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PENTAGONAL EQUATIONS FOR OPERATORS ASSOCIATED WITH
INCLUSIONS OF C*-ALGEBRAS
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ABSTRACT. We introduce a notion of a pentagonal equation for an adjointable operator
on a Hilbert C*-module in full generality. We call a unitary operator on a Hilbert
C*-module a multiplicative unitary operator (MUQO) when it satisfies the pentagonal
equation. We give a sufficient condition for the existence of an MUO associated with
a general inclusion of C*-algebras. Then we study an MUO when the inclusion is of
index-finite type in the sense of Watatani. We also give an explicit formula for the MUO
when the inclusion arises from a crossed product of a C*-algebra by a finite group.

1. INTRODUCTION

A pentagonal equation (PE) first appeared in the duality theory for locally compact
groups. The Kac-Takesaki operator in the theory satisfies a PE (cf. [9], [30]). S. Baaj
and G. Skandalis [2] called a unitary operator on a Hilbert space a multiplicative unitary
(MU) when it satisfies a PE. V. F. R. Jones initiated a study for inclusions of von Neumann
algebras (see [11], [13], [14]). MU’s appeared in the related theory; M. Enock and R. Nest
[8] constructed an MU from an irreducible regular depth 2 inclusion of factors. MU’s also
appeared in several situations. For example, we refer the reader to [5], [6], [12] [17] and
[26]. As for measured groupoids, T. Yamanouchi [36] constructed an analogue of the Kac-
Takesaki operator. But this operator does not satisfy a PE. J. M. Vallin [33] showed that
it satisfies an equation which is a generalization of a PE. He called a unitary operator a
pseudo-multiplicative unitary (PMU) when it satisfies this generalized PE. Vallin defined
the generalized PE using the Connes-Sauvageot’s relative tensor products of Hilbert spaces.
M. Enock and J. M. Vallin [10] constructed a PMU from a regular depth 2 inclusion of
von Neumann algebras. The base algebra of the PMU they studied is a (not necessarily
commutative) von Neumann algebra. Recently several authors study quantum groupoids.
For example, we refer the reader to [3], [7], [18], [20], [28] and [34]. Quantum groupoids
are related to inclusions of von Neumann algebras and PMU’s. In particular, PMU’s in
finite-dimension were studied by G. Béhm and K. Szlachanyi [3] and by J. M. Vallin [34].
They studied the PMU from the viewpoint of multiplicative isometries. Yamanouchi [37]
also studied a partial isometry which satisfies a PE. When we deal with PMU’s in the theory
of C'*-algebras, it is useful to formulate a generalization of a PE in the framework of Hilbert
C*-modules. As for the usefulness of Hilbert C*-modules, for example, we refer the reader
to the works of M. A. Rieffel [25], E. C. Lance [16], B. Blackadar [4] and Y. Watatani [35].
The author [22] defined a PMU on a Hilbert C*-module using interior tensor products. The
base algebra of the PMU defined there is a commutative C*-algebra. (When a PMU is
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defined on a tensor product of A-modules, we will call A a base algebra. See Definition
3.1.) An analogue of the Kac-Takesaki operator for a topological groupoid G becomes a
PMU in the sense of [22]. Moreover, if G is a measured groupoid, that is, if it has a quasi-
invariant measure, then the operator constructed in [22] induces the fundamental isometric
isomorphism W studied by Vallin [33]. As for inclusions of C*-algebras, Y. Watatani [36]
initiated a theory of indices for C*-subalgebras. It is interesting to study PMU’s arising
from inclusions of C*-algebras in the framework of Watatani’s index theory. Following the
idea of Enock and Vallin [10], the author [23] constructed a PMU in the sense of [22] from
an inclusion of finite-dimensional C'*-algebras in the framework of Watatani’s index theory
when the inclusion satisfies certain conditions. There we had to assume a condition that
implies a commutativity of the base algebra.

In this paper, we will study a PE in full generality. Therefore, in the following, we will
not distinguish a PE from a generalization of a PE and we will not distinguish an MU from
a PMU. We will give a definition of a PE in full generality in the framework of Hilbert
C*-module. Especially, we will remove the assumption of the commutativity of the base
algebra, which was assumed in [22] and [23]. We will call a unitary operator on a Hilbert
C*-module a multiplicative unitary operator (MUO) when it satisfies this newly defined
PE. We will study an MUO for a general inclusion of C*-algebras. Then we will construct
an MUO from an inclusion of C'*-algebras in the framework of Watatani’s index theory
when the inclusion satisfies certain conditions. This construction generalizes that of [23].
We will remove the assumption in [23] which implies the commutativity of the base algebra.
We meet several difficulties in defining a PE in the framework of Hilbert C*-modules. For
example, we do not have in general the following objects; a flip on an interior tensor product
of Hilbert C*-modules, a tensor product I @ x as operator on an interior tensor product of
Hilbert C*-modules for an adjointable operator # and a modular involution on a Hilbert
C*-module. Therefore our definition of a PE is different from the usual definition of a PE
though they are equivalent in special cases. When the base algebra is C, the MUQO defined
in this paper coincides with the MU defined by Baaj and Skandalis [2] modulo the flip.
When the base algebra is commutative, the MUO coincides with the PMU studied in [22]
and [23] modulo the flip. Note that we cannot define a flip when the base algebra is not
commutative.

The paper is organized as follows: Section 2 is a preliminary section. In Section 3,
we introduce a notion of a pentagonal equation for an adjointable operator on a Hilbert
C*-module in full generality (Definition 3.1). We explain the relation between the MUO’s
defined here and the usual MU’s and PMU’s. In Section 4, we introduce a notion of a
coproduct for a Hilbert C*-module. We construct such a coproduct from an MUQO and
a fixed vector with a certain property. Then we define a C*-algebra associated with the
coproduct. We study examples arising from a finite groupoid, an r-discrete groupoid and
a compact groupoid. Other examples are studied in Section 7. In Section 5, we study a
general inclusion of C'*-algebras Ag C A;. We do not need to assume that Ag and Ay are
unital. We suppose that there exists a Hilbert Ap-module Fy and a *-homomorphism ¢y of
Ay to L4,(Eq). Then we give a sufficient condition for the existence of an MUO associated
with the inclusion (Theorem 5.3). In Section 6, we study an MUQO when the inclusion is of
index-finite type in the sense of Watatani [35]. We show that there exists an MUO when
the inclusion satisfies two conditions (P1) and (P2) (Corollary 6.2). As an application, we
show that there exists an MUQO when Ag is finite-dimensional and the inclusion satisfies
(P1) (Corollary 6.3). The condition (P1) corresponds to the condition that Ay C Ay is of
depth 2. In Section 7, we study the inclusion Ag C Ag x4 G, where Ag is a unital C*-algebra
and Ag X, G is the crossed product of Ag by a finite group G. We give an explicit formula
for the MUOQ associated with the inclusion (Theorem 7.3).
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2. PRELIMINARIES

First, we recall some definitions and notations on Hilbert C*-modules. For details, we
refer the reader to [16]. Let A be a C*-algebra. A Hilbert A-module is a right A-module
E with an A-valued inner product < -, > such that E is complete with respect to the
norm |[{]| = || < &,€ > Hl/z. Note that the inner product is linear in its second variable. A
Hilbert A-module E is said to be full if the closure of the linear span of {< &, n >;¢, n € E}
is all of A. Let E and F be Hilbert A-modules. We denote by £4(E, F') the set of bounded
adjointable operators from E to F and we denote by K 4(E, F') the closure of the linear span
of {6¢ n; € € F, n € E}, where 8¢ , is the element of £L4(E, F) defined by 8¢ ,({) = € < n,¢ >
for ¢ € E. We abbreviate L4(E, E) and K4(E, E) to L4(E) and K 4(E) respectively. We
denote by Ip the identity operator on E. We often omit the subscript E for simplicity. A
unitary operator U of E to F is an adjointable operator such that U*U = Iy and UU* = Ip.

Let A and B be C*-algebras. Suppose that E is a Hilbert A-module and that F is a
Hilbert B-module. Let ¢ be a *-homomorphism of A to Lp(F). Then we can define the
interior tensor product E @4 F [16, Chapter 4]. For £ € E and n € F, we denote by { @4 n
the corresponding element of E @4 F. We often omit the subscript ¢, writing {@n = Q47
for simplicity. We have £a @ n = £ @ ¢(a)n for every a € A. Note that E ®4 F is a Hilbert
B-module with a B-valued inner product such that

<& N, & @nr >=<n,o(< 1,6 >N >

for &1, & € E and iy, 2 € F. For o € L4(E), define an element x @4 I of La(E &4 F) by
(z @y Ir)(§ @ 1) = (2€) @ n [16, Chapter 4]. Let E; be a Hilbert A;-module for i = 1,2,3
and let ¢; be a *-homomorphism of 4;_ to L 4,(F;) for i = 2,3. Define a *-homomorphism
D2 @gy ¢ of Ay to La,(Es @4, Ez) by (2 @4y t)(a) = ¢2(a) @, Ir, for a € Ay, We often
omit the subscript ¢3, writing ¢ ® ¢ = ¢ @4, ¢ for simplicity. Then we have

(B Qg, E2) @¢, B3 = Ey @¢,0, (B2 @g, E3).

We denote the above tensor product by Ey @4, F2 @4, Fs.

Fori: = 1,2, let E; be a Hilbert A-module, let F; be a Hilbert B-module and let ¢; be a *-
homomorphism of A to Lp(F;). We denote by Lp((F1, ¢1), (Fa, ¢2)) the set of elements 2 of
Lp(F1, Fy) such that x¢1(a) = ¢a2(a)z for all « € A. We abbreviate Lp((Fi,¢1), (Fi,¢1))
to Lp(Fy,¢1). We define Kp((Fi,¢1), (Fa, d2)) and Kp(Fi, ¢1) similarly. The following
proposition is useful in later arguments. As for the notation in the following proposition,
we often omit the subscript ¢, writing + ® y =  ®¢, y for simplicity.

Proposition 2.1 ([22]). For @ € LAo(E1,E3) and y € L((F1,¢1),(Fy, ¢2)), there emists
an element v @y, y of Lp(Er ©g, F1, Ey ®g, Fy) such that (x @y, y)(§ @ 1) = (2€) @ (yn)
for £ € By and n € Fy.

3. PENTAGONAL EQUATIONS FOR OPERATORS ON HILBERT C*-MODULES

Let A be a C*-algebra, let E be a Hilbert A-module and let ¢ and ¢ be *-homomorphisms
of A to L4(E). We assume that ¢ and ¢ commute, that is, ¢(a)y(b) = ¥(b)¢(a) for all
a, b € A. We define a *-homomorphism :@4% of A to LA(E®4FE) by (¢®@¢¥)(a) = IR (a)
and define a *-homomorphism ¢ @y ¢ of A to LA(E @y E) by (¢t Qyp &)(a) = I @y ¢(a). We
often omit the subscripts ¢ and ¢, writing ¢ @ ¢ =1 ®g 1) and ¢ @ ¢ = 1+ @y ¢ for simplicity.
Let W be an operator in CA(E @y B, E ®g E) We assume that W satisfies the following
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equations;

(3.1) W@y ¢)(a) = (¢ @g t)(a)W,
(3.2) W @y 1)(a) = (1 B 0) (@)W,
(3.3) W(¢ @y i)(a) = (¥ Qg )(@)W

for all @ € A. Then, by Proposition 2.1, we can define following operators;
W @yl e LA(E®@y EQRy E,E Q¢ E @y E),
I Q4. W € LA(E Q¢ E @y E,EQy E®4E),
W@l € LAE®Ry E®y E,E®4 E®y E),
I®pe, W ELAE®yE®y E,EQ,0¢ (E R4 E)),
IR,06 W e LAE @194 (E@y E),ER®y ER4 E).

Since ¢ and ¢ commute, there exists an isomorphism 15 of E ®,g5y (E @4 E) onto E &,g4
(E ®y E) as Hilbert A-modules such that

Tia(z1 @ (z2 Qas)) =32 @ (1 @ 23)

~ N~/

for ; € E (i = 1,2,3). Then we can define a pentagonal equation.

Definition 3.1. Let W be an element of L4(E @y E,E ®4 E). Assume that W satisfies
the equations (3.1), (3.2) and (3.3). An operator W is said to be multiplicative if it satisfies
the pentagonal equation

(3.4) (W R4 DI @pe. W)W @y I) = (I @06 W)Z12(I @ypg. W).
The algebra A is called the base algebra of the multiplicative operator W.

Example 3.2. Suppose that A = C. Then E = H is a usual Hilbert space and L¢(E) =
L(H) is the C*-albebra of bounded linear operators on H. Let ¢ = ¢ = id, where id(\) =
My for A € C. Then E ®;4 E is the usual tensor product H ® H. Let T € .C(H ® H) be
the flip, that is, ¥({ @ n) = n@¢&. Let W be an element of L(H ® H). Then the pentagonal
equation (3.4) has the following form:

(3.5) Wol(IaoW)Wal)=IoW)(SeI)(IoW).

Define an operator w by W = WE. Then W satisfies the pentagonal equation (3.5) if and

only if W satisfies the usual pentagonal equation ;
(3.6) WioWisWas = Was Wis.

Example 3.3. In Example 3.2, if W = X, then the equation (3.5) is the Yang-Baxter
equation for the flip (cf. [15]);

(E ® ])(I ® E)(Z ® I) = (I ® E)(E ® I)(I ® E).

Example 3.4. Let G be a locally compact Hausdorff group and v be a right Haar measure
on G. Set H = L*(G,v). Define an operator W on H @ H by (W¢)(g,h) = &£(h, gh) for
£ € C(GxG)and g, h € G. Then W satisfies the pentagonal equation (3.5). The operator
W in Example 3.2 is given by (Wf)(g,h) = {(gh,h), which is the Kac-Takesaki operator

and satisfies the usual pentagonal equation (3.6).

Suppose that A = C' is a commutative C'*-algebra. Let E be a Hilbert C'-module and ¢ be
a *-homomorphism of C to Lo (E). Define a *-homomorphism ¢ of C to Lo(E) by ¢(c)é =
Ecfor £ € E and ¢ € C. In this situation, we have defined in [22] a generalized pentagonal
equation and we have called a unitary operator pseudo-multiplicative if it satisfies the
generalized pentagonal equation. We will describe the relation between the pentagonal
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equation (3.4) defined in this paper and the generalized pentagonal equation defined in [22].
We wrote E@C E for E®y E in [22]. Let W be a unitary operator in Lo(E @y E,E @4 E).
Suppose that W satisfies the following equation;

(3.7) W (e @y 8)(e) = (t @y 8) ()W,

(3.8) W (6 @y t)(e) = (& Dy ) ()W

for ¢ € C. There exists an isomorphism o1 of E ®,gy (E Qg E) onto E ®,04 (E Ry E) such
that o1(£ @ (n ® ¢)) = n® (£ @ ¢)) and there exists an isomorphism o3 of E @y E @4 E
onto E ®,g4 (E ®¢ E) such that o2({ @ n ® C) =n®¢® C) We define an operator Wis
nLo(E Ry (ERyE),EQyE®4E) by W 13 =05 (I @06 W Joy. In [22], the generalized

pentagonal equation was defined as follows;

(3.9) (W @6 DWia(I @i W) = (I @00 W)W 2 ).

There exists a flip ¥y in Lo(E ®y E) such that Zy (£ @ n) = n ® £&. Then we have the
following;

Proposition 3.5. Let W be an element of Lo(E @y E,E @4 E). Set W= W¥y. Then
W satisfies the equation (3.4) if and only if W satisfies the equation (3.9).

Proof. Note that we have Y @4t = Q¢ ¢ and Y @yt = ¢t @y . Then the equations (3.1) and

(3.8) are equivalent and the equations (3.3) and (3.7) are equivalent. The equation (3.2) is
always satisfied in this situation. Then we have

(W 26 Wi @00 W)
= (W @4 DT @900 W)W @4 DI D000 S0)(Se @0 DI Srop S,
(I @pe W)W @y 1)
= (I @ue W)T12(I @pe. W)(Ey @y DI Syer Ty)(Ty @y I).
Then the assertion follows from the following equation
(I @ugp Tp)(By @y (I Quay By) = (Zp @y I Quar Typ)(By @y I).
U

Example 3.6. Let G be a second countable locally compact Hausdorff groupoid. We de-
note by s (resp. r) the source (resp. range) map of G. We denote by G(®) the unit space
of G and by G the set of composable pairs. We set G, = s 1(u) for u € GO Let
{Au;u € G(O)} be a right Haar system of GG. As for groupoids and groupoid C*-algebras,
see Renault [24]. (See also [19] and [22] for notations and definitions used here.) For an
arbitrary topological space X, we denote by C.(X) the set of complex-valued continuous
functions on X with compact supports and by Co(X) the commutative C*-algebra of con-
tinuous functions on X vanishing at 1nﬁ111ty with the supremum norm || - ||sc. Let C be the
commutative C*-algebra Co(G©) and let E be the linear space C «(G). Then E is a right
C-module with the right C-action defined by ({c¢)(2) = &(x)e(s(x)) for € € E, ¢ € C and
x € G. We define a C-valued inner product of E by

<&n>(u /f n(z) dAy(x)

for £, € E and u e GO, We denote by E the completion of E by the norm ||£]| =
| < &€ > |['/2. Then E is a full right Hilbert C-module. Define non-degenerate injective
s-homomorphisms ¢ and ¢ of C to Lc(E) by (¢(e)é)(z) = e(r(z))é(x) and ()¢ = &c



76 M. O’UCHI

respectively for ¢ € C, € € E and x € G. Set G*(ss) = {(x,y) € G?*;s(z) = s(y)}. We
define C-valued inner products of C.(G2(ss)) and C.(G*) by

<= [ FETaE @,
< farg2 > //G2) )92 (@, ) Ay (2)dNu(y)

respectively for u € G, fi1, g1 € C.(G*(s5)) and fa, g2 € C.(G?®). Then C.(G*(ss)) and
C.(G?) are dense pre-Hilbert C-submodules of E @y E and E @4 E respectively. Define a
unitary operator W in Lo(E @y E, E @y E) by (W¢)(x,y) = £(y. zy) for £ € C (G?(s3)),
(z,y) € G®. Set W = WXy, We have (W’E)(:}:,y) = &(ay,y) for £ € C(G*(s3)), (z,y) €
G2, It follows from [22] that W satisfies the equation (3.9). By Proposition 3.5, W satisfies
the pentagonal equation (3.4).

When G is a measured groupoid, that is, when there exists a quasi-invariant measure on
GO we discussed in [22] the relation between the operator W constructed above and the
fundamental operator studied by Yamanouchi in [37, §2] and by Vallin in [33, §3]. For the
convenience to the reader, we will briefly describe the relation between them. As for the
following arguments, compare with Yamanouchi [36, §5§1,2]. Note that he started from a left
Haar system of G and that the inner products in [36] is linear in the first variable. On the
other hand, we have started from a right Haar system and the inner products here are linear
in the second variable. Let p be a quasi-invariant measure on G(©) [24, Definition 1.3.2].
We suppose that the support of u is G®. We define a measure v on G by v = J A du(uw)
and define a complex-valued inner product < -,- >, on E by

< 577] >;¢: /G(o) < 577] > (U,) d/J(u)

for £, n € E. We denote by u(E) the completion of E by the norm induced from < -,- >,.
Then we have u(E) = L*(G,v). Let \* (u € G®) and v~' be the images of \, and
v, respectively, by the inverse map = + 7', Set A = dv/dv™" and G*(rr) = {(z,y) €
G?;r(x) = r(y)}. We define measures vy, va, v3 and vy on G2(ss), G2, G*(rr) and G

respectively by

/G o FiE ) ey = [ v i@,

foo e st = [ e e 1rn it
/(“2(rr)f (2,y) dvs (@, y) // fs(,y) dXN" (2)dA\" (y)dp(u)
[ sinten) = [[[ fnae duwi o)

for fi € Co(G?(55)), fo € C(GP), f3 € C(G*(rr)) and f € Co(G?). We set Z =
Le(GO), ). By extending the right action and the left action ¢ of C' on E, we have actions
of Z on p(E). That is, we have (f1€f2)(x) = fi(r(z))(x) f2(s(x)) for fi, f2 €Z, e uk)
and z € G. Then u(E) = L*(G,v) is a Z-bimodule. We denote by L*(G,v)z @ Lz(G, V)z

the relative tensor product of the right Z-module L*(G, p1) with itself. (cf. [27]). We denote
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other relative tensor products of right or left Z-modules L*(G, v) similarly. Then we have
L} (G,v)z ® L*(G,v)z = L*(G*(ss),11) = w(E @¢ E),
Lﬂam(wL< V) = TG, 1) = ju(E 4 E),
2L(G ) 0z LG, ) = LG (rr), vs),
LY(G, vz @z L¥(G, 1) LH(GP uy).
Therefore we can extend the above operator W to the unitary operator W of L*(G,v)z @
L*(G,v)z onto L*(G,v)z @z L*(G,v). Define a unitary operator
LZ(G v)z ® Lz(G v)z — zLZ(G7V_1) Rz LZ(G, 1/_1)

by (j1é)(z,y) = 5( ) for (z,y) € G*(rr), and define a unitary operator
) &z L? (G I/) — LZ(G 1/71‘)3 Rz LZ(G,I/ili)
bﬂhmrw—a )ﬁrayGGm’meﬂmeuWﬁM%w:ﬂ%wﬂd

(z,y) € G2, Therefore J2W ¥ coincides with the fundamental unitary operator W in [36,
82] and coincides with the fundamental isometric isomorphism W in [33, §3].

4. COPRODUCTS FOR HILBERT C*-MODULES

It is known that MU’s and PMU’s give coproducts in several situations (cf. [2], [10], [21],
[22], [32], [33], [36]). In this section, we construct a coproduct of a Hilbert C*-module from
an MUOQ and a fixed vector with a certain property. Then we define a C'*-algebra associated
with the coproduct. There are several notions of Hopf C'*-algebras. For example, we refer
the reader to [1], [2], [3] and [31]. The author [22] also suggested a notion of a Hopf C*-
algebra on a Hilbert C*-module. But there are several difficulties in defining a notion of
a Hopf C*-algebra on a Hilbert C*-module. To find a more natural notion of a Hopf C*-
algebra on a Hilbert C™*-module, we have to study more closely C*-algebras associated with
MUQ’s. The results in this section will be useful for the study in that direction.

First we introduce a notion of coproducts for Hilbert C*-modules. We denote by E a
Hilbert A-module and by ¢ a *-homomorphism of A to LA(E).

Definition 4.1. Let ¢ be an operator in L4(E,E @4 E). We say that ¢ is a coproduct of
(E, ¢) if 4 satisfies the following equations;

(4.10) do(a) = (¢ @ )(a)d for all a € A,
(4.11) (0@ Ip)s =(Ig®5)0.

Suppose that ¢ is a coproduct for E. For &, € E, we define a product {n in E by
&n = 6*(£ ®g n). It follows from (4.11) that this product is associative. Then F is a right
A-algebra with this product. Note that we have ||£n|| < ||§]][[€]]l|n]]- Therefore, if ||6]| < 1,
then E is a Banach algebra.

Let ¢ be a *-homomorphism of A to L4(E) such that ¢ and ¢ commute and let W €
LA(E @y E,E ®4 E) be a multiplicative unitary operator. For an element & of E, we say
that & has the property (E1) if it satisfies the following conditions;

() ol = 1.
(it) W (o @y &o) = &o D¢ &o-
(iii) For every ¢ € E, there exists an element m¢,(§) of L4(E) such that

<y e (E)C >=< W(o Dy ), Qg ¢ >
for every n, ( € E.
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Fix an element { with the property (E1). Define an operator § = ¢, in LA(E,E ®4 E)
by 6(n) = W(& @y n). Then we have ||6]] < 1 and 6*(£ ® ) = g (§)n. Since W satisfies
the pentagonal equation, we can show that ¢ is a coproduct of (E, ¢). We denote by £ en
the product of € and 1 associated with . Then we have ¢, (§)n = £ @ n. Moreover the map
mg, of E to LA(FE) is a representation of the Banach algebra (E.e). We denote by B(&)
the closure of the set consisting of elements of the form n¢ (£) with ¢ € E. Then B(&)
is a Banach subalgebra of L4(E). We denote by C*(B(&y)) the C*-subalgebra of L£4(E)
generated by B(&p).

For an element &y of E, we say that £, has the property (E2) if it satisfies the following
conditions;

) 6ol = 1.
(i) W (o @y o) = &o @¢ &o-
(iii) For every £ € E, there exists an element 7g,(§) of L4(E) such that

<1, T (E)C >=< W (€0 @y 1), § Dy € >

for every n, ( € E.

Fix an element £, with the property (E2). Define an operator 5 = 350 in LA(E,E @y E)
by 3\(17) = W*(& ®¢ n). Since W satisfies the pentagonal equation, we can show that § is
a coproduct of (E,¢). We denote by £ ¢ n the product of £ and n associated with 5. Then
we have Tg, (€)n = £ on. Moreover the map 7, of E to L4(F) is a representation of the
Banach algebra (E, o). We denote by ﬁ(fo) the closure of the set consisting of elements of
the form 7e (€) with € € E. Then f?(fo) is a Banach subalgebra of £L4(E). We denote by
C*(B\(fo)) the C*-subalgebra of £ 4(FE) generated by E(fo)

In this section, we consider examples arising from a finite groupoid, an r-discrete groupoid
and a compact groupoid. Other examples are considered in Section 7. Let G be a second
countable locally compact Hausdorff groupoid. We keep the notations in Example 3.6
except for CO(G(O)). Here we denote by A the C*-algebra CO(:G(O)). Let W € LA(E @y
E,E ®4 E) be the multiplicative unitary operator constructed in Example 3.6. Then we
have (Wé)(x,y) = &(y,xy) for € € C.(G*(s5)) and (z,y) € G?). Note that we have
(W*€)(z,y) = E(ya~t,x) for € € C.(GP) and (z,y) € G?(ss). We denote by C(G) the
reduced groupoid C*-algebras. (As for the definition of the reduced groupoid C*-algebra,
see [19], [22].)

Example 4.2. Let G be a finite groupoid and let {)\,} be a right Haar system such that
Ay 18 a counting measure on G,. Then we have A = C(G(O)) and E = C(G). The A-
valued inner product of E is given by < &n > (u) = > cq. {(z)n(x). We have E @y E =
C(G*(ss)) and the A-valued inner product of E @, E is given by

<&n>@) = > oynly).

s(x)=s(y)=u

We have E ®y E = C(G?®) and the A-valued inner product of E ®¢ E is given by

<€,T]>(U/): Z f(lvy)n(xﬂy)
5212:7’(1/)
s(y)=u

We set M = max{|G,|;u € GO}, where |G,] is the number of elements of G,. Define an
element & of E by &o(z) = M~1/? for all # € G. Then & has the properties (E1) and (E2).
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We have ¢, ()¢ = M™1/2¢ % ¢, where € % C is the convolution product defined by

(ExO) = > &ay " )(y)

y€G (o)

Therefore we have B(&) = C;(G). Since we have 7g, () = b¢¢,, we have C*(B\(&))) =
K 4(E). Define an element ng of E by 19 = X)), where o) is the characteristic function
of G, Then 1o has the properties (E1) and (E2). Since we have 7, (£) = ¢.,,, we have
C*(B(no)) = Ka(E). We have 7,,(£) = m(§), where m(€) is the multiplication operator
on E defined by (m(&)()(z) = &(x)((z). Therefore we have ﬁ(ﬁno) = C(G).

Example 4.3. Let G be an r-discrete groupoid [24, 1.2.6]. Note that G is open and
closed in G and that G, is discrete for every u € GV, Let {\,} be a right Haar system
such that A, is the counting measure on G,. Since we have ||£]|ec < ||é|| for € € Co(G), E
is a subspace of Cy(G). Fix an element f of A such that || f|jec = 1. Define an element g of
E by no = fxe . Then ng has the properties (E1) and (E2). We have mp,(£) = ¢ .. If the
support of f is G(°), then we have C*(B(1)) = K 4(E). We have Tno(€) = m(p(f)€), where

m(n) is the multiplication operator on E. If f is real-valued, then we have 7, (£)* = Ty (€)-
Therefore, if f is real-valued and the support of f is G(®), then we have E(Uo) = Co(G).

Example 4.4. Let G be a compact groupoid and let {\,} be a right Haar system such
that \,(G) = 1 for all u € G'°. Define an element & of E by &o(z) = 1 for all € G.
Then ¢y has the properties (E1) and (E2). Note that C(G) is a dense subspace of E. For
&, C € C(G), we have mg, (£)¢ = € * (, where €  ( is the convolution product defined by

(€ %)) = / £y )C(y) Do (9).

Therefore we have B(&) = C¥(G). Since we have 7¢,(§) = b¢¢,, we have C*(B\(fo)) =
Ka(E).

5. OPERATORS ASSOCIATED WITH INCLUSIONS OF C'*-ALGEBRAS

In this section, we study a multiplicative unitary operator associated with a general
inclusion of C'*-algebras. Let A; be a C*-algebra and let Ag be a C*-subalgebra of 4;. In
this section, we do not need to assume that A; and Ag are unital. Let E; be a Hilbert
Ap-module and let ¢; be a *-homomorphism of A; to L4,(F;). We denote by ¢ the
restriction of ¢; to Ag. Set Ey = E; ®4, Fy and define a *-homomorphism ¢, of 4; to
L4,(E2) by ¢2 = ¢1 @ ¢. In general, we set E, = E,_1 @4, E1. We denote by A the C*-
algebra L 4,(E1, ¢1) and by E the normed space L, ((E1.¢1), (Es, ¢2)). Then E is a right
A-module with the right A-action defined by (za)(¢) = z(af) for x € E, a € A and € € E;.
Define an A-valued inner product of E by < @,y >= z*y for «, y € E. Then FE is a Hilbert
A-module. Define *-homomorphisms ¢ and ¢ of A to L4(E) by (¢(a)z)(&) = (a @ Iz(¢)
and (¢ (a)z)(€) = (I ® a)z(&) respectively for a € A, z € E and £ € E,. We denote by 7 the
inclusion map of A into £ 4,(E1).

Proposition 5.1. There exists an Ag-linear bounded map U of E ®; F1 to Ey such that
Ulx @ &) =x(£) for v € E and € € Ey. Moreover the following equalities hold:

<Ua,UB >=<a,8> fora e E®;FE,
Ulpla) @ I)=(a® 1)U  for a € A,

U(w(a) ® I) = (I (% a,)U for a € A,
U(I ® ¢1(a)) = ¢a(a)U  fora e A;.
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The proof is straightforward and we omit it. Note that U may not be adjointable. We
can define the following Ag-linear bounded operators;
I ®40.U:E®¢ ERi By — E Q0. o,
U®gol: ERig, E2a — Es,
I®ype.U:EQy E®; By — EQ,g; Es,
I D@60 U:E D@60 (E (8 El) — F5.

There exists an isomorphism S of E ®,g; E2 onto Ey ®,94, (E &; E1) as Hilbert Ag-modules
such that S(z®(£®n)) =R (x@n) for € E and £, n € E;. Define an Ap-linear bounded
operator V of E Q¢ E ®; F4 to FE3 by

V= (U ®¢, I @ga. U),
and define an Ap-linear bounded operator Vof E @y E ®; By to E3 by
V = (I @ugy U)S(I @y U).

We summarize the properties of V' and V in the following proposition. The proof is easy
and we omit it.

Proposition 5.2. The operators V and 1 satisfies the following equalities;
<Va,V>=<a,8> fora B8€E®sE®; E,
<Va,VB>=<a,8> fora,fecEo,E;E,
Vie@y®E) =(x Qe I, )y(§) for o,y € E and € € Eq,
V(e @y o) =(Ip @4 2)y(§) forz,y € E and £ € Ey.

In the rest of this section, we will prove the following theorem.

Theorem 5.3. Let U, V and V be as above. Suppose that U 1s unitary and suppose that
there exists an element W of LA(E ®y E,E Q4 E) such that VV = W @ Ig,. Then W is

a multiplicative unitary operator.

Since U is unitary by the assumption, V and V are also unitary operators. By straight-
forward calculations, we have, for every a € A,

Vig(a) @ Ip @ Ip,

Iy @ (a) @ In,

)=(a®Ip, @ Ip,)V.
V( )
v<()®JE®I&)
(Ir )
(¥ )
)

(a )

(Ig, ® Ig, ®a)V,
(Ig, ®a® IRV,
(a )
( a)
( )

V(Ip ©¢(a) @ Ip,
V(b(a) @ Iy @ Iy, Iy, ©Ip, ©a)V,
‘(CD( Y Ip @ Ig, Ig, @a® g, V.
Therefore W satisfies the equations (3.1), (3.2) and (3.3). For n > 2, we set
E%" = F ®¢ - D¢ E  (n times )

@ Ip, ©1Ig, v,

and we define E“¢" similarly. It follows from Proposition 5.1 that we have U(¢ @ ¢)(a) =
(1 @ t)(a)U for a € A. Therefore we can define the following operators;

Ig®Ig@U € La,(E®® @; By, E9? @0, Ey),
IE & U ® IEl S 5‘40(E®¢2 ®i®L E27E ®i®L®L ES)«
U®lIp, @1Ip € La,(E Qigue. Es, E4).
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We define an element Us in £4,(E®*® @; Eq1, Ey) by
Us=(U®Ig @Ig)Ipg@U®Ig)Ig®IpeU).

Since U is unitary by the assuiption, Us is also a unitary operator. To prove Theorem 5.3,
it is enough to prove the following proposition.

Proposition 5.4. Set
W, = ([@7 e I)(I X o2 I/V)(I’V e I)
Wa = (I @09 W)E12(1 Qye W).
Then the following equation holds;
Us(Wh @i Ip, )(z @y @ 2@ €)
= Us(Wa @; Ip, )(x @y @2 @)
= (Up, @ Ip, @ 2)(Ip, @ y).
for x,y, z € E and € € E.
In the rest of this section, we will prove Proposition 5.4. Let
Sy E®y E®,0i By — Ei Qu0é0 (E @y E ®; Ey)

be an isomorphism defined by Sy(z @@ n) =@ (2 @n) for ¢t € E@y E and €, n € Ex,
and let

S E®¢ E ®.9i B2 — E1 @.0006, (E @4 E@; Ev)
be an isomorphism defined by Sy(z @ {@n) =@ (x @ n) for v € E @y E and &, n € K.
Set U3 = (I @00, U)S.
Lemma 5.5. We have the following equalities for x, y, z € E and £ € Ey;
(512) Us((W @4 1) @4 In,) = (V @y Ip,) s, 5 Dse U),
(5.13) (({ Qg0 W) @i Ip, (W @4 I) @i IE )2 @y @2z @E)
= (Ig @woie. V)(IE @00 UM S5 (I, @pomnan V)(IE, @ I, @ 2)(Tp, @y)2¢,
(5.14) (Iz @uiv V) Ie @g0. UM) S (1, Dgomien V)
= (Ipa, » @i UN)(V* Qo I5,).
Proof. Since we have Us = (V @4, I, )(Ig @ Iz @ U), we have the equation (5.12). The
equation (5.13) follows from the following equations;
(I @pe W) @i Ip,)
= (I @ugie. V) e D90, U'D)IE @00 (I @ye U)),
(Ig @2 (I Qe U)W @y 1) @i Ip )(z @y @2 @ §)
= (W @i Ip,)(x @y © (2£)),
W @01 I, = S5(1E, Qe VV)Sy,
(T, @iencsn V)Su(z @y @ (26)) = (Ip, © I, ® 2)(In, @ y)=E.
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The equation (5.14) follows from the following equations;

Ir @9ie. V"' = (Ipg, F @ie. UT)(IE Qugie (U™ B4, Iry)),
Ip @40, UMY = (Ig @000 (12, @10, U))IE Dpe0 ),
I, o100 V*
= (Ip, @ (IE Qie. U))IE, Bpoeie: (U @y, IE,)),
(Ie @epe (1B, @inss U)IE Qs S)SG(IE, @ise (IE Qig. UY))
= 5" Qg Ip
(Ie, @wgeei (U @go I, ))(S @p, In )(IE Qveie: (U Qg I8,))
= i; Do ijl.
Note that we have
(IE @y (U Qo I,))* = IE Qupic. (UT @4, 1B, ),
(15, @agoan (U Qoo I1,))" =I5, Qo (UF @y, IE,).

Lemma 5.6. We have the following equalities for v € E and &; € Ey (1 =1,2,3);

(5.15) Wo @i I, = (Ig @ico0. VIV (12 @i I, (TE Qe VV),
(5.16) Ug(IE Ri@i@e V*) :U®IE1 ®IE1./
(5.17) (Ir @060 ‘7)(212 @i Ip, )(IE @i V)2 @ (& @ & @ &)

=U*(& @ &2) @ 2&3.

Proof. The equation (5.15) follows from the assumption V*V = W @ Ig,. The equation
(5.16) follows from the equation

It Qi VIi=Up@Ip U ) Ip @U@ Ig,).
We will show the equation (5.17). Define a unitary operator
5" E @i (E Qi B2) — E @ugie. (E ®.0i E2)
by
S = (Ir @0 (I @pe. U))(Z12 @i I, )(IE @.0u0i (IE Qig, UT)).
Then we have S'(2 @ (y @& ® &) =y @ (2 @ (& @ &)) for x,y € E and &, & € Ey.

Therefore we have

(Ir @ig¢0:. V) (Z12 @i In, )(IE @uoiei (I @i, UM))(2 @ (y @ & @ &)
= (Ig ®u0ie. U)S (2 @ (y ® & © &)
=(y® &) @ abs.

Then the equation (5.17) follows from the following equation

Ig @00 V' = (IE @ueu0i (IE Qig. U™))IE @ueiei (UT g, IE,))-
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Proof of Proposition 5.4. Let z, y, z be elements of E and let { be an element of E;. It
follows from Lemma 5.5 that we have

Us(Wh @i Ig,)(z @y @ 2@ E)
= Us((W @ 1) @i I, (I @ W) @i I, J(W @y 1) @i I, )(x @y @ 2 @)
=Us(W @4 I) @i I, )(Tpe, £ @ic UV @4 In,)(Ip, @ I, @ 2)(Ip, © y)z€
=g, @1Ip, @x)(Ir, @y)zk.
It follows from (5.16) and (5.17) that we have
Us(Ig @090 V'V)(S12 @i In, )(Ir @0 V(2 @ (6 © & © &)
= (U @Ig @Ip)(U (& @&) @ x3)
=Up, @Iy @2)(& @& 1 &)
for ¢ € Ey (1 =1,2,3). Then by (5.15) we have
Us(Wa @; I, (2 @y @z &)
=Us(Ig @040 V*‘N/)(le @i Ig, ) Qe V*f)(x RYRzRE)

=Us(Ip @000 V' V)(Z12 @i Ie, )(IE @00 V(2 @ {(1p, @ y)2E})
=(Ip, @ Ip, @ x)(Ip, @y)=E.

6. INCLUSIONS OF INDEX FINITE-TYPE

In this section, we study a multiplicative unitary operator associated with an iclusion of
C*-algebras when the inclusion is of index-finite type in the sense of Watatani [35]. Let A;
be a C'*-algebra with the identity 1, let Ag be a C'*-subalgebra of A; which contains 1 and
let Py : Ay — Ag be a faithful positive conditional expectation. We assume that P is of
index-finite type, that is, there exists a family u; € Ay (i = 1,--- . n) such that

i uiPi(uja) = i Pi(au;)uf =a
=1 i—1

for every a € Ay [35, 1.2.2, 2.1.6]. Then the index of P, is given by Index Py = >, u;uj
which is an element of the center of A;. We denote by E; a right Ag-module A; whose
right Ag-action is the product in A;. Define an Ap-valued inner product of Ey by < a,b >=
Py (a*b) for a, b € E;. It follows from [35, 2.1.5] that there exists a positive number A such
that

Malla, < llallz, < llalla,

for every @ € Ey = A;, where || - ||4, and || - ||z, denote the norms of A; and FEj respec-
tively. Therefore F; is complete and is a Hilbert Ag-module. Define a unital injective
s-homomorphism ¢; : Ay — La,(E1) by ¢1(a)b = ab for a € A; and b € E;, where ab is
the product in A;. Then we can construct 4, E, ¢ and ¢ as in Section 5. Moreover we can
construct the operators U, V and V.

We denote by Ay the C*-algebra K, (E1) (cf. [35, 2.1.2, 2.1.3]). Note that we have
Kao(E1) = La,(E1). In fact, we have I = 31 0y, 4, in La,(E1). We identify ¢(A;) with
A; and we have inclusions Ag C A; C As, which is the basic construction ([35, 2.2.10], see
also [11, Chapter 2]). Let Py : Ay — Ay be the dual conditional expectation of Py, that is,
Py(84) = ( Index Py) tab* for a, b € Ay [35, 2.3.3]. Note that P, and P; o P, are of index-
finite type [35, 1.7.1, 2.3.4]. We denote by F» a right Ag-module As whose right Ag-action
is the product in Ay. Define an Ap-valued inner product of F; by < &, >= Py o P,(&*n) for
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fN, n € Fy = Ay. Then FQNis a Hilbert Ag-module. Define a unital injective *-homomorphism
@21 Ay — L4, (Fy) by ¢a(a)f = af for a € Ay and £ € Fy, where af is the product in A,.
Define a linear map @ : E; — F» by

B(a @ b) = b, b1 (( Index P)'/?)

for a, b € Ey. Then @ is an isomorphism between the Hilbert Ag-modules. Moreover we
have ®(p2(a1)é) = d2(ar)@(§) for ay € Ay and € € Es.

We denote by Aj N Ay the C*-algebra {a € As; ab = ba for every b € Ag} and denote by
lin A, (Aj N Az) the closed linear subspace of A, generated by elements of the form ab with
a € A) and b € Aj N Ay. For a € Ay, we denote by C(a) the norm closure of the convex
hull of the set consisting of elements of the form wau® with unitary elements v of Ag. We
consider the following two conditions:

(P2) AiNC(a) £ D for every a € Aj.

The condition (P1) corresponds to the condition that Ay C Ay is of depth 2. For inclusions
of factors, this fact is well-known (cf. [17], [29]). As for inclusions of C*-algebras, the
author is not sure that (P1) coincides precisely with the condition that Ag C A is of depth
2. Therefore we avoid the term “of depth 2”.

In the following theorem, we show that the conditions (P1) and (P2) imply the assump-
tions of Theorem 5.3. Thus we have a multiplicative unitary operator when these conditions
are satisfied.

Theorem 6.1. (1) The operator U is unitary if and only if the condition (P1) is satisfied.
(2) Suppose that U is unitary and that the condition (P2) is satisfied. Then there exists
an elment W of LA(E Qy E,E @4 E) such that V'V =W @ Ig, .

We mention some consequences of Theorem 6.1 before proving it.

Corollary 6.2. Suppose that the conditions (P1) and (P2) are satisfied. Then there ezists
a multiplicative unitary operator W in LA(E @y E,E @4 E) such that V*V =W @ Ig,.
Corollary 6.3. Suppose that Ag is finite-dimensional and that the condition (P1) is satis-
fied. Then there exists a multiplicative unitary operator W in L4(E @y E,E @4 E) such
that VXV =W @ Ig, .

Proof. Tt is enough to show that (P2) is satisfied if Ap is finite-dimensional. Let G be the
group of unitary elements of Ag. Since Ag is finite-dimensional, G is a compact group with
respect to the norm topology. Therefore there exists a left Haar measure v of GG such that

v(G) =1. For a € Ay, set
'(7:/ wau™ dv(u).
G

By a standard argument, we know that @ is an element of C'(a). We can also prove that a

belongs to Ay N A;. Thus (P2) is satisfied. |
Now we will prove Theorem 6.1. The following proposition is useful in later arguments.

Proposition 6.4. (1) There exists a bijection g of A N Ay onto A such that ¢ (a)b = ba
for a € AyN Ay and b € Ey, where ba is the product in Aj.

(2) There exists a bijection qz of Al N Ay onto E such that ga(a)b = ®71(ba) for a €
Ay N Ay and b € Ey, where ba 1s the product in As.

Proof. (1) Since P; is of index-finite type, it follows from [35, 1.11.3] that there exists an
automorphism 6; of the algebra Aj N A; such that Py(ab) = Py(bf1(a)) for a € Aj N Ay
and b € A;. (Note that 6, is not #-preserving in general.) For a € A{ N A;, the map
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¢1(a) 1 By — E; is adjointable. In fact we have ¢1(a)* = ¢1(#1(a*)). Thus ¢(a) is an
element of £4,(E4). It is clear that ¢; (a) commutes with ¢;. Therefore ¢;(a) is an element
of A. On the other hand, let 2 be an element of A. Set @ = 2(1). Then a belongs to AN A,
and we have ¢ (a) = .

(2) There exists an automorphism 8, of the algebra Aj N A, such that P o Py(ab) =
Py o Py(b6s(a)) for a € Ay N Ay and b € Ay. For a € A N Ay, the map ¢2(a) : By — E»
is adjointable. In fact we have, for n € E,, gs(a)*n = Py(®(n)62(a™)), where ®(n)8,(a*) is
the product in A,. Thus ¢:(a) is an element of L4,(E1, Ey). Since we have ¢z(a)¢1(a1) =
¢2(a1)gz2(a) for every ay € Ay, g2(a) is an element of E. On the other hand, let = be an

element of E. Set a = ®(z(1)). Then a belongs to A N Ay and we have ¢2(a) = z. |
Proof of Theorem 6.1 (1). Suppose that U is a unitary operator. Since U is surjective, for
every a € Ay and every ¢ > 0, there exist ; € E and a; € Ey (j = 1,--- , k) such that
k
U e @a;) =27 (a)] <.
i=1

It follows from Proposition 6.4 that there exists b; € Aj N Az such that ¢z(b;) = z; for
3 =1,--- k. Then we have

k k
1Y aib;—alle =11 w(a;) — 27 ()], < e
=1 i=1

Note that the norm of the Hilbert C*-module F, and the norm of the C*-algebra A, are
equivalent. Therefore the linear space generated by ab with « € A and b € Aj N A, is dense
n AQ.

Conversely, suppose that the condition (P1) is satisfied. Since the norms of Fy and A
are equivalent, for every a € A, and every ¢ > 0, there exist a; € Ay and b; € Aj N Ay
(j =1,---,k) such that

k
1> ab; —allr, <e.
i=1

Set z; = ¢2(b;) € E. Then we have

k
T _1 -
IO e @aj) 27 (a)] <.
j=1
Therefore U(E ®; E) is dense in Ey. Since U is isometry by Proposition 5.1, U is surjective.
Therefore U is invertible. Since we have < Ua,Uf >=< a, 3 > by Proposition 5.1, U is
adjointable and we have U* = U~!. Thus U is a unitary operator. O

In the rest of this section, we will prove the statement (2) of Theorem 6.1. We suppose
that U is unitary and that the condition (P2) is satisfied. Before proving the statement, we

prepare several lemmas. We fix an arbitrary element o of E @y E and set { = V*V’(a ®1),
where 1 is the identity element of A; = F;.

Lemma 6.5. Let o and £ be as above. Then, for every j = 1,2,---, there exist non-zero
elements Bj, € E Qo E and b, € AN Ay CEy (k=1,--- ,n;) such that

—0 (j — o0).

> Bk @by —¢
k=1
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Proof. Let u be a unitary element of Ag. Forn € E ®4 E ®; Eq, set
Ad u(n) = (Ipe,p @ d1(u))nu”

Since we have, for every a € Ay,

(6.18) V'V (Ipo,e @ é1(a) = (Ipo,n © é1(a)V'V,
we have Ad u(£) = € for every unitary element u € Ag. For every j = 1,2, -+, there exist
non-zero elements 8z € E @4 FE and aj; € E1 (k=1,--- ,nj) such that

nj
Z/Bjk & Ak — f

k=1

We set §; = Zf;l Bk @ aji. Note that we have

Ad u(§;) = Zﬁfk @ (uajpu®).

We fix j. It follows from the condltlon (P2) that there exists an element bj; of C'(aj1)N Af.
Then there exist unitary elements 71 ) of Ag and 7‘(1) >0(l=1,--,my)with > 7‘(1) 1

such that
b =t u Vi ()| < Gimgll 3 )
=1

Set

(1) Zt(l) (1) (1))*7

7751) =B @bj1 + Z Bir © aﬁ).
k=2

We have

e —nS 1 =131V Ad w6~ &+ &) - V|

=1

<Zt“>||Ad =l + 1183 @ (@Y = b))

< Hf =&l +1/Gng)-
By repeating similar arguments, we can construct elements ngm) of EQy E@; B4 (m =
1,---,n;) with the following properties;

k3

)7Zd]k(«>§b]k+ Z d}k@a

k=m-+1
1€ = n{™ 1 < 11E = &1l +m/(ing),

where bjr € AgN Ay (k=1,---,m) and ag-;n) €A (k=m+1,---,n;). Then B and b
have the desired property. |

Lemma 6.6. Let o and £ be as above. Then there exist elements 3; of EQgE (j =1,2,--+)
such that ||f; @1 —&|| — 0 (7 — o0).



PENTAGONAL EQUATIONS FOR OPERATORS 87

Proof. Let (3, and bj be elements as in Lemma 6.5. Since bj, € Aj N Ay, it follows from
Proposition 6.4 that we have 8jx @ bjx = Bjrq1(bjr) ® 1. Set §; = ZZJ:I Bikqi(bjk). Then
B; has the desired property. O

Lemma 6.7. Let a and £ be as above. Then there exists a unique element 8 of E ®y E
such that £ = f® 1.

Proof. Let 3; be as in Lemma 6.6. We fix j and £ and set v = 3; — G;. It follows from
Proposition 6.4 that there exists b € A N Ay such that ¢i(b) =< ~,v >'/2. Then we
have ||b||r, = ||8; ® 1 — Br @ 1]|. Recall that there exists a positive number X such that
Mlall 4, < ||la||r, for every a € Ey. We have ||3; — Bil| = ||¢1(b)|] < A7Y|b||m,. Therefore
we have ||3; — Bk|| < A7Y|3; @ 1 — B @ 1]|. Since {3; @ 1} is a Cauchy sequence, {3;} is
also a Cauchy sequence. Thus {3;} converges to an element 3 of E @4 E. Since {3; ® 1}
converges to S @1, we have { = 3@ 1. For ' € E @4 E, 8’ ® 1 = 0 implies that 8’ = 0.
Therefore (3 is unique. O

Proof of Theorem 6.1 (2). It follows from Lemma 6.7 that there exists a linear map W of

E @y E to E®g¢ E such that V*V(oz R 1) = (W’oz) @ 1 for every o € E @y E. By (6.18)./ we

have V*V(a®a) = (Wa)®@a for o € E®y E and a € E;. Since we have, for every a € Aj,
VYV (Ige,n © é1(a) = (Ipo,z ® ¢1(a)) V'V,

we can prove results similar to Lemmas 6.5, 6.6 and 6.7 with respect to V*V. Therefore
there exists a linear map W' of E @4 E to E ®y E such that V*V(a® 1) = (W'a)®@ 1 for
every & € E ®4 E. Then we have V*V(a®a) = (W'a) @ a for o € E®4 E and a € E;.
For every o € E @y E and § € E @4 E and a, b € Ey, we have
<VV(e©a),B0b>=<a,<Wa,3>b>
=<a,<a,Wp3>b>.

Therefore we have < Wa, 8 >=< o, W3 >. Thus W is adjointable and we have VY =
W @ Ig,. This completes the proot of Theorem 6.1.

([

7. CROSSED PRODUCTS BY FINITE GROUPS

In this section, we apply the above results to the inclusion associated with a crossed
product of a C*-algebra by a finite group. Let Ag be a unital C'*-algebra, let G be a finite
group and let & be an action of G on A. We denote by A; the crossed product Ag xoG. Then
we have the inclusion Ag C A; and the canonical conditional expectation P; of A; onto Ag.
We will show that the above inclusion satisfies the condition (P1) and the assumption of
Theorem 5.3. Therefore we have a multiplicative unitary operator W associated with the
inclusion. We will give an explicit formula for W. We will also give elements that satisfy
the conditions (E1) and (E2) in Section 4.

For every finite set X, we denote by Map(X, Ag) the linear space of all maps from X to
Ap. We identify 4; with Map(G, Ag) with the following product and involution;

(ab)(g) = Y a(h)an(b(h™"g))
heG
a*(g) = aglalg™")")
for a, b € Map(G, Ag) and ¢ € G. For ag € Ag, define an element ag of Map(G, Ag) by
dg(e) = ag and dg(g) = 0 if g # e, where e is the unit of G. In the following, we identify
ag with @p and we have the inclusion Ag C A;. Then the canonical conditional expectation
Py of Ay onto Ap is given by Pi(a) = a(e). Note that P; is of index finite type and
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Index Py = |G|. In fact, {§,;¢9 € G} is a quasi-basis for Py, where §, is the function on
G such that 0,(¢9) = 1 and é4(h) = 0 if h # ¢g. We denote by & the Hilbert Ap-module
Map(G, Ag) with the following right Ag-action and Ag-valued inner product;

(€a)(g) = &(g)ay(a),
<&m>=) a,(E9) n9))
geaG

for £, € Map(G, Ag), a € Ag and g € G. Then we can identify & with the Hilbert
Ap-module E; defined in Section 6. With this identification, the *-homomorphism ¢ of Ay
to L4,(E1) is given by
(61(a))(9) = ) alh)an(§(h™'g))
heG
for a € Ay, £ € Ey and g € G. We denote by Ay the x-algebra Map(G?, Ag) with the

following product and involution;

(ab)(hg) = 3 alh, K)o (k. 9)),

kel
a*(hﬂ g) = O"hg—1 (a’(g7 h)*)

for a, b € Map(G?, Ag). We can identify A, with the C*-algebra A, defined in Section 6.
The identification is given by

(&) = 3 alhg)any- (E(9))61
g.hed

for a € Ay and £ € Ey. Let Ag be the x-subalgebra of A; consisting of elements a for which
there exists an element ag in Ag such that a(h,g) = agd.(hg™") for every g, h € G. Let
Ay be the #-subalgebra of A, consisting of elements a for which there exists an element
a; in Ay such that a(h,g) = ai(hg™") for every g, h € G. Then the basic construction
Ap C Ay C A, is identified with Ag C Ay C As.

Proposition 7.1. The basic construction Ag C Ay C Ay satisfies the condition (P1).
Proof. For a € Az, a belongs to Aj N Az if and only if

apa(h,g) = a(h, g)ay-1(ao)

for every ag € Ag and g,h € G. For g € G, define d, € AjN Ay by dy(h',g") = 6,(h")6,(q").
For ag € A and g,h € G, define f(ao;h,g) € Ay by f(aog;h,g)(h',g") = agdp,—1(h'g’"").

Then we have
(flaosh, g)dy)(h', g") = aodn(h')dy(g").
Therefore we have, for a € A,
a= Y fla(h,g);h,g)d,.
g9,h€eG
This implies that A is the linear span of A; (Aj N As). O
We denote by & the Hilbert Ag-module Map(Gz, Ap) with the following right Ag-action
and Ag-valued inner product;
(fa)(hg) = f(hvg)ahg*1 ((l)./
<&n>= Y ag-(Elh,g)n(h,g)

g,he€CG
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for £,n € Map(G?*, Ag), a € Ap and g,h € G. Then we can identify & with the Hilbert
Ap-module E; defined in Section 5. The identification is given by

(u Do 0)(hyg) = u(h)an(v(g™))
for u, v € E;. With this identification, the *-homomorphism ¢2 of A; to L4,(E,) is given
by
(¢2(a)€)(heg) = D alk)ar(E(k™ R g))

keG
for a € Ay, € € E3 and g, h € G. We denote by & the Hilbert Ag-module Map(G?, Ag)

with the following right Ag-action and Ag-valued inner product;
(5@)(1{‘7 hvg) = f(kv h:.g)akh_lg(a)
< 6777> = Z Ofgflhkfl(g(k7hvg)*n(k7hvg):)
g,h,keG
for £, € Map(G?, Ag), a € Ag and ¢,h, k € G. Then we can identify & with the Hilbert
Ap-module Ej3 defined in Section 5. The identification is given by
(11 @gq uz Qg uz)(ky by g) = wr(k)ar(uz(h™))ags-1 (us(g))
for u; € By (1 =1,2,3).
We denote by A the subset of Map(G?, Ag) consisting of elements a with the following
properties;
ag(ao)a’(hvg) = a(h,g)ah(ao),
a(k,gh) = ay(a(g” "k, h))
for ag € Ag and g, h,k € G. Then A is a x-subalgebra of A;. The product of A is given by

(ab)(h.g) = > b(k.g)a(h.k)
keG

for a, b € A. We can identify A with the C*-algebra A defined in Section 5. The identifi-

cation is given by

a(§) = > &agah,g)bn

g,heG
for a € A and ¢ € Ey. We denote by & the subset of Map(G?, Ag) consisting of elements =
with the following properties;
aglao)z(h,k,g) = x(h,k, g)apr-1(ao),
2(k,1,hg) = an(z(h™ "k, 1, 9))
for ag € Agp and ¢, h,k,l € G. Then & is a Hilbert A-module with the following right

A-action and A-valued inner product;

(za)(h.k,g) =Y a(l,g)x(h.k,1),

leG
<z,y>(h,9) Z apr-(2(l k. R)"y(l k. g))
kled

for z,y € £ and a € A. We can identify £ with the Hilbert A-module E defined in Section
5. The identification is given by
=Y &g)r(h.k,g)

geG
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forx € E, &£ € Ey and g.h € G. Let ¢ and ¢ be *-homomorphisms of A to L4(FE) defined
in Section 5. With the above identification, ¢ and ¢ are given as follows;

(d(a)a)(h,k,g) = w(l,k, g)a(h,1),

leG

((a)z)(h k) = x(h,l,g)an(a(k ", 17")

leG

fora€e A, x € E and g,h,k € G.
We denote by F the subset of Map(G*, Ag) consisting of elements X with the following
properties;

X(k7hvgvl)akh_1g(a’0) = (ll((lro)X(k,h,g,l),
X(k,h,g,nl) = an(X(n" "k, h,g,1))

for every ag € Ag and ¢g,h,k,l,n € G. Then F is a Hilbert A-module with the following
right A-action and A-valued inner product;

(Xa)(k.h,g,l) = > a(m, )X (k,h,g,m),
meG
<X, Y > (h,g) = Z Opp-1p-1 (X (L k0, h) Y (L k,n, g))
E1,nEG

fora € Aand X, Y € F. The fact that F is complete is proved in the following proposition.
We also show that E @y E and E ®y E are isomorphic to F. Note that we identify E with
£ and A with A.

Proposition 7.2. (1) There ezists an isomorphism M of E @4 E onto F as Hilbert A-
modules such that

M(z @ y)k,hyg,l) = > y(m.g ' Da(k,h,m)
med

for z,y € E and g,h,k,l € G. .
(2) There ezists an isomorphism M of E @y E onto F as Hilbert A-modules such that

Mz @y y)(k,hog. ) = > y(k,m, Dar(z(h™, g7 m™)
meG

for z,y € E and g,h,k,l € G.

Proof. (1) We denote by E @4 E the linear space generated by elements of the form = ®4 y
with @,y € E. Define a linear map M of E 04 E to Map(G*, Ag) by the formula in the
statement (1) of the proposition. It is clear that the image of M is contained in F and
that M is an A-module map. Let V be the unitary operator of E @4 E @; E; onto Ej
defined in Section 5. It follows from Proposition 5.2 that we have, for z,y € E and £ € Fj,
V(ie@y®E) = (2 Q¢ Ir, )y(§), where (2 ®¢, Ip, )y is an element of L4, (Eq, Es). Note that
we identify F3 with &. Then we have

(2 @y Lo Jy(€)) (ks hog) = Y~ €M (2 ©g y) (k. by g, 1)
leG
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Forz;,y; € E(i=1,-- ,n),set X =31  2;Q4y; € EOyE andY =3 " (2; R4,k )yi €
L4,(E1, E3). Then we have

<YEYESm = Y apipn (YRR g)f)
g.h kEG

> Qg—1pg—1 <| Z €<Z>A/‘[<X)(k* h,g,l)|2)

leG

for every £ € Ey and ¢, h,k € G. Therefore we have ||V §|* >
other hand, since V is unitary, we have

M(X)(k,h,g,0)||*. On the

Vel = V(X @Ol = [|X @l < X
for every £ € Ey. Thus we have ||Y]| < || X||. Therefore we have
M)k, g, DL < V] < 1X]

for every g, h,k,l € G. Then we can extend M to the A-module map of E®@gy E to F, which
we denote again by M. By a straightforward calculation, we know that < X, Xy, >=<
M(X1),M(X2) > for every X1, X3 € EQ4 E.

We will prove that M is surjective. Let X be an element of F. Fix gg,ho € G. Define
an element X, 3,y of & by

X (k, ho,90,990) if h = ho
Rty = { Xhomam) =

and define an element ey, of € by

i = _ 1
ego(kahvg)_{ (1) lfk‘fghandhigo

otherwise.

Then we have X = Eg,hGG M(X(g,n) @¢ €g). Therefore M is surjective. It also implies that
F is in fact a Hilbert A-module.

(2) We denote by E ©y E the linear space generated by elements of the form o @y y
with z,y € E. Define a linear map M of E Oy E to Map(G*, Ag) by the formula in the
statement (2) of the proposition. It is clear that the image of M is contained in F and that
M is an A-module map. Note that we have, for z,y € E, € € Ey and g,h, k € G,

(v(‘L Qyd f))(k,h,g) = ((IEI ®¢>o L)y(f))(k,hg)
=Y €Mz @y y)(k, g, 1).

le@

Then we can argue as in (1) and we can extend M to the A-module map of F @y E

to F, which we denote again by M. By a straightforward calculation, we know that <
X1, Xo >=< M(X1), M(X3) > for every X1, X5 € E®y E.

We will prove that M is surjective. Let X be an element of F. Fix gg, ho € G. Define
an element X, 1, of € by

e 3 X(k7h07go7g) ifh:gilho
X(go,hoy(k, by g) = { 0 otherwige.

Then we have X = Zg heG M(eg Oy )Ai:(‘g’h)). This completes the proof of the proposition.
|
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From the above proof, we have an explicit formula for M1, that is, we have
M™HX) = Y X Do ey

g,heG
Now we can construct a multiplicative unitary operator and we have an explicit formula for
it.
Theorem 7.3. There exists a multiplicative unitary operator W in L4(E @y E,E @4 E)
such that VV =W @ Ip,. Moreover W has the following form;

W =M""M.
Proof. Note that we have, for every X €e EQy E,Y € EQy E, { € Ey and g.h,k € G,
V(X @€)(k, h,g) => &) VM (X)(k, h, g, 1),
leG

V(Y @&)(kh,g) =Y MY )(k,h.g.1).
leG

Note also that we have, for X,Y € E ®4 E and {,n € Ey,
<X® 5 Y® n >E®¢E®iE1
= Z ap—rp-1 ([E(R)M (X)L kon, W) n(g) M(Y)(1, k, n, g)).

g,h,k,nEG

We identify E; with . Let ¢ be an element of E3. For u = (ko, ho,g0) € G*, define an
element w, of F by

LUM(k,h,g,l) :{

and define an element ¢, of Eq by
ko, ho, if g = koho!

Cu(g)_{C(O 0,90) ifg 0l Jo

1 ifg:go7 h = ho andlzkho_lgo

0 otherwise

0 otherwise.
Then the adjoint V* of V is given by
V=Y M (w) @G
pEGS
For X € E@y E and £ € By, set ( = V(X @ ¢€). Then, for y1 = (ko, ho, o), we have

C kOho g() Zf AI kOahngovl)'
leG

Since we have, for X € EQy E,Y € EQy E and {,n € E4,
< AJ?I(“’M) @ Cu, Y @n >
Z XV hoky! (Cﬂ(kOho_lgo)*"7<9)A/M(Y)(k07 ho, g0, 9))

geG

= > i (DM (X) (ko ho, go, ] 1(9)M (V) (ko ho, go, 9)),
g,leG

we have
<VWVX@),Yan>=<M'MX)2,Yan>.
This completes the proof of the theorem. O
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Finally, we give elements of E which satisfy properties (E1) and (E2) of Section 4. Define
an element &, of E by &(k,h,g) = |G|7Y/? if k = gh and & (k,h,g) = 0 if k # gh. Then
we have ||&]| = 1 and W (& @y &o) = o @ Eo. We can show that £ satisfies the property
(E1). In fact, the element m¢,(€) of L4(E) is given by

(7 (E)O) (k. hog) = |G[7* D Clv.u™, g)é(k, ub,v).

u,0€G
Then the adjoint g, (£)* is given by

(reo () Mk Dg) = [G]7S msurs (€0 b k) (0. 9).
u,vel
We can show that & satisfies the property (E2). In fact, the element 7, (§) of L4(E) is
given by
(Feo(E)O) (R, By g) = G172 D kw0, g)aga((u™ b o7h)).
u,veEG
Then the adjoint 7g,(£)* is given by

(%50(§)*n)(kvh79 |G| 1/2 Z Qpp=1yy— ak(g(k71u7vvhil)*)n(uvvvg))'

u,vEG

Define an element ng of E by no(k,h,g) = 1if k = g and h = e and no(k, h, g) = 0 otherwise.
Then we have |no|| = 1 and W(no @ no) = Mo @¢ no. We can show that ng satisfies the
property (E1). In fact, the element m,,(€) of L4(E) is given by

(mno () (ko g) = 3 C(v,e, )6k, B, v).

ve@E
Then the adjoint my,(€)* is given by

(Tao (€)™ )k, Ry g) = { g:u,veG Apup—r (§(v,u, k) (v u,g)) fh=e

otherwise.
We can show that ng satisfies the property (E2). In fact, the element 7,,(§) of L4(E) is
given by

(Fao ()R T g) = Y (ks v, g)an(Ele, o).
veld
Then the adjoint 7,,(£)* is given by

(%\Tln(é) k hvg Z App—1qy P 71’5}’/71)*ak*1(77(]{77“’79)))'

uel@

The author does not characterize the associated algebras B(&p), E(ﬁfo), B(no) and E(Uo)
vet. It will be interesting to know the structures of these algebras.
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