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PENTAGONAL EQUATIONS FOR OPERATORS ASSOCIATED WITH
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MOTO O'UCHI

Received December 12, 2001

Abstract. We introduce a notion of a pentagonal equation for an adjointable operator

on a Hilbert C�-module in full generality. We call a unitary operator on a Hilbert

C
�-module a multiplicative unitary operator (MUO) when it satis�es the pentagonal

equation. We give a suÆcient condition for the existence of an MUO associated with

a general inclusion of C�-algebras. Then we study an MUO when the inclusion is of

index-�nite type in the sense of Watatani. We also give an explicit formula for the MUO

when the inclusion arises from a crossed product of a C�-algebra by a �nite group.

1. Introduction

A pentagonal equation (PE) �rst appeared in the duality theory for locally compact

groups. The Kac-Takesaki operator in the theory satis�es a PE (cf. [9], [30]). S. Baaj

and G. Skandalis [2] called a unitary operator on a Hilbert space a multiplicative unitary

(MU) when it satis�es a PE. V. F. R. Jones initiated a study for inclusions of von Neumann

algebras (see [11], [13], [14]). MU's appeared in the related theory; M. Enock and R. Nest

[8] constructed an MU from an irreducible regular depth 2 inclusion of factors. MU's also

appeared in several situations. For example, we refer the reader to [5], [6], [12] [17] and

[26]. As for measured groupoids, T. Yamanouchi [36] constructed an analogue of the Kac-

Takesaki operator. But this operator does not satisfy a PE. J. M. Vallin [33] showed that

it satis�es an equation which is a generalization of a PE. He called a unitary operator a

pseudo-multiplicative unitary (PMU) when it satis�es this generalized PE. Vallin de�ned

the generalized PE using the Connes-Sauvageot's relative tensor products of Hilbert spaces.

M. Enock and J. M. Vallin [10] constructed a PMU from a regular depth 2 inclusion of

von Neumann algebras. The base algebra of the PMU they studied is a (not necessarily

commutative) von Neumann algebra. Recently several authors study quantum groupoids.

For example, we refer the reader to [3], [7], [18], [20], [28] and [34]. Quantum groupoids

are related to inclusions of von Neumann algebras and PMU's. In particular, PMU's in

�nite-dimension were studied by G. B�ohm and K. Szlach�anyi [3] and by J. M. Vallin [34].

They studied the PMU from the viewpoint of multiplicative isometries. Yamanouchi [37]

also studied a partial isometry which satis�es a PE. When we deal with PMU's in the theory

of C�-algebras, it is useful to formulate a generalization of a PE in the framework of Hilbert

C�-modules. As for the usefulness of Hilbert C�-modules, for example, we refer the reader

to the works of M. A. Rie�el [25], E. C. Lance [16], B. Blackadar [4] and Y. Watatani [35].

The author [22] de�ned a PMU on a Hilbert C�-module using interior tensor products. The

base algebra of the PMU de�ned there is a commutative C�-algebra. (When a PMU is
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de�ned on a tensor product of A-modules, we will call A a base algebra. See De�nition

3.1.) An analogue of the Kac-Takesaki operator for a topological groupoid G becomes a

PMU in the sense of [22]. Moreover, if G is a measured groupoid, that is, if it has a quasi-

invariant measure, then the operator constructed in [22] induces the fundamental isometric

isomorphismWG studied by Vallin [33]. As for inclusions of C�-algebras, Y. Watatani [36]

initiated a theory of indices for C�-subalgebras. It is interesting to study PMU's arising

from inclusions of C�-algebras in the framework of Watatani's index theory. Following the

idea of Enock and Vallin [10], the author [23] constructed a PMU in the sense of [22] from

an inclusion of �nite-dimensional C�-algebras in the framework of Watatani's index theory

when the inclusion satis�es certain conditions. There we had to assume a condition that

implies a commutativity of the base algebra.

In this paper, we will study a PE in full generality. Therefore, in the following, we will

not distinguish a PE from a generalization of a PE and we will not distinguish an MU from

a PMU. We will give a de�nition of a PE in full generality in the framework of Hilbert

C�-module. Especially, we will remove the assumption of the commutativity of the base

algebra, which was assumed in [22] and [23]. We will call a unitary operator on a Hilbert

C�-module a multiplicative unitary operator (MUO) when it satis�es this newly de�ned

PE. We will study an MUO for a general inclusion of C�-algebras. Then we will construct

an MUO from an inclusion of C�-algebras in the framework of Watatani's index theory

when the inclusion satis�es certain conditions. This construction generalizes that of [23].

We will remove the assumption in [23] which implies the commutativity of the base algebra.

We meet several diÆculties in de�ning a PE in the framework of Hilbert C�-modules. For

example, we do not have in general the following objects; a 
ip on an interior tensor product

of Hilbert C�-modules, a tensor product I 
 x as operator on an interior tensor product of

Hilbert C�-modules for an adjointable operator x and a modular involution on a Hilbert

C�-module. Therefore our de�nition of a PE is di�erent from the usual de�nition of a PE

though they are equivalent in special cases. When the base algebra is C , the MUO de�ned

in this paper coincides with the MU de�ned by Baaj and Skandalis [2] modulo the 
ip.

When the base algebra is commutative, the MUO coincides with the PMU studied in [22]

and [23] modulo the 
ip. Note that we cannot de�ne a 
ip when the base algebra is not

commutative.

The paper is organized as follows: Section 2 is a preliminary section. In Section 3,

we introduce a notion of a pentagonal equation for an adjointable operator on a Hilbert

C�-module in full generality (De�nition 3.1). We explain the relation between the MUO's

de�ned here and the usual MU's and PMU's. In Section 4, we introduce a notion of a

coproduct for a Hilbert C�-module. We construct such a coproduct from an MUO and

a �xed vector with a certain property. Then we de�ne a C�-algebra associated with the

coproduct. We study examples arising from a �nite groupoid, an r-discrete groupoid and

a compact groupoid. Other examples are studied in Section 7. In Section 5, we study a

general inclusion of C�-algebras A0 � A1. We do not need to assume that A0 and A1 are

unital. We suppose that there exists a Hilbert A0-module E1 and a �-homomorphism �1 of

A1 to LA0
(E1). Then we give a suÆcient condition for the existence of an MUO associated

with the inclusion (Theorem 5.3). In Section 6, we study an MUO when the inclusion is of

index-�nite type in the sense of Watatani [35]. We show that there exists an MUO when

the inclusion satis�es two conditions (P1) and (P2) (Corollary 6.2). As an application, we

show that there exists an MUO when A0 is �nite-dimensional and the inclusion satis�es

(P1) (Corollary 6.3). The condition (P1) corresponds to the condition that A0 � A1 is of

depth 2. In Section 7, we study the inclusionA0 � A0o�G, where A0 is a unital C
�-algebra

and A0 o� G is the crossed product of A0 by a �nite group G. We give an explicit formula

for the MUO associated with the inclusion (Theorem 7.3).
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2. Preliminaries

First, we recall some de�nitions and notations on Hilbert C�-modules. For details, we

refer the reader to [16]. Let A be a C�-algebra. A Hilbert A-module is a right A-module

E with an A-valued inner product < � ; � > such that E is complete with respect to the

norm k�k = k < �; � > k1=2. Note that the inner product is linear in its second variable. A

Hilbert A-module E is said to be full if the closure of the linear span of f< �; � >; �; � 2 Eg

is all of A. Let E and F be Hilbert A-modules. We denote by LA(E;F ) the set of bounded

adjointable operators from E to F and we denote by KA(E;F ) the closure of the linear span

of f��;�; � 2 F; � 2 Eg, where ��;� is the element of LA(E;F ) de�ned by ��;�(�) = � < �; � >

for � 2 E. We abbreviate LA(E;E) and KA(E;E) to LA(E) and KA(E) respectively. We

denote by IE the identity operator on E. We often omit the subscript E for simplicity. A

unitary operator U of E to F is an adjointable operator such that U�U = IE and UU� = IF .

Let A and B be C�-algebras. Suppose that E is a Hilbert A-module and that F is a

Hilbert B-module. Let � be a �-homomorphism of A to LB(F ). Then we can de�ne the

interior tensor product E 
� F [16, Chapter 4]. For � 2 E and � 2 F , we denote by � 
� �

the corresponding element of E
�F . We often omit the subscript �, writing �
� = �
� �

for simplicity. We have �a
 � = � 
 �(a)� for every a 2 A. Note that E 
� F is a Hilbert

B-module with a B-valued inner product such that

< �1 
 �1; �2 
 �2 >=< �1; �(< �1; �2 >)�2 >

for �1; �2 2 E and �1; �2 2 F . For x 2 LA(E), de�ne an element x
� IF of LB(E
�F ) by

(x 
� IF )(� 
 �) = (x�) 
 � [16, Chapter 4]. Let Ei be a Hilbert Ai-module for i = 1; 2; 3

and let �i be a �-homomorphism of Ai�1 to LAi (Ei) for i = 2; 3. De�ne a �-homomorphism

�2 
�3 � of A1 to LA3
(E2 
�3 E3) by (�2 
�3 �)(a) = �2(a) 
�3 IE3

for a 2 A1. We often

omit the subscript �3, writing �2 
 � = �2 
�3 � for simplicity. Then we have

(E1 
�2 E2) 
�3 E3 = E1 
�2
� (E2 
�3 E3):

We denote the above tensor product by E1 
�2 E2 
�3 E3.

For i = 1; 2, let Ei be a Hilbert A-module, let Fi be a Hilbert B-module and let �i be a �-

homomorphism of A to LB(Fi). We denote by LB((F1; �1); (F2; �2)) the set of elements x of

LB(F1; F2) such that x�1(a) = �2(a)x for all a 2 A. We abbreviate LB((F1; �1); (F1; �1))

to LB(F1; �1). We de�ne KB((F1; �1); (F2; �2)) and KB(F1; �1) similarly. The following

proposition is useful in later arguments. As for the notation in the following proposition,

we often omit the subscript �1, writing x
 y = x
�1 y for simplicity.

Proposition 2.1 ([22]). For x 2 LA(E1; E2) and y 2 LB((F1; �1); (F2; �2)), there exists

an element x 
�1 y of LB(E1 
�1 F1; E2 
�2 F2) such that (x 
�1 y)(� 
 �) = (x�) 
 (y�)

for � 2 E1 and � 2 F1.

3. Pentagonal equations for operators on Hilbert C�-modules

Let A be a C�-algebra, let E be a Hilbert A-module and let � and  be �-homomorphisms

of A to LA(E). We assume that � and  commute, that is, �(a) (b) =  (b)�(a) for all

a; b 2 A. We de�ne a �-homomorphism �
� of A to LA(E
�E) by (�
� )(a) = I
� (a)

and de�ne a �-homomorphism �
 � of A to LA(E 
 E) by (�
 �)(a) = I 
 �(a). We

often omit the subscripts � and  , writing �
 = �
�  and �
� = �
 � for simplicity.

Let W be an operator in LA(E 
 E;E 
� E). We assume that W satis�es the following



74 M. O'UCHI

equations;

W (�
 �)(a) = (�
� �)(a)W;(3.1)

W ( 
 �)(a) = (�
�  )(a)W;(3.2)

W (�
 �)(a) = ( 
� �)(a)W(3.3)

for all a 2 A. Then, by Proposition 2.1, we can de�ne following operators;

W 
 I 2 LA(E 
 E 
 E;E 
� E 
 E);

I 
�
�W 2 LA(E 
� E 
 E;E 
 E 
� E);

W 
� I 2 LA(E 
 E 
� E;E 
� E 
� E);

I 
 
�W 2 LA(E 
 E 
 E;E 
�
 (E 
� E));

I 
�
�W 2 LA(E 
�
� (E 
 E); E 
� E 
� E):

Since � and  commute, there exists an isomorphism �12 of E
�
 (E 
�E) onto E
�
�
(E 
 E) as Hilbert A-modules such that

�12(x1 
 (x2 
 x3)) = x2 
 (x1 
 x3)

for xi 2 E (i = 1; 2; 3). Then we can de�ne a pentagonal equation.

De�nition 3.1. Let W be an element of LA(E 
 E;E 
� E). Assume that W satis�es

the equations (3.1), (3.2) and (3.3). An operatorW is said to be multiplicative if it satis�es

the pentagonal equation

(W 
� I)(I 
�
�W )(W 
 I) = (I 
�
�W )�12(I 
 
�W ):(3.4)

The algebra A is called the base algebra of the multiplicative operator W .

Example 3.2. Suppose that A = C . Then E = H is a usual Hilbert space and LC (E) =

L(H) is the C�-albebra of bounded linear operators on H. Let � =  = id, where id(�) =

�IH for � 2 C . Then E 
id E is the usual tensor product H 
H. Let � 2 L(H 
H) be

the 
ip, that is, �(�
 �) = �
 �. Let W be an element of L(H 
H). Then the pentagonal

equation (3.4) has the following form:

(W 
 I)(I 
W )(W 
 I) = (I 
W )(� 
 I)(I 
W ):(3.5)

De�ne an operator fW by fW =W�. Then W satis�es the pentagonal equation (3.5) if and

only if fW satis�es the usual pentagonal equation ;fW12
fW13

fW23 = fW23
fW13:(3.6)

Example 3.3. In Example 3.2, if W = �, then the equation (3.5) is the Yang-Baxter

equation for the 
ip (cf. [15]);

(� 
 I)(I 
 �)(� 
 I) = (I 
 �)(� 
 I)(I 
 �):

Example 3.4. Let G be a locally compact Hausdor� group and � be a right Haar measure

on G. Set H = L2(G; �). De�ne an operator W on H 
 H by (W�)(g; h) = �(h; gh) for

� 2 Cc(G�G) and g; h 2 G. ThenW satis�es the pentagonal equation (3.5). The operatorfW in Example 3.2 is given by (fW�)(g; h) = �(gh; h), which is the Kac-Takesaki operator

and satis�es the usual pentagonal equation (3.6).

Suppose that A = C is a commutative C�-algebra. Let E be a Hilbert C-module and � be

a �-homomorphism of C to LC(E). De�ne a �-homomorphism  of C to LC(E) by  (c)� =

�c for � 2 E and c 2 C. In this situation, we have de�ned in [22] a generalized pentagonal

equation and we have called a unitary operator pseudo-multiplicative if it satis�es the

generalized pentagonal equation. We will describe the relation between the pentagonal
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equation (3.4) de�ned in this paper and the generalized pentagonal equation de�ned in [22].

We wrote E
CE for E
 E in [22]. Let fW be a unitary operator in LC(E
 E;E
�E).

Suppose that fW satis�es the following equation;

fW (�
 �)(c) = (�
� �)(c)fW;(3.7)

fW (�
 �)(c) = (�
� �)(c)fW(3.8)

for c 2 C. There exists an isomorphism �1 of E 
�
 (E 
�E) onto E
�
� (E
 E) such

that �1(� 
 (� 
 �)) = � 
 (� 
 �)) and there exists an isomorphism �2 of E 
 E 
� E

onto E 
�
� (E 
� E) such that �2(� 
 � 
 �) = � 
 (� 
 �). We de�ne an operator fW13

in LC(E 
�
 (E 
� E); E 
 E 
�E) by fW13 = ��2(I 
�
�
fW )�1. In [22], the generalized

pentagonal equation was de�ned as follows;

(fW 
� I)fW13(I 
�
 fW ) = (I 
�
�fW )(fW 
 I):(3.9)

There exists a 
ip � in LC(E 
 E) such that � (� 
 �) = � 
 �. Then we have the

following;

Proposition 3.5. Let W be an element of LC(E 
 E;E 
� E). Set fW = W� . Then

W satis�es the equation (3.4) if and only if fW satis�es the equation (3.9).

Proof. Note that we have  
� � = �
�� and  
 � = �
  . Then the equations (3.1) and

(3.8) are equivalent and the equations (3.3) and (3.7) are equivalent. The equation (3.2) is

always satis�ed in this situation. Then we have

(fW 
� I)fW13(I 
�
 fW )

= (W 
� I)(I 
�
�W )(W 
 I)(I 
�
 � )(� 
 I)(I 
�
 � );

(I 
�
� fW )(fW 
 I)

= (I 
�
�W )�12(I 
 
�W )(� 
 I)(I 
 
� � )(� 
 I):

Then the assertion follows from the following equation

(I 
�
 � )(� 
 I)(I 
�
 � ) = (� 
 I)(I 
 
� � )(� 
 I):

Example 3.6. Let G be a second countable locally compact Hausdor� groupoid. We de-

note by s (resp. r) the source (resp. range) map of G. We denote by G(0) the unit space

of G and by G(2) the set of composable pairs. We set Gu = s�1(u) for u 2 G(0). Let

f�u;u 2 G(0)g be a right Haar system of G. As for groupoids and groupoid C�-algebras,

see Renault [24]. (See also [19] and [22] for notations and de�nitions used here.) For an

arbitrary topological space X, we denote by Cc(X) the set of complex-valued continuous

functions on X with compact supports and by C0(X) the commutative C�-algebra of con-

tinuous functions on X vanishing at in�nity with the supremum norm k � k1. Let C be the

commutative C�-algebra C0(G
(0)) and let eE be the linear space Cc(G). Then eE is a right

C-module with the right C-action de�ned by (�c)(x) = �(x)c(s(x)) for � 2 eE, c 2 C and

x 2 G. We de�ne a C-valued inner product of eE by

< �; � > (u) =

Z
G

�(x)�(x) d�u(x)

for �; � 2 eE and u 2 G(0). We denote by E the completion of eE by the norm k�k =

k < �; � > k1=2. Then E is a full right Hilbert C-module. De�ne non-degenerate injective

�-homomorphisms � and  of C to LC(E) by (�(c)�)(x) = c(r(x))�(x) and  (c)� = �c
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respectively for c 2 C, � 2 eE and x 2 G. Set G2(ss) = f(x; y) 2 G2; s(x) = s(y)g. We

de�ne C-valued inner products of Cc(G
2(ss)) and Cc(G

(2)) by

< f1; g1 > (u) =

ZZ
G2(ss)

f1(x; y)g1(x; y) d�u(x)d�u(y);

< f2; g2 > (u) =

ZZ
G(2)

f2(x; y)g2(x; y) d�r(y)(x)d�u(y)

respectively for u 2 G(0), f1; g1 2 Cc(G
2(ss)) and f2; g2 2 Cc(G

(2)). Then Cc(G
2(ss)) and

Cc(G
(2)) are dense pre-Hilbert C-submodules of E
 E and E
�E respectively. De�ne a

unitary operator W in LC(E 
 E;E 
� E) by (W�)(x; y) = �(y; xy) for � 2 Cc(G
2(ss)),

(x; y) 2 G(2). Set fW = W� . We have (fW�)(x; y) = �(xy; y) for � 2 Cc(G
2(ss)), (x; y) 2

G(2). It follows from [22] thatfW satis�es the equation (3.9). By Proposition 3.5,W satis�es

the pentagonal equation (3.4).

When G is a measured groupoid, that is, when there exists a quasi-invariant measure on

G(0), we discussed in [22] the relation between the operator fW constructed above and the

fundamental operator studied by Yamanouchi in [37, x2] and by Vallin in [33, x3]. For the

convenience to the reader, we will brie
y describe the relation between them. As for the

following arguments, compare with Yamanouchi [36, xx1,2]. Note that he started from a left

Haar system of G and that the inner products in [36] is linear in the �rst variable. On the

other hand, we have started from a right Haar system and the inner products here are linear

in the second variable. Let � be a quasi-invariant measure on G(0) [24, De�nition 1.3.2].

We suppose that the support of � is G(0). We de�ne a measure � on G by � =
R
�u d�(u)

and de�ne a complex-valued inner product < �; � >� on E by

< �; � >�=

Z
G(0)

< �; � > (u) d�(u)

for �; � 2 E. We denote by �(E) the completion of E by the norm induced from < �; � >�.

Then we have �(E) = L2(G; �). Let �u (u 2 G(0)) and ��1 be the images of �u and

�, respectively, by the inverse map x 7! x�1. Set � = d�=d��1 and G2(rr) = f(x; y) 2

G2; r(x) = r(y)g. We de�ne measures �1, �2, �3 and �4 on G2(ss), G(2), G2(rr) and G(2)

respectively by

Z
G2(ss)

f1(x; y) d�1(x; y) =

ZZZ
f1(x; y) d�u(x)d�u(y)d�(u);Z

G(2)

f2(x; y) d�2(x; y) =

ZZZ
f2(x; y) d�r(y)(x)d�u(y)d�(u)Z

G2(rr)

f3(x; y) d�3(x; y) =

ZZZ
f3(x; y) d�

u(x)d�u(y)d�(u)Z
G(2)

f4(x; y) d�4(x; y) =

ZZZ
f4(x; y)�(x)�1 d�u(x)d�

u(y)d�(u)

for f1 2 Cc(G
2(ss)), f2 2 Cc(G

(2)), f3 2 Cc(G
2(rr)) and f4 2 Cc(G

(2)). We set Z =

L1(G(0); �). By extending the right action and the left action � of C on E, we have actions

of Z on �(E). That is, we have (f1�f2)(x) = f1(r(x))�(x)f2(s(x)) for f1; f2 2 Z, � 2 �(E)

and x 2 G. Then �(E) = L2(G; �) is a Z-bimodule. We denote by L2(G; �)Z 
 L2(G; �)Z
the relative tensor product of the right Z-module L2(G;�) with itself. (cf. [27]). We denote
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other relative tensor products of right or left Z-modules L2(G; �) similarly. Then we have

L2(G; �)Z 
L2(G; �)Z = L2(G2(ss); �1) = �(E 
C E);

L2(G; �)Z 
Z L
2(G; �) = L2(G(2); �2) = �(E 
� E);

ZL
2(G; ��1)
Z L

2(G; ��1) = L2(G2(rr); �3);

L2(G; ��1)Z 
Z L
2(G; ��1) = L2(G(2); �4):

Therefore we can extend the above operator fW to the unitary operator W of L2(G; �)Z 


L2(G; �)Z onto L2(G; �)Z 
Z L
2(G; �). De�ne a unitary operator

j1 : L
2(G; �)Z 
L2(G; �)Z �! ZL

2(G; ��1)
Z L
2(G; ��1)

by (j1�)(x; y) = �(y�1; x�1) for (x; y) 2 G2(rr), and de�ne a unitary operator

j2 : L
2(G; �)Z 
Z L

2(G; �) �! L2(G; ��1)Z 
Z L
2(G; ��1)

by (j2�)(x; y) = �(y�1; x�1) for (x; y) 2 G(2). Then we have (j2Wj�1�)(x; y) = �(x; xy) for

(x; y) 2 G(2). Therefore j2Wj�1 coincides with the fundamental unitary operator W in [36,

x2] and coincides with the fundamental isometric isomorphismWG in [33, x3].

4. Coproducts for Hilbert C�-modules

It is known that MU's and PMU's give coproducts in several situations (cf. [2], [10], [21],

[22], [32], [33], [36]). In this section, we construct a coproduct of a Hilbert C�-module from

an MUO and a �xed vector with a certain property. Then we de�ne a C�-algebra associated

with the coproduct. There are several notions of Hopf C�-algebras. For example, we refer

the reader to [1], [2], [3] and [31]. The author [22] also suggested a notion of a Hopf C�-

algebra on a Hilbert C�-module. But there are several diÆculties in de�ning a notion of

a Hopf C�-algebra on a Hilbert C�-module. To �nd a more natural notion of a Hopf C�-

algebra on a Hilbert C�-module, we have to study more closely C�-algebras associated with

MUO's. The results in this section will be useful for the study in that direction.

First we introduce a notion of coproducts for Hilbert C�-modules. We denote by E a

Hilbert A-module and by � a �-homomorphism of A to LA(E).

De�nition 4.1. Let Æ be an operator in LA(E;E 
� E). We say that Æ is a coproduct of

(E;�) if Æ satis�es the following equations;

Æ�(a) = (�
 �)(a)Æ for all a 2 A;(4.10)

(Æ 
 IE)Æ = (IE 
 Æ)Æ:(4.11)

Suppose that Æ is a coproduct for E. For �; � 2 E, we de�ne a product �� in E by

�� = Æ�(� 
� �). It follows from (4.11) that this product is associative. Then E is a right

A-algebra with this product. Note that we have k��k � kÆkk�kk�k. Therefore, if kÆk � 1,

then E is a Banach algebra.

Let  be a �-homomorphism of A to LA(E) such that � and  commute and let W 2

LA(E 
 E;E 
� E) be a multiplicative unitary operator. For an element �0 of E, we say

that �0 has the property (E1) if it satis�es the following conditions;

(i) k�0k = 1.

(ii) W (�0 
 �0) = �0 
� �0.

(iii) For every � 2 E, there exists an element ��0(�) of LA(E) such that

< �; ��0(�)� >=< W (�0 
 �); � 
� � >

for every �; � 2 E.
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Fix an element �0 with the property (E1). De�ne an operator Æ = Æ�0 in LA(E;E 
� E)

by Æ(�) = W (�0 
 �). Then we have kÆk � 1 and Æ�(� 
 �) = ��0(�)�. Since W satis�es

the pentagonal equation, we can show that Æ is a coproduct of (E;�). We denote by � � �

the product of � and � associated with Æ. Then we have ��0(�)� = � � �. Moreover the map

��0 of E to LA(E) is a representation of the Banach algebra (E; �). We denote by B(�0)

the closure of the set consisting of elements of the form ��0(�) with � 2 E. Then B(�0)

is a Banach subalgebra of LA(E). We denote by C�(B(�0)) the C
�-subalgebra of LA(E)

generated by B(�0).

For an element �0 of E, we say that �0 has the property (E2) if it satis�es the following

conditions;

(i) k�0k = 1.

(ii) W (�0 
 �0) = �0 
� �0.

(iii) For every � 2 E, there exists an element b��0(�) of LA(E) such that

< �; b��0(�)� >=< W �(�0 
� �); � 
 � >

for every �; � 2 E.

Fix an element �0 with the property (E2). De�ne an operator bÆ = bÆ�0 in LA(E;E 
 E)

by bÆ(�) = W �(�0 
� �). Since W satis�es the pentagonal equation, we can show that bÆ is
a coproduct of (E; ). We denote by � � � the product of � and � associated with bÆ. Then
we have b��0(�)� = � � �. Moreover the map b��0 of E to LA(E) is a representation of the

Banach algebra (E; �). We denote by bB(�0) the closure of the set consisting of elements of

the form b��0(�) with � 2 E. Then bB(�0) is a Banach subalgebra of LA(E). We denote by

C�( bB(�0)) the C�-subalgebra of LA(E) generated by bB(�0).
In this section, we consider examples arising from a �nite groupoid, an r-discrete groupoid

and a compact groupoid. Other examples are considered in Section 7. Let G be a second

countable locally compact Hausdor� groupoid. We keep the notations in Example 3.6

except for C0(G
(0)). Here we denote by A the C�-algebra C0(G

(0)). Let W 2 LA(E 
 

E;E 
� E) be the multiplicative unitary operator constructed in Example 3.6. Then we

have (W�)(x; y) = �(y; xy) for � 2 Cc(G
2(ss)) and (x; y) 2 G(2). Note that we have

(W ��)(x; y) = �(yx�1; x) for � 2 Cc(G
(2)) and (x; y) 2 G2(ss). We denote by C�r (G) the

reduced groupoid C�-algebras. (As for the de�nition of the reduced groupoid C�-algebra,

see [19], [22].)

Example 4.2. Let G be a �nite groupoid and let f�ug be a right Haar system such that

�u is a counting measure on Gu. Then we have A = C(G(0)) and E = C(G). The A-

valued inner product of E is given by < �; � > (u) =
P

x2Gu
�(x)�(x). We have E 
 E =

C(G2(ss)) and the A-valued inner product of E 
 E is given by

< �; � > (u) =
X

s(x)=s(y)=u

�(x; y)�(x; y):

We have E 
� E = C(G(2)) and the A-valued inner product of E 
� E is given by

< �; � > (u) =
X

s(x)=r(y)
s(y)=u

�(x; y)�(x; y):

We set M = maxfjGuj;u 2 G(0)g, where jGuj is the number of elements of Gu. De�ne an

element �0 of E by �0(x) =M�1=2 for all x 2 G. Then �0 has the properties (E1) and (E2).
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We have ��0(�)� =M�1=2� � �, where � � � is the convolution product de�ned by

(� � �)(x) =
X

y2Gs(x)

�(xy�1)�(y):

Therefore we have B(�0) = C�r (G). Since we have b��0 (�) = ��;�0 , we have C�( bB(�0)) =
KA(E). De�ne an element �0 of E by �0 = �G(0) , where �G(0) is the characteristic function

of G(0). Then �0 has the properties (E1) and (E2). Since we have ��0(�) = ��;�0 , we have

C�(B(�0)) = KA(E). We have b��0(�) = m(�), where m(�) is the multiplication operator

on E de�ned by (m(�)�)(x) = �(x)�(x). Therefore we have bB(�0) = C(G).

Example 4.3. Let G be an r-discrete groupoid [24, I.2.6]. Note that G(0) is open and

closed in G and that Gu is discrete for every u 2 G(0). Let f�ug be a right Haar system

such that �u is the counting measure on Gu. Since we have k�k1 � k�kE for � 2 Cc(G), E

is a subspace of C0(G). Fix an element f of A such that kfk1 = 1. De�ne an element �0 of

E by �0 = f�G(0) . Then �0 has the properties (E1) and (E2). We have ��0(�) = ��;�0 . If the

support of f is G(0), then we have C�(B(�0)) = KA(E). We have b��0(�) = m(�(f )�), where

m(�) is the multiplication operator on E. If f is real-valued, then we have b��0(�)� = b��0(�).
Therefore, if f is real-valued and the support of f is G(0), then we have bB(�0) = C0(G).

Example 4.4. Let G be a compact groupoid and let f�ug be a right Haar system such

that �u(G) = 1 for all u 2 G(0). De�ne an element �0 of E by �0(x) = 1 for all x 2 G.

Then �0 has the properties (E1) and (E2). Note that C(G) is a dense subspace of E. For

�; � 2 C(G), we have ��0(�)� = � � �, where � � � is the convolution product de�ned by

(� � �)(x) =

Z
�(xy�1)�(y) d�s(x)(y):

Therefore we have B(�0) = C�r (G). Since we have b��0 (�) = ��;�0 , we have C�( bB(�0)) =
KA(E).

5. Operators associated with inclusions of C�-algebras

In this section, we study a multiplicative unitary operator associated with a general

inclusion of C�-algebras. Let A1 be a C
�-algebra and let A0 be a C

�-subalgebra of A1. In

this section, we do not need to assume that A1 and A0 are unital. Let E1 be a Hilbert

A0-module and let �1 be a �-homomorphism of A1 to LA0
(E1). We denote by �0 the

restriction of �1 to A0. Set E2 = E1 
�0 E1 and de�ne a �-homomorphism �2 of A1 to

LA0
(E2) by �2 = �1 
 �. In general, we set En = En�1 
�0 E1. We denote by A the C�-

algebra LA0
(E1; �1) and by E the normed space LA0

((E1; �1); (E2; �2)). Then E is a right

A-module with the right A-action de�ned by (xa)(�) = x(a�) for x 2 E, a 2 A and � 2 E1.

De�ne an A-valued inner product of E by < x; y >= x�y for x; y 2 E. Then E is a Hilbert

A-module. De�ne �-homomorphisms � and  of A to LA(E) by (�(a)x)(�) = (a 
 I)x(�)

and ( (a)x)(�) = (I 
 a)x(�) respectively for a 2 A, x 2 E and � 2 E1. We denote by i the

inclusion map of A into LA0
(E1).

Proposition 5.1. There exists an A0-linear bounded map U of E 
i E1 to E2 such that

U(x 
 �) = x(�) for x 2 E and � 2 E1. Moreover the following equalities hold:

< U�;U� > =< �; � > for �; � 2 E 
i E1;

U(�(a) 
 I) = (a 
 I)U for a 2 A;

U( (a) 
 I) = (I 
 a)U for a 2 A;

U(I 
 �1(a)) = �2(a)U for a 2 A1:
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The proof is straightforward and we omit it. Note that U may not be adjointable. We

can de�ne the following A0-linear bounded operators;

I 
�
� U : E 
� E 
i E1 �! E 
i
� E2;

U 
�0 I : E 
i
� E2 �! E3;

I 
 
� U : E 
 E 
i E1 �! E 
�
i E2;

I 
�
�0 U : E1 
�
�0 (E 
i E1) �! E3:

There exists an isomorphism S of E
�
iE2 onto E1
�
�0 (E
iE1) as Hilbert A0-modules

such that S(x
 (�
�)) = �
 (x
�) for x 2 E and �; � 2 E1. De�ne an A0-linear bounded

operator V of E 
� E 
i E1 to E3 by

V = (U 
�0 I)(I 
�
� U);

and de�ne an A0-linear bounded operator eV of E 
 E 
i E1 to E3 byeV = (I 
�
�0 U)S(I 
 
� U):

We summarize the properties of V and eV in the following proposition. The proof is easy

and we omit it.

Proposition 5.2. The operators V and eV satis�es the following equalities;

< V �; V � > =< �; � > for �; � 2 E 
� E 
i E1;

< eV �; eV � > =< �; � > for �; � 2 E 
 E 
i E1;

V (x 
 y 
 �) = (x 
�0 IE1
)y(�) for x; y 2 E and � 2 E1;eV (x 
 y 
 �) = (IE1


�0 x)y(�) for x; y 2 E and � 2 E1:

In the rest of this section, we will prove the following theorem.

Theorem 5.3. Let U , V and eV be as above. Suppose that U is unitary and suppose that

there exists an element W of LA(E 
 E;E 
� E) such that V � eV =W 
 IE1
. Then W is

a multiplicative unitary operator.

Since U is unitary by the assumption, V and eV are also unitary operators. By straight-

forward calculations, we have, for every a 2 A,

V (�(a) 
 IE 
 IE1
) = (a
 IE1


 IE1
)V;

V (IE 
  (a) 
 IE1
) = (IE1


 IE1

 a)V;

V ( (a) 
 IE 
 IE1
) = (IE1


 a
 IE1
)V;eV (IE 
 �(a) 
 IE1

) = (a
 IE1

 IE1

)eV ;eV ( (a) 
 IE 
 IE1
) = (IE1


 IE1

 a)eV ;eV (�(a) 
 IE 
 IE1

) = (IE1

 a
 IE1

)eV :
Therefore W satis�es the equations (3.1), (3.2) and (3.3). For n � 2, we set

E
�n = E 
� � � � 
� E (n times )

and we de�ne E
 n similarly. It follows from Proposition 5.1 that we have U(� 
 �)(a) =

(i 
 �)(a)U for a 2 A. Therefore we can de�ne the following operators;

IE 
 IE 
U 2 LA0
(E
�3 
i E1; E


�2 
i
� E2);

IE 
U 
 IE1
2 LA0

(E
�2 
i
� E2; E 
i
�
� E3);

U 
 IE1

 IE1

2 LA0
(E 
i
�
� E3; E4):
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We de�ne an element U3 in LA0
(E
�3 
i E1; E4) by

U3 = (U 
 IE1

 IE1

)(IE 
 U 
 IE1
)(IE 
 IE 
 U):

Since U is unitary by the assumption, U3 is also a unitary operator. To prove Theorem 5.3,

it is enough to prove the following proposition.

Proposition 5.4. Set

W1 = (W 
� I)(I 
�
�W )(W 
 I);

W2 = (I 
�
�W )�12(I 
 
�W ):

Then the following equation holds;

U3(W1 
i IE1
)(x 
 y 
 z 
 �)

= U3(W2 
i IE1
)(x 
 y 
 z 
 �)

= (IE1

 IE1


 x)(IE1

 y)z�:

for x; y; z 2 E and � 2 E1.

In the rest of this section, we will prove Proposition 5.4. Let

S : E 
 E 
�
i E2 �! E1 
�
�
�0 (E 
 E 
i E1)

be an isomorphism de�ned by S (x 
 � 
 �) = � 
 (x 
 �) for x 2 E 
 E and �; � 2 E1,

and let

S� : E 
� E 
�
i E2 �! E1 
�
�
�0 (E 
� E 
i E1)

be an isomorphism de�ned by S�(x 
 � 
 �) = � 
 (x 
 �) for x 2 E 
� E and �; � 2 E1.

Set U (13) = (I 
�
�0 U)S.

Lemma 5.5. We have the following equalities for x; y; z 2 E and � 2 E1;

U3((W 
� I)
i IE1
) = (eV 
�0 IE1

)(IE
 E 
�
� U);(5.12)

((I 
�
�W ) 
i IE1
)((W 
 I) 
i IE1

)(x 
 y 
 z 
 �)(5.13)

= (IE 
�
i
� V
�)(IE 
�
� U

(13))S��(IE1

�0
�
� V

�)(IE1

 IE1


 x)(IE1

 y)z�;

(IE 
�
i
� V
�)(IE 
�
� U

(13))S��(IE1

�0
�
� V

�)(5.14)

= (IE
 E 
i
� U
�)(eV � 
�0 IE1

):

Proof. Since we have U3 = (V 
�0 IE1
)(IE 
 IE 
 U), we have the equation (5.12). The

equation (5.13) follows from the following equations;

((I 
�
�W ) 
i IE1
)

= (IE 
�
i
� V
�)(IE 
�
� U

(13))(IE 
�
� (I 
 
� U));

(IE 
�
� (I 
 
� U))((W 
 I)
i IE1
)(x 
 y 
 z 
 �)

= (W 
�
i IE2
)(x 
 y 
 (z�));

W 
�
i IE2
= S��(IE1


�
�
�0 V
� eV )S ;

(IE1

�
�
�0

eV )S (x 
 y 
 (z�)) = (IE1

 IE1


 x)(IE1

 y)z�:
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The equation (5.14) follows from the following equations;

IE 
�
i
� V
� = (IE
 E 
i
� U

�)(IE 
�
i
� (U
� 
�0 IE1

));

IE 
�
� U
(13) = (IE 
�
�
� (IE1


�
�0 U))(IE 
�
� S);

IE1

�0
�
� V

�

= (IE1

�
�0
� (IE 
i
� U

�))(IE1

�0
�
� (U

�

�0 IE1

));

(IE 
�
�
� (IE1

�
�0 U))(IE 
�
� S)S

�

�(IE1

�
�0
� (IE 
i
� U

�))

= S� 
�0 IE1

(IE1

�
�0
� (U 
�0 IE1

))(S 
�0 IE1
)(IE 
 
�
� (U 
�0 IE1

))

= eV 
�0 IE1
:

Note that we have

(IE 
 
�
� (U 
�0 IE1
))� = IE 
�
i
� (U

� 
�0 IE1
);

(IE1

�
�0
� (U 
�0 IE1

))� = IE1

�0
�
� (U

� 
�0 IE1
):

Lemma 5.6. We have the following equalities for x 2 E and �i 2 E1 (i = 1; 2; 3);

W2 
i IE1
= (IE 
�
�
� V

� eV )(�12 
i IE1
)(IE 
 
�
� V

� eV );(5.15)

U3(IE 
i
�
� V
�) = U 
 IE1


 IE1
;(5.16)

(IE 
�
�
� eV )(�12 
i IE1
)(IE 
�
�
i V

�)(x 
 (�1 
 �2 
 �3))(5.17)

= U�(�1 
 �2)
 x�3:

Proof. The equation (5.15) follows from the assumption V � eV = W 
 IE1
. The equation

(5.16) follows from the equation

IE 
i
�
� V
� = (IE 
 IE 
U�)(IE 
 U� 
 IE1

):

We will show the equation (5.17). De�ne a unitary operator

S0 : E 
�
�
i (E 
i
� E2) �! E 
�
i
� (E 
�
i E2)

by

S0 = (IE 
�
�
� (I 
 
� U))(�12 
i IE1
)(IE 
�
�
i (IE 
i
� U

�)):

Then we have S0(x 
 (y 
 �1 
 �2)) = y 
 (x 
 (�1 
 �2)) for x; y 2 E and �1; �2 2 E1.

Therefore we have

(IE 
�
�
� eV )(�12 
i IE1
)(IE 
�
�
i (IE 
i
� U

�))(x 
 (y 
 �1 
 �2))

= (IE 
�
i
� U
(13))S0(x 
 (y 
 �1 
 �2))

= (y 
 �1)
 x�2:

Then the equation (5.17) follows from the following equation

IE 
�
�
i V
� = (IE 
�
�
i (IE 
i
� U

�))(IE 
�
�
i (U
� 
�0 IE1

)):
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Proof of Proposition 5.4. Let x; y; z be elements of E and let � be an element of E1. It

follows from Lemma 5.5 that we have

U3(W1 
i IE1
)(x 
 y 
 z 
 �)

= U3((W 
� I)
i IE1
)((I 
�
�W ) 
i IE1

)((W 
 I) 
i IE1
)(x 
 y 
 z 
 �)

= U3((W 
� I)
i IE1
)(IE
 E 
i
� U

�)(eV � 
�0 IE1
)(IE1


 IE1

 x)(IE1


 y)z�

= (IE1

 IE1


 x)(IE1

 y)z�:

It follows from (5.16) and (5.17) that we have

U3(IE 
�
�
� V
� eV )(�12 
i IE1

)(IE 
�
�
i V
�)(x 
 (�1 
 �2 
 �3))

= (U 
 IE1

 IE1

)(U�(�1 
 �2) 
 x�3)

= (IE1

 IE1


 x)(�1 
 �2 
 �3):

for �i 2 E1 (i = 1; 2; 3). Then by (5.15) we have

U3(W2 
i IE1
)(x 
 y 
 z 
 �)

= U3(IE 
�
�
� V
� eV )(�12 
i IE1

)(IE 
 
�
� V
� eV )(x 
 y 
 z 
 �)

= U3(IE 
�
�
� V
� eV )(�12 
i IE1

)(IE 
�
�
i V
�)(x 
 f(IE1


 y)z�g)

= (IE1

 IE1


 x)(IE1

 y)z�:

6. Inclusions of index finite-type

In this section, we study a multiplicative unitary operator associated with an iclusion of

C�-algebras when the inclusion is of index-�nite type in the sense of Watatani [35]. Let A1
be a C�-algebra with the identity 1, let A0 be a C

�-subalgebra of A1 which contains 1 and

let P1 : A1 �! A0 be a faithful positive conditional expectation. We assume that P1 is of

index-�nite type, that is, there exists a family ui 2 A1 (i = 1; � � � ; n) such that

nX
i=1

uiP1(u
�

i a) =

nX
i=1

P1(aui)u
�

i = a

for every a 2 A1 [35, 1.2.2, 2.1.6]. Then the index of P1 is given by Index P1 =
P

i uiu
�

i

which is an element of the center of A1. We denote by E1 a right A0-module A1 whose

right A0-action is the product in A1. De�ne an A0-valued inner product of E1 by < a; b >=

P1(a
�b) for a; b 2 E1. It follows from [35, 2.1.5] that there exists a positive number � such

that

�kakA1
� kakE1

� kakA1

for every a 2 E1 = A1, where k � kA1
and k � kE1

denote the norms of A1 and E1 respec-

tively. Therefore E1 is complete and is a Hilbert A0-module. De�ne a unital injective

�-homomorphism �1 : A1 �! LA0
(E1) by �1(a)b = ab for a 2 A1 and b 2 E1, where ab is

the product in A1. Then we can construct A, E, � and  as in Section 5. Moreover we can

construct the operators U , V and eV .
We denote by A2 the C�-algebra KA0

(E1) (cf. [35, 2.1.2, 2.1.3]). Note that we have

KA0
(E1) = LA0

(E1). In fact, we have I =
Pn
i=1 �ui;ui in LA0

(E1). We identify �(A1) with

A1 and we have inclusions A0 � A1 � A2, which is the basic construction ([35, 2.2.10], see

also [11, Chapter 2]). Let P2 : A2 �! A1 be the dual conditional expectation of P1, that is,

P2(�a;b) = ( Index P1)
�1ab� for a; b 2 A1 [35, 2.3.3]. Note that P2 and P1 ÆP2 are of index-

�nite type [35, 1.7.1, 2.3.4]. We denote by F2 a right A0-module A2 whose right A0-action

is the product in A2. De�ne an A0-valued inner product of F2 by < �; � >= P1 ÆP2(�
��) for
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�; � 2 F2 = A2. Then F2 is a Hilbert A0-module. De�ne a unital injective �-homomorphisme�2 : A1 �! LA0
(F2) by e�2(a)� = a� for a 2 A1 and � 2 F2, where a� is the product in A2.

De�ne a linear map � : E2 �! F2 by

�(a 
 b) = �a;b��1(( Index P1)
1=2)

for a; b 2 E1. Then � is an isomorphism between the Hilbert A0-modules. Moreover we

have �(�2(a1)�) = e�2(a1)�(�) for a1 2 A1 and � 2 E2.
We denote by A00 \A2 the C

�-algebra fa 2 A2; ab = ba for every b 2 A0g and denote by

lin A1(A
0

0 \A2) the closed linear subspace of A2 generated by elements of the form ab with

a 2 A1 and b 2 A00 \ A2. For a 2 A1, we denote by C(a) the norm closure of the convex

hull of the set consisting of elements of the form uau� with unitary elements u of A0. We

consider the following two conditions:

(P1) A2 = lin A1(A
0

0 \A2).

(P2) A00 \ C(a) 6= ; for every a 2 A1.

The condition (P1) corresponds to the condition that A0 � A1 is of depth 2. For inclusions

of factors, this fact is well-known (cf. [17], [29]). As for inclusions of C�-algebras, the

author is not sure that (P1) coincides precisely with the condition that A0 � A1 is of depth

2. Therefore we avoid the term \of depth 2".

In the following theorem, we show that the conditions (P1) and (P2) imply the assump-

tions of Theorem 5.3. Thus we have a multiplicative unitary operator when these conditions

are satis�ed.

Theorem 6.1. (1) The operator U is unitary if and only if the condition (P1) is satis�ed.

(2) Suppose that U is unitary and that the condition (P2) is satis�ed. Then there exists

an elment W of LA(E 
 E;E 
� E) such that V � eV =W 
 IE1
.

We mention some consequences of Theorem 6.1 before proving it.

Corollary 6.2. Suppose that the conditions (P1) and (P2) are satis�ed. Then there exists

a multiplicative unitary operator W in LA(E 
 E;E 
� E) such that V � eV =W 
 IE1
.

Corollary 6.3. Suppose that A0 is �nite-dimensional and that the condition (P1) is satis-

�ed. Then there exists a multiplicative unitary operator W in LA(E 
 E;E 
� E) such

that V � eV =W 
 IE1
.

Proof. It is enough to show that (P2) is satis�ed if A0 is �nite-dimensional. Let G be the

group of unitary elements of A0. Since A0 is �nite-dimensional, G is a compact group with

respect to the norm topology. Therefore there exists a left Haar measure � of G such that

�(G) = 1. For a 2 A1, set

ea = Z
G

uau� d�(u):

By a standard argument, we know that ea is an element of C(a). We can also prove that ea
belongs to A00 \A1. Thus (P2) is satis�ed.

Now we will prove Theorem 6.1. The following proposition is useful in later arguments.

Proposition 6.4. (1) There exists a bijection q1 of A00 \A1 onto A such that q1(a)b = ba

for a 2 A00 \A1 and b 2 E1, where ba is the product in A1.

(2) There exists a bijection q2 of A00 \ A2 onto E such that q2(a)b = ��1(ba) for a 2

A00 \A2 and b 2 E1, where ba is the product in A2.

Proof. (1) Since P1 is of index-�nite type, it follows from [35, 1.11.3] that there exists an

automorphism �1 of the algebra A00 \ A1 such that P1(ab) = P1(b�1(a)) for a 2 A00 \ A1
and b 2 A1. (Note that �1 is not �-preserving in general.) For a 2 A00 \ A1, the map
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q1(a) : E1 �! E1 is adjointable. In fact we have q1(a)
� = q1(�1(a

�)). Thus q1(a) is an

element of LA0
(E1). It is clear that q1(a) commutes with �1. Therefore q1(a) is an element

of A. On the other hand, let x be an element of A. Set a = x(1). Then a belongs to A00\A1
and we have q1(a) = x.

(2) There exists an automorphism �2 of the algebra A00 \ A2 such that P1 Æ P2(ab) =

P1 Æ P2(b�2(a)) for a 2 A00 \ A2 and b 2 A2. For a 2 A00 \ A2, the map q2(a) : E1 �! E2
is adjointable. In fact we have, for � 2 E2, q2(a)

�� = P2(�(�)�2(a
�)), where �(�)�2(a

�) is

the product in A2. Thus q2(a) is an element of LA0
(E1; E2). Since we have q2(a)�1(a1) =

�2(a1)q2(a) for every a1 2 A1, q2(a) is an element of E. On the other hand, let x be an

element of E. Set a = �(x(1)). Then a belongs to A00 \A2 and we have q2(a) = x.

Proof of Theorem 6.1 (1). Suppose that U is a unitary operator. Since U is surjective, for

every a 2 A2 and every " > 0, there exist xj 2 E and aj 2 E1 (j = 1; � � � ; k) such that

kU(

kX
j=1

xj 
 aj)� ��1(a)k < ":

It follows from Proposition 6.4 that there exists bj 2 A00 \ A2 such that q2(bj) = xj for

j = 1; � � � ; k. Then we have

k

kX
j=1

ajbj � akF2 = k

kX
j=1

xj(aj )� ��1(a)kE2
< ":

Note that the norm of the Hilbert C�-module F2 and the norm of the C�-algebra A2 are

equivalent. Therefore the linear space generated by ab with a 2 A1 and b 2 A
0

0\A2 is dense

in A2.

Conversely, suppose that the condition (P1) is satis�ed. Since the norms of F2 and A2
are equivalent, for every a 2 A2 and every " > 0, there exist aj 2 A1 and bj 2 A00 \ A2
(j = 1; � � � ; k) such that

k

kX
j=1

ajbj � akF2 < ":

Set xj = q2(bj) 2 E. Then we have

kU(

kX
j=1

xj 
 aj)� ��1(a)k < ":

Therefore U(E
iE1) is dense in E2. Since U is isometry by Proposition 5.1, U is surjective.

Therefore U is invertible. Since we have < U�;U� >=< �; � > by Proposition 5.1, U is

adjointable and we have U� = U�1. Thus U is a unitary operator.

In the rest of this section, we will prove the statement (2) of Theorem 6.1. We suppose

that U is unitary and that the condition (P2) is satis�ed. Before proving the statement, we

prepare several lemmas. We �x an arbitrary element � of E
 E and set � = V � eV (�
 1),

where 1 is the identity element of A1 = E1.

Lemma 6.5. Let � and � be as above. Then, for every j = 1; 2; � � � , there exist non-zero

elements �jk 2 E 
� E and bjk 2 A
0

0 \A1 � E1 (k = 1; � � � ; nj) such that





njX
k=1

�jk 
 bjk � �






 �! 0 (j �!1):
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Proof. Let u be a unitary element of A0. For � 2 E 
� E 
i E1, set

Ad u(�) = (IE
�E 
 �1(u))�u
�:

Since we have, for every a 2 A1,

V � eV (IE
 E 
 �1(a)) = (IE
�E 
 �1(a))V
� eV ;(6.18)

we have Ad u(�) = � for every unitary element u 2 A0. For every j = 1; 2; � � � , there exist

non-zero elements �jk 2 E 
� E and ajk 2 E1 (k = 1; � � � ; nj) such that

njX
k=1

�jk 
 ajk �! �:

We set �j =
Pnj

k=1 �jk 
 ajk. Note that we have

Ad u(�j) =

njX
k=1

�jk 
 (uajku
�):

We �x j. It follows from the condition (P2) that there exists an element bj1 of C(aj1)\A
0

0.

Then there exist unitary elements u
(1)

l of A0 and t
(1)

l > 0 (l = 1; � � � ;m1) with
Pm1

l=1 t
(1)

l = 1

such that 




bj1 �
m1X
l=1

t
(1)

l u
(1)

l aj1(u
(1)

l )�






 � (jnjk�j1k)
�1:

Set

a
(1)

jk =

m1X
l=1

t
(1)

l u
(1)

l ajk(u
(1)

l )�;

�
(1)
j = �j1 
 bj1 +

njX
k=2

�jk 
 a
(1)

jk :

We have

k� � �
(1)

j k = k

m1X
l=1

t
(1)

l Ad u
(1)

l (� � �j + �j)� �
(1)

j k

�

m1X
l=1

t
(1)

l kAd u
(1)

l (� � �j)k+ k�j1 
 (a
(1)
j1 � bj1)k

� k� � �jk+ 1=(jnj):

By repeating similar arguments, we can construct elements �
(m)
j of E 
� E 
i E1 (m =

1; � � � ; nj) with the following properties;

�
(m)
j =

mX
k=1

�jk 
 bjk +

njX
k=m+1

�jk 
 a
(m)
jk ;

k� � �
(m)
j k � k� � �jk+m=(jnj);

where bjk 2 A
0

0 \A1 (k = 1; � � � ;m) and a
(m)
jk 2 A1 (k = m+ 1; � � � ; nj). Then �jk and bjk

have the desired property.

Lemma 6.6. Let � and � be as above. Then there exist elements �j of E
�E (j = 1; 2; � � � )

such that k�j 
 1� �k �! 0 (j �!1).
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Proof. Let �jk and bjk be elements as in Lemma 6.5. Since bjk 2 A
0

0 \A1, it follows from

Proposition 6.4 that we have �jk 
 bjk = �jkq1(bjk) 
 1. Set �j =
Pnj

k=1 �jkq1(bjk). Then

�j has the desired property.

Lemma 6.7. Let � and � be as above. Then there exists a unique element � of E 
� E

such that � = � 
 1.

Proof. Let �j be as in Lemma 6.6. We �x j and k and set 
 = �j � �k. It follows from

Proposition 6.4 that there exists b 2 A00 \ A1 such that q1(b) =< 
; 
 >1=2. Then we

have kbkE1
= k�j 
 1 � �k 
 1k. Recall that there exists a positive number � such that

�kakA1
� kakE1

for every a 2 E1. We have k�j � �kk = kq1(b)k � ��1kbkE1
. Therefore

we have k�j � �kk � ��1k�j 
 1 � �k 
 1k. Since f�j 
 1g is a Cauchy sequence, f�jg is

also a Cauchy sequence. Thus f�jg converges to an element � of E 
� E. Since f�j 
 1g

converges to � 
 1, we have � = � 
 1. For �0 2 E 
� E, �
0 
 1 = 0 implies that �0 = 0.

Therefore � is unique.

Proof of Theorem 6.1 (2). It follows from Lemma 6.7 that there exists a linear map W of

E 
 E to E
�E such that V � eV (�
 1) = (W�)
 1 for every � 2 E 
 E. By (6.18), we

have V � eV (�
 a) = (W�)
 a for � 2 E
 E and a 2 E1. Since we have, for every a 2 A1,eV �V (IE
�E 
 �1(a)) = (IE
 E 
 �1(a))eV �V;

we can prove results similar to Lemmas 6.5, 6.6 and 6.7 with respect to eV �V . Therefore

there exists a linear map W 0 of E 
� E to E 
 E such that eV �V (�
 1) = (W 0�)
 1 for

every � 2 E 
� E. Then we have eV �V (� 
 a) = (W 0�) 
 a for � 2 E 
� E and a 2 E1.

For every � 2 E 
 E and � 2 E 
� E and a; b 2 E1, we have

< V � eV (� 
 a); � 
 b > =< a;< W�; � > b >

=< a;< �;W 0� > b > :

Therefore we have < W�;� >=< �;W 0� >. Thus W is adjointable and we have V � eV =

W 
 IE1
. This completes the proof of Theorem 6.1.

7. Crossed products by finite groups

In this section, we apply the above results to the inclusion associated with a crossed

product of a C�-algebra by a �nite group. Let A0 be a unital C�-algebra, let G be a �nite

group and let � be an action of G onA. We denote byA1 the crossed productA0o�G. Then

we have the inclusion A0 � A1 and the canonical conditional expectation P1 of A1 onto A0.

We will show that the above inclusion satis�es the condition (P1) and the assumption of

Theorem 5.3. Therefore we have a multiplicative unitary operator W associated with the

inclusion. We will give an explicit formula for W . We will also give elements that satisfy

the conditions (E1) and (E2) in Section 4.

For every �nite set X, we denote by Map(X;A0) the linear space of all maps from X to

A0. We identify A1 with Map(G;A0) with the following product and involution;

(ab)(g) =
X
h2G

a(h)�h(b(h
�1g))

a�(g) = �g(a(g
�1)�)

for a; b 2 Map(G;A0) and g 2 G. For a0 2 A0, de�ne an element ~a0 of Map(G;A0) by

~a0(e) = a0 and ~a0(g) = 0 if g 6= e, where e is the unit of G. In the following, we identify

a0 with ~a0 and we have the inclusion A0 � A1. Then the canonical conditional expectation

P1 of A1 onto A0 is given by P1(a) = a(e). Note that P1 is of index �nite type and
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Index P1 = jGj. In fact, fÆg; g 2 Gg is a quasi-basis for P1, where Æg is the function on

G such that Æg(g) = 1 and Æg(h) = 0 if h 6= g. We denote by E1 the Hilbert A0-module

Map(G;A0) with the following right A0-action and A0-valued inner product;

(�a)(g) = �(g)�g(a);

< �; � > =
X
g2G

�g�1 (�(g)��(g))

for �; � 2 Map(G;A0), a 2 A0 and g 2 G. Then we can identify E1 with the Hilbert

A0-module E1 de�ned in Section 6. With this identi�cation, the �-homomorphism �1 of A1
to LA0

(E1) is given by

(�1(a)�)(g) =
X
h2G

a(h)�h(�(h
�1g))

for a 2 A1, � 2 E1 and g 2 G. We denote by A2 the �-algebra Map(G2; A0) with the

following product and involution;

(ab)(h; g) =
X
k2G

a(h; k)�hk�1(b(k; g));

a�(h; g) = �hg�1(a(g; h)�)

for a; b 2 Map(G2; A0). We can identify A2 with the C�-algebra A2 de�ned in Section 6.

The identi�cation is given by

a(�) =
X
g;h2G

a(h; g)�hg�1 (�(g))Æh

for a 2 A2 and � 2 E1. Let A0 be the �-subalgebra of A2 consisting of elements a for which

there exists an element a0 in A0 such that a(h; g) = a0Æe(hg
�1) for every g; h 2 G. Let

A1 be the �-subalgebra of A2 consisting of elements a for which there exists an element

a1 in A1 such that a(h; g) = a1(hg
�1) for every g; h 2 G. Then the basic construction

A0 � A1 � A2 is identi�ed with A0 � A1 � A2.

Proposition 7.1. The basic construction A0 � A1 � A2 satis�es the condition (P1).

Proof. For a 2 A2, a belongs to A00 \ A2 if and only if

a0a(h; g) = a(h; g)�hg�1 (a0)

for every a0 2 A0 and g; h 2 G. For g 2 G, de�ne dg 2 A
0

0 \A2 by dg(h
0; g0) = Æg(h

0)Æg(g
0).

For a0 2 A0 and g; h 2 G, de�ne f(a0;h; g) 2 A1 by f(a0;h; g)(h
0; g0) = a0Æhg�1 (h0g0�1).

Then we have

(f(a0 ;h; g)dg)(h
0; g0) = a0Æh(h

0)Æg(g
0):

Therefore we have, for a 2 A2,

a =
X
g;h2G

f(a(h; g);h; g)dg :

This implies that A2 is the linear span of A1(A
0

0 \ A2).

We denote by E2 the Hilbert A0-module Map(G2; A0) with the following right A0-action

and A0-valued inner product;

(�a)(h; g) = �(h; g)�hg�1 (a);

< �; � > =
X
g;h2G

�gh�1 (�(h; g)��(h; g))
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for �; � 2 Map(G2; A0), a 2 A0 and g; h 2 G. Then we can identify E2 with the Hilbert

A0-module E2 de�ned in Section 5. The identi�cation is given by

(u
�0 v)(h; g) = u(h)�h(v(g
�1))

for u; v 2 E1. With this identi�cation, the �-homomorphism �2 of A1 to LA0
(E2) is given

by

(�2(a)�)(h; g) =
X
k2G

a(k)�k(�(k
�1h; g))

for a 2 A1, � 2 E2 and g; h 2 G. We denote by E3 the Hilbert A0-module Map(G3; A0)

with the following right A0-action and A0-valued inner product;

(�a)(k; h; g) = �(k; h; g)�kh�1g(a)

< �; � > =
X

g;h;k2G

�g�1hk�1(�(k; h; g)��(k; h; g))

for �; � 2 Map(G3; A0), a 2 A0 and g; h; k 2 G. Then we can identify E3 with the Hilbert

A0-module E3 de�ned in Section 5. The identi�cation is given by

(u1 
�0 u2 
�0 u3)(k; h; g) = u1(k)�k(u2(h
�1))�kh�1 (u3(g))

for ui 2 E1 (i = 1; 2; 3).

We denote by A the subset of Map(G2; A0) consisting of elements a with the following

properties;

�g(a0)a(h; g) = a(h; g)�h(a0);

a(k; gh) = �g(a(g
�1k; h))

for a0 2 A0 and g; h; k 2 G. Then A is a �-subalgebra of A2. The product of A is given by

(ab)(h; g) =
X
k2G

b(k; g)a(h; k)

for a; b 2 A. We can identify A with the C�-algebra A de�ned in Section 5. The identi�-

cation is given by

a(�) =
X
g;h2G

�(g)a(h; g)Æh

for a 2 A and � 2 E1. We denote by E the subset of Map(G3; A0) consisting of elements x

with the following properties;

�g(a0)x(h; k; g) = x(h; k; g)�hk�1 (a0);

x(k; l; hg) = �h(x(h
�1k; l; g))

for a0 2 A0 and g; h; k; l 2 G. Then E is a Hilbert A-module with the following right

A-action and A-valued inner product;

(xa)(h; k; g) =
X
l2G

a(l; g)x(h; k; l);

< x; y > (h; g) =
X
k;l2G

�hkl�1(x(l; k; h)�y(l; k; g))

for x; y 2 E and a 2 A. We can identify E with the Hilbert A-module E de�ned in Section

5. The identi�cation is given by

x(�)(h; k) =
X
g2G

�(g)x(h; k; g)
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for x 2 E, � 2 E1 and g; h 2 G. Let � and  be �-homomorphisms of A to LA(E) de�ned

in Section 5. With the above identi�cation, � and  are given as follows;

(�(a)x)(h; k; g) =
X
l2G

x(l; k; g)a(h; l);

( (a)x)(h; k; g) =
X
l2G

x(h; l; g)�h(a(k
�1; l�1))

for a 2 A, x 2 E and g; h; k 2 G.

We denote by F the subset of Map(G4; A0) consisting of elements X with the following

properties;

X(k; h; g; l)�kh�1g(a0) = �l(a0)X(k; h; g; l);

X(k; h; g; nl) = �n(X(n�1k; h; g; l))

for every a0 2 A0 and g; h; k; l; n 2 G. Then F is a Hilbert A-module with the following

right A-action and A-valued inner product;

(Xa)(k; h; g; l) =
X
m2G

a(m; l)X(k; h; g;m);

< X; Y > (h; g) =
X

k;l;n2G

�hn�1kl�1(X(l; k; n; h)�Y (l; k; n; g))

for a 2 A andX; Y 2 F . The fact that F is complete is proved in the following proposition.

We also show that E 
�E and E 
 E are isomorphic to F . Note that we identify E with

E and A with A.

Proposition 7.2. (1) There exists an isomorphism M of E 
� E onto F as Hilbert A-

modules such that

M(x 
� y)(k; h; g; l) =
X
m2G

y(m; g�1; l)x(k; h;m)

for x; y 2 E and g; h; k; l 2 G.

(2) There exists an isomorphism fM of E 
 E onto F as Hilbert A-modules such that

fM(x 
 y)(k; h; g; l) =
X
m2G

y(k;m; l)�k(x(h
�1; g�1;m�1))

for x; y 2 E and g; h; k; l 2 G.

Proof. (1) We denote by E ��E the linear space generated by elements of the form x
� y

with x; y 2 E. De�ne a linear map M of E �� E to Map(G4; A0) by the formula in the

statement (1) of the proposition. It is clear that the image of M is contained in F and

that M is an A-module map. Let V be the unitary operator of E 
� E 
i E1 onto E3
de�ned in Section 5. It follows from Proposition 5.2 that we have, for x; y 2 E and � 2 E1,

V (x
y
 �) = (x
�0 IE1
)y(�); where (x
�0 IE1

)y is an element of LA0
(E1; E3). Note that

we identify E3 with E3. Then we have

((x 
�0 IE1
)y(�))(k; h; g) =

X
l2G

�(l)M(x 
� y)(k; h; g; l):
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For xi; yi 2 E (i = 1; � � � ; n), setX =
Pn

i=1 xi
�yi 2 E��E and Y =
Pn

i=1(xi
�0IE1
)yi 2

LA0
(E1; E3). Then we have

< Y �; Y � >E3
=

X
g;h;k2G

�g�1hk�1(j(Y �)(k; h; g)j2)

� �g�1hk�1 (j
X
l2G

�(l)M(X)(k; h; g; l)j2)

for every � 2 E1 and g; h; k 2 G. Therefore we have kY Ælk
2 � kM(X)(k; h; g; l)k2. On the

other hand, since V is unitary, we have

kY �k = kV (X 
 �)k = kX 
 �k � kXkk�k

for every � 2 E1. Thus we have kY k � kXk. Therefore we have

kM(X)(k; h; g; l)k � kY k � kXk

for every g; h; k; l 2 G. Then we can extendM to the A-module map of E
�E to F , which

we denote again by M . By a straightforward calculation, we know that < X1;X2 >=<

M(X1);M(X2) > for every X1;X2 2 E 
� E.

We will prove that M is surjective. Let X be an element of F . Fix g0; h0 2 G. De�ne

an element X(g0;h0) of E by

X(g0;h0)(k; h; g) =

�
X(k; h0; g0; gg0) if h = h0
0 if h 6= h0

and de�ne an element eg0 of E by

eg0 (k; h; g) =

�
1 if k = gh and h = g�10
0 otherwise.

Then we have X =
P
g;h2GM(X(g;h)
� eg). ThereforeM is surjective. It also implies that

F is in fact a Hilbert A-module.

(2) We denote by E � E the linear space generated by elements of the form x 
 y

with x; y 2 E. De�ne a linear map fM of E � E to Map(G4; A0) by the formula in the

statement (2) of the proposition. It is clear that the image of fM is contained in F and thatfM is an A-module map. Note that we have, for x; y 2 E, � 2 E1 and g; h; k 2 G,

(eV (x 
 y 
 �))(k; h; g) = ((IE1

�0 x)y(�))(k; h; g)

=
X
l2G

�(l)fM (x 
 y)(k; h; g; l):

Then we can argue as in (1) and we can extend fM to the A-module map of E 
 E

to F , which we denote again by fM . By a straightforward calculation, we know that <

X1;X2 >=< fM(X1);fM (X2) > for every X1;X2 2 E 
 E.

We will prove that fM is surjective. Let X be an element of F . Fix g0; h0 2 G. De�ne

an element eX(g0;h0) of E by

eX(g0;h0)(k; h; g) =

�
X(k; h0; g0; g) if h = g�10 h0
0 otherwise.

Then we have X =
P

g;h2G
fM (eg 
 eX(g;h)). This completes the proof of the proposition.
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From the above proof, we have an explicit formula for M�1, that is, we have

M�1(X) =
X
g;h2G

X(g;h) 
� eg :

Now we can construct a multiplicative unitary operator and we have an explicit formula for

it.

Theorem 7.3. There exists a multiplicative unitary operator W in LA(E 
 E;E 
� E)

such that V � eV =W 
 IE1
. Moreover W has the following form;

W =M�1fM:

Proof. Note that we have, for every X 2 E 
 E, Y 2 E 
� E, � 2 E1 and g; h; k 2 G,

eV (X 
 �)(k; h; g) =
X
l2G

�(l)fM (X)(k; h; g; l);

V (Y 
 �)(k; h; g) =
X
l2G

�(l)M(Y )(k; h; g; l):

Note also that we have, for X;Y 2 E 
� E and �; � 2 E1,

< X 
 �; Y 
 � >E
�E
iE1

=
X

g;h;k;l;n2G

�n�1kl�1([�(h)M(X)(l; k; n; h)]��(g)M(Y )(l; k; n; g)):

We identify E3 with E3. Let � be an element of E3. For � = (k0; h0; g0) 2 G3, de�ne an

element w� of F by

w�(k; h; g; l) =

�
1 if g = g0, h = h0 and l = kh�10 g0
0 otherwise

and de�ne an element �� of E1 by

��(g) =

�
�(k0; h0; g0) if g = k0h

�1
0 g0

0 otherwise.

Then the adjoint V � of V is given by

V �� =
X
�2G3

M�1(w�) 
 ��:

For X 2 E 
 E and � 2 E1, set � = eV (X 
 �). Then, for � = (k0; h0; g0), we have

��(k0h
�1
0 g0) =

X
l2G

�(l)fM (X)(k0; h0; g0; l):

Since we have, for X 2 E 
 E, Y 2 E 
� E and �; � 2 E1,

<M�1(w�) 
 ��; Y 
 � >

=
X
g2G

�g�1
0 h0k

�1
0
(��(k0h

�1
0 g0)

��(g)M(Y )(k0; h0; g0; g))

=
X
g;l2G

�g�1
0 h0k

�1
0
([�(l)fM (X)(k0; h0; g0; l)]

��(g)M(Y )(k0; h0; g0; g));

we have

< V � eV (X 
 �); Y 
 � >=<M�1fM (X) 
 �; Y 
 � > :

This completes the proof of the theorem.



PENTAGONAL EQUATIONS FOR OPERATORS 93

Finally, we give elements of E which satisfy properties (E1) and (E2) of Section 4. De�ne

an element �0 of E by �0(k; h; g) = jGj�1=2 if k = gh and �0(k; h; g) = 0 if k 6= gh. Then

we have k�0k = 1 and W (�0 
 �0) = �0 
� �0. We can show that �0 satis�es the property

(E1). In fact, the element ��0 (�) of LA(E) is given by

(��0 (�)�)(k; h; g) = jGj�1=2
X
u;v2G

�(v; u�1; g)�(k; uh; v):

Then the adjoint ��0(�)
� is given by

(��0 (�)
��)(k; h; g) = jGj�1=2

X
u;v2G

�kh�1uv�1(�(v; h�1u; k)��(v; u; g)):

We can show that �0 satis�es the property (E2). In fact, the element b��0 (�) of LA(E) is
given by

(b��0(�)�)(k; h; g) = jGj�1=2
X
u;v2G

�(ku; v; g)�ku(�(u
�1; h; v�1)):

Then the adjoint b��0(�)� is given by

(b��0 (�)��)(k; h; g) = jGj�1=2
X
u;v2G

�kh�1vu�1(�k(�(k
�1u; v; h�1)�)�(u; v; g)):

De�ne an element �0 of E by �0(k; h; g) = 1 if k = g and h = e and �0(k; h; g) = 0 otherwise.

Then we have k�0k = 1 and W (�0 
 �0) = �0 
� �0. We can show that �0 satis�es the

property (E1). In fact, the element ��0(�) of LA(E) is given by

(��0 (�)�)(k; h; g) =
X
v2G

�(v; e; g)�(k; h; v):

Then the adjoint ��0(�)
� is given by

(��0 (�)
��)(k; h; g) =

� P
u;v2G �kuv�1(�(v; u; k)��(v; u; g)) if h = e

0 otherwise.

We can show that �0 satis�es the property (E2). In fact, the element b��0(�) of LA(E) is
given by

(b��0(�)�)(k; h; g) = X
v2G

�(k; v; g)�k(�(e; h; v
�1)):

Then the adjoint b��0(�)� is given by

(b��0(�)��)(k; h; g) = X
u2G

�kh�1u(�(e; u; h
�1)��k�1(�(k; u; g))):

The author does not characterize the associated algebras B(�0), bB(�0), B(�0) and bB(�0)
yet. It will be interesting to know the structures of these algebras.
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