} reduces a tuple T, then it makes sense to ask whether the restriction $\left.T\right|_{\mathcal{M}}$ is $\mathcal{G}_{\mathcal{M}}$-definite (resp., $\mathcal{G}_{\mathcal{M}}$-semidefinite) or not, and essentially $\mathcal{G}_{\mathcal{M}}$-definite (resp., $\mathcal{G}_{\mathcal{M}}$-semidefinite) or not.

A key step to our main result is the following

Theorem 1. Let \mathcal{A} be a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H})$ which contains the identity operator on \mathcal{H}, and \mathcal{G} a subset of \mathcal{A}. If any operator in \mathcal{G} is essentially zero (resp., essentially positive), then there exists an orthogonal family $\left\{\mathcal{H}_{m}: m \geq 0\right\}$ of subspaces of \mathcal{H} which satisfies the following statements:
(i) $\mathcal{H}=\bigoplus_{m>0} \mathcal{H}_{m}, \mathcal{H}_{m}$ reduces \mathcal{A} if $m \geq 0$, and $\left.\mathcal{A}\right|_{\mathcal{H}_{m}}$ is irreducible if $m \geq 1$.
(ii) \mathcal{H}_{0} is the maximal subspace of \mathcal{H} which reduces \mathcal{A} such that $\left.T\right|_{\mathcal{H}_{0}}=O$ (resp., $\left.T\right|_{\mathcal{H}_{0}} \geq O$) for any $T \in \mathcal{G}$.

Therefore, if $m \geq 1,\left.T\right|_{\mathcal{H}_{m}}$ is essentially zero (resp., essentially positive) for all $T \in \mathcal{G}$, but $\left.T\right|_{\mathcal{H}_{m}} \neq O$ (resp., $\left.T\right|_{\mathcal{H}_{m}}$ is not positive) for some $T \in \mathcal{G}$.

Proof. It suffices to prove the case where any operator in \mathcal{G} is essentially positive, because any operator in \mathcal{G} is essentially zero if and only if any operator in $\mathcal{G} \cup-\mathcal{G}$ is essentially positive, where $-\mathcal{G}=\{-T: T \in \mathcal{G}\}$.

Put $\mathcal{J}=\mathcal{A} \cap \mathcal{C}(\mathcal{H})$. Since

$$
\pi(T)=|\pi(T)|=\pi(|T|),
$$

we have that $T-|T| \in \mathcal{J}$ for any $T \in \mathcal{G}$. We may assume that $T-|T| \neq O$ for some $T \in \mathcal{G}$, and so, $\mathcal{J} \neq\{O\}$. Let \mathcal{M} be the closure of $\mathcal{J H}=\{A x: A \in \mathcal{J}, x \in \mathcal{H}\}$, and put $\mathcal{R}_{0}=\mathcal{M}^{\perp}$. Then both \mathcal{M} and \mathcal{R}_{0} reduce \mathcal{A}. Since $\left.J\right|_{\mathcal{R}_{0}}$ is zero for any $J \in \mathcal{J}$, we have $\left.\mathcal{J}\right|_{\mathcal{R}_{0}}=\{O\}$ which implies that

$$
\left.T\right|_{\mathcal{R}_{0}}=\mid T \|_{\mathcal{R}_{0}} \geq 0
$$

for any $T \in \mathcal{G}$.
Consider next the restriction map ρ :

$$
\rho(J)=\left.J\right|_{\mathcal{M}} \text { for } J \in \mathcal{J} .
$$

This is a nondegenerate representation of \mathcal{J}, and becomes a direct sum of irreducible representations. So, we have an orthogonal family $\left\{\mathcal{R}_{k}: k \geq 1\right\}$ of subspaces of \mathcal{M} such that

$$
\mathcal{M}=\bigoplus_{k \geq 1} \mathcal{R}_{k}
$$

\mathcal{R}_{k} reduces \mathcal{J}, and, $\left.\mathcal{J}\right|_{\mathcal{R}_{k}}$ is non zero and irreducible. Therefore $\left.\mathcal{J}\right|_{\mathcal{R}_{k}}=\mathcal{C}\left(\mathcal{R}_{k}\right)$, which shows that \mathcal{R}_{k} reduces \mathcal{A}. Hence we conclude that $\left.\mathcal{A}\right|_{\mathcal{R}_{k}}$ is irreducible.

On the other hand, it occurs either that

$$
\begin{equation*}
\left.T\right|_{\mathcal{R}_{k}}=|T|_{\mathcal{R}_{k}} \text { for any } T \in \mathcal{G} \tag{1}
\end{equation*}
$$

or that

$$
\begin{equation*}
\left.T\right|_{\mathcal{R}_{k}} \neq|T|_{\mathcal{R}_{k}} \text { for some } T \in \mathcal{G} \tag{2}
\end{equation*}
$$

Now denote the direct sum of \mathcal{R}_{0} and all \mathcal{R}_{k} which satisfy (1) by \mathcal{H}_{0}, and denote \mathcal{R}_{k} which satisfy (2) by $\mathcal{H}_{m}, m \geq 1$, giving them new letters with new indices. Then, we have an orthogonal family $\left\{\mathcal{H}_{m}: m \geq 0\right\}$ of subspaces of \mathcal{H} which satisfies (i) and (ii) stated in Theorem 1.

Now we state the aimed

Theorem 2. Let \mathcal{G} be a subset of $\mathcal{E}_{\mathcal{S}}$. If a tuple $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right) \in \mathcal{B}(\mathcal{H})^{n}$ is essentially \mathcal{G}-definite (resp., \mathcal{G}-semidefinite), then there exists an orthogonal family $\left\{\mathcal{H}_{m}: m \geq 0\right\}$ of subspaces of \mathcal{H} which satisfies the following statements:
(i) $\mathcal{H}=\bigoplus_{m>0} \mathcal{H}_{m}, \mathcal{H}_{m}$ reduces T and each member of \mathcal{S} if $m \geq 0$, and, there is no nontrivial subspace of \mathcal{H}_{m} which reduces T and each member of \mathcal{S} if $m \geq 1$.
(ii) \mathcal{H}_{0} is the maximal subspace which reduces T and each member of \mathcal{S} such that $\left.T\right|_{\mathcal{H}_{0}}$ is $\mathcal{G}_{\mathcal{H}_{0}}$-definite (resp., $\mathcal{G}_{\mathcal{H}_{0}}$-semidefinite).

Therefore, if $m \geq 1,\left.T\right|_{\mathcal{H}_{m}}$ is essentially $\mathcal{G}_{\mathcal{H}_{m}}$-definite (resp., $\mathcal{G}_{\mathcal{H}_{m}}$-semidefinite), but not $\mathcal{G}_{\mathcal{H}_{m}}$-definite (resp., $\mathcal{G}_{\mathcal{H}_{m}}$-semidefinite).

Proof. Let \mathcal{A} be the C^{*}-subalgebra generated by $T_{1}, T_{2}, \ldots, T_{n}$ and \mathcal{S} and the identity operator I on \mathcal{H}, and put

$$
\tilde{\mathcal{G}}=\left\{\tau_{j}(\phi(T)): \phi \in \mathcal{G} \text { and } 1 \leq j \leq n\right\}
$$

where $\tau_{j}(1 \leq j \leq n)$ means the projection:

$$
\tau_{j}(A)=A_{j}, \quad A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$

We then apply Theorem 1 to \mathcal{A} and $\tilde{\mathcal{G}}$ to obtain an orthogonal family $\left\{\mathcal{H}_{m}: m \geq 0\right\}$ of subspaces of \mathcal{H} which satisfies (i) and (ii) in Theorem 2.

In fact, $\mathcal{H}=\bigoplus_{m \geq 0} \mathcal{H}_{m}, \mathcal{H}_{m}$ reduces \mathcal{A} if $m \geq 0,\left.\mathcal{A}\right|_{\mathcal{H}_{m}}$ is irreducible if $m \geq 1$, and \mathcal{H}_{0} is the maximal subspace which reduces \mathcal{A} such that, for any $\phi \in \mathcal{G}$,

$$
\tau_{j}\left(\phi_{\mathcal{H}_{0}}\left(\left.T\right|_{\mathcal{H}_{0}}\right)\right)=O\left(\text { resp., } \tau_{j}\left(\phi_{\mathcal{H}_{0}}\left(\left.T\right|_{\mathcal{H}_{0}}\right)\right) \geq O\right), \quad 1 \leq j \leq n
$$

So \mathcal{H}_{0} is the maximal subspace of \mathcal{H} which reduces T and each member of \mathcal{S} such that $\left.T\right|_{\mathcal{H}_{0}}$ is $\mathcal{G}_{\mathcal{H}_{0}}$-definite (resp., $\mathcal{G}_{\mathcal{H}_{0}}$-semidefinite).

3. Several examples.

We show that Theorem 2 is not vacuous, giving examples of an operator which is essentially \mathcal{G}-definite, but not \mathcal{G}-definite, and an operator which is essentially \mathcal{G}-semidefinite, but not \mathcal{G}-semidefinite. In fact, in Example 1 we have an irreducible, essentially normal, non hyponormal operator, and in Example 2 an essentially subnormal, non essentially normal, non hyponormal operator.

Example 1. The weighted shift T with weights $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots$, where

$$
\lambda_{0}=1, \quad \lambda_{n}=\left(1-\sum_{k=1}^{n} 1 / 2^{k}\right)^{1 / 2} \quad \text { for } n \geq 1,
$$

on the Hilbert space $\mathcal{H}=l^{2}$ is an essentially normal, non hyponormal operator.
In fact, $T^{*} T-T T^{*}$ turns out to be a diagonal operator with diagonal

$$
1,-/ 2,-1 / 2^{2},-1 / 2^{3}, \ldots
$$

So, $T^{*} T-T T^{*}$ is compact, but not positive.
Furthermore, since $\lambda_{n} \neq 0$ for all $n \geq 0$, it follows that T is irreducible.

Example 2. Let \mathcal{H} be a countably infinite direct sum of copies of l^{2}. Define $X, K \in \mathcal{B}(\mathcal{H})$ by the operator matrices

$$
X=\left(\begin{array}{lll}
O & & \\
I & O & \\
& I & \ddots \\
& & \ddots
\end{array}\right), \quad K=\left(\begin{array}{llll}
O & & \\
A & O & \\
& O & \ddots \\
& & \ddots
\end{array}\right)
$$

resp., where A is the diagonal operator on l^{2} with diagonal $1,1 / 2,1 / 3, \ldots$ Then the operator $T=X+K$ is an essentially subnormal, non essentially normal, non hyponormal operator.

In fact, since X is subnornal, X satisfies that for any $A_{1}, A_{2}, \ldots, A_{n}(n \geq 1)$ in the C^{*}-algebra generated by X and I,

$$
\sum_{j, k=0}^{n} A_{j}^{*} X^{* k} X^{j} A_{k} \geq 0,
$$

see [3]. So we have

$$
\sum_{j, k=0}^{n} \pi\left(A_{j}\right)^{*} \pi(X)^{* k} \pi(X)^{j} \pi\left(A_{k}\right)=\pi\left(\sum_{j, k=0}^{n} A_{j}{ }^{*} X^{* k} X^{j} A_{k}\right) \geq 0
$$

But the image by π of the C^{*}-algebra $C^{*}(T)$ generated by T and I makes the C^{*}-algebra $C^{*}(\pi(T))$ generated by $\pi(T)$ and $\pi(I)$ full, it follows that T is essentially subnormal.

Meanwhile, since $X^{*} X-X X^{*}$ is a positive diagonal operator with diagonal I, O, O, O, \ldots, we have

$$
\pi\left(T^{*} T-T T^{*}\right)=\pi\left(X^{*} X-X X^{*}\right) \neq O,
$$

which implies that T is non essentially normal. Since $T^{*} T-T T^{*}$ is a diagonal operator with diagonal

$$
(I+A)^{2}, I-(I+A)^{2}, O, O, \ldots,
$$

$T^{*} T-T T^{*}$ is not positive, and hence T is non hyponormal.

Next we see the following

Example 3. We have pairs A_{1}, B_{1} and A_{2}, B_{2} of $n \times n$ self-adjoint matrices, by which each C^{*}-algebra generated is the algebra of all $n \times n$ matrices, the former of which satisfies $A_{1} \geq B_{1}$, but on the contrary the latter fails to satisfy $A_{2} \geq B_{2}$, e.g., for $n=2$,

$$
A_{1}=B_{2}=\left(\begin{array}{cc}
3 & 0 \\
0 & 3 / 2
\end{array}\right), \quad B_{1}=A_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Let us put

$$
\mathcal{H}_{0}=C^{n} \otimes l^{2}, \quad \mathcal{H}_{1}=C^{n} \quad \text { and } \quad \mathcal{H}=\mathcal{H}_{0} \oplus \mathcal{H}_{1}
$$

and

$$
T_{1}=\left(A_{1} \otimes I\right) \oplus A_{2}, \quad T_{2}=\left(B_{1} \otimes I\right) \oplus B_{2}
$$

I the identity operator on l^{2}. Then, the inequality $T_{1} \geq T_{2}$ does not hold, but it holds essentially, that is, $T_{1}-T_{2}$ is essentially positive. Furthermore, \mathcal{H}_{0} and \mathcal{H}_{1} reduces both T_{1} and T_{2}, \mathcal{H}_{0} is the maximal subspace which reduces both T_{1} and T_{2} such that the inequality $\left.T_{1}\right|_{\mathcal{H}_{0}} \geq\left. T_{2}\right|_{\mathcal{H}_{0}}$ holds, and there is no nontrivial subspace of \mathcal{H}_{1} which reduces both A_{2} and B_{2}.

It, however, may be seen as in the following corollary, that what we observed in Example 3 commonly occurs.

Corollary 3. Let $T_{1}, T_{2} \in \mathcal{B}(\mathcal{H})$ be self-adjoint. If $T_{1} \geq T_{2}$ holds essentially, then there exists an orthogonal family $\left\{\mathcal{H}_{m}: m \geq 0\right\}$ of subspaces of \mathcal{H} which satisfies the following statements:
(i) $\mathcal{H}=\bigoplus_{m \geq 0} \mathcal{H}_{m}, \mathcal{H}_{m}$ reduces both T_{1} and T_{2} if $m \geq 0$, and, there is no nontrivial subspace of \mathcal{H}_{m} which reduces both T_{1} and T_{2} if $m \geq 1$.
(ii) \mathcal{H}_{0} is the maximal subspace which reduces T_{1} and T_{2} such that $\left.T_{1}\right|_{\mathcal{H}_{0}} \geq\left. T_{2}\right|_{\mathcal{H}_{0}}$ holds.

Therefore, if $m \geq 1,\left.T_{1}\right|_{\mathcal{H}_{m}} \geq\left. T_{2}\right|_{\mathcal{H}_{m}}$ holds essentially, but $\left.T_{1}\right|_{\mathcal{H}_{m}} \geq\left. T_{2}\right|_{\mathcal{H}_{m}}$ does not hold.

References

[1] H. Behncke, Structure of certain nonnormal operators, J. Math. Mech. 18(1968), 103-107.
[2] A. Brown, C. K. Fong and D. W. Hadwin, Parts of operators on Hilbert space, Ill. J. Math. 22(1978), 306-314.
[3] J. Bunce and J. A. Deddens, On the normal spectrum of a subnormal operator, Proc. Amer. Math. Soc. 63(1977), 107-110.
[4] M. Fujii, M. Kajiwara, Y. Kato and F. Kubo, Decompositions of operators in Hilbert spaces, Math. Japonica 21 (1976), 117-120.

Takateru Okayasu and Yasunori Ueta
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Yamagata 980-8560, Japan

[^0]: 2000 Mathematics Subject Classification. Primary 47A13; Secondary 47A56, 47A63.
 Key words and phrases. Essentially normal operators, essentially definite tuple, irreducible operator.

