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SIMPLE LEFT SYMMETRIC ALGEBRAS OVER A REDUCTIVE LIE

ALGEBRA

Akira Mizuhara
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Abstract. In [Ba], [Bu] and [M], we studied the structures of a left symmetric algebra

over a real reductive Lie algebra.

In this paper, we shall give some examples of simple left symmetric algebras over

a reductive Lie algebra.

I. Preliminaries.

[A] Let g be a Lie algebra over K of dimension n and En be an aÆne space over K of

dimension n, where K denotes the �eld R of all real numbers or the �eld C of all complex

numbers.

Let � = ('; �) be an aÆne representation of g in E, where '(a) (resp. �(a)) denotes the

linear (resp. translation) part of �(a) (a 2 g). � is called admissible aÆne representation

of g in E if � is a linear isomorphism of g onto E. For a given linear representation ' of g

in E, if there exists a point P of E such that �(x) = '(x)P (x 2 g) is a linear isomorphism

of g onto E, ' is called an admissible aÆne representation of g in E at the point P .

Let A be a left symmetric algebra over g. Denote by L(a) (resp. R(a)) the left (resp.

right) multiplication of A by an element a. Then the mapping ~L of g into the Lie algebra

a�(A) of all in�nitesimal aÆne transformations on A de�ned by

~L(a) = (L(a); a)

is an admissible aÆne representation of g in A, which is called the left aÆne representation

of a left symmetric algebra A over g.

Let � = ('; �) be an admissible aÆne representation of g in E. De�ne a binomial

product in g by the formula

ab = ��1 ('(a)�(b)) (a; b 2 g):

Then the algebra A = (g; �) with the above multiplication is a left symmetric algebra over

g ([S], [M]).

[B] For an element a = (aij ; ai) of a�(E), denote by a a vector �eld on an aÆne space

E(x1; x2; : : : ; xn) with a system (x1; x2; : : : ; xn) of aÆne coordinates de�ned by

a = �
X

(aijxj + ai)
@

@xi
:
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For an aÆne representation � = ('; �) of g in E, denote by F�(x) (resp. F'(x)) a

polynomial on E de�ned by

F�(x)!0 = �(a1) ^ �(a2) ^ � � � ^ �(an)
�
resp. F'(x)!0 = '(a1) ^ '(a2) ^ � � � ^ '(an)

�
;

where faig is a base of g and !0 denotes the tensor �eld de�ned by

!0 =

�
@

@x1

�
^

�
@

@x2

�
^ � � � ^

�
@

@xn

�
:

The polynomial F�(x) (resp. F'(x)) is uniquely determined by (g; �) (resp. (g; ')), up to

a constant multiple. Denote this polynomial by F� = j�(g)j (resp. F' = j'(g)j) and call it

the polynomial for (g; �) (resp. (g; ')).

For an aÆne representation � = ('; �) of g in E and an in�nitesimal character � of g,

a polynomial F (x) on E is called a relative invariant of (g; �) (resp. (g; ')) corresponding

to � if the following equality holds:

L
�(a)

F = �(a)F
�
resp. L

'(a)
F = �(a)F

�
;

where L
X
denotes the Lie di�erentiation with respect to a vector �eld X.

We can prove the following ([M]).

Lemma 1. Let � = ('; �) be an aÆne representation of g in E, and F� (resp. F') the

polynomial for (g; �) (resp. (g; ')). Then F� (resp. F') is a relative invariant of (g; �)

(resp. (g; ')) corresponding to an in�nitesimal character � de�ned by

�(a) = Tr ad a� Tr'(a) (a 2 g):

For a left symmetric algebra A over g, we have

L(a) �R(a) = ad a (a 2 g):

Thus we have the following.

Corollary. Let F =
���~L(g)

��� be the polynomial for a left symmetric algebra A over g.

Then it is a relative invariant of (g; ~L) corresponding to �(a) = �TrR(a) (a 2 g).

Lemma 2. Let F and G be relative invariants of an aÆne representation (g; �) in E

corresponding to the same in�nitesimal character �. If (g; �) is admissible, then G coincides

with F up to a constant multiple.

In fact, we have L
�(a)

(G=F ) = 0 (a 2 g). Thus, if (g; �) is admissible, then G=F is a

constant. 2
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[C] Let A be a left symmetric algebra over a Lie algebra g, and h a symmetric bilinear form

on A. h is called of Hessian type ([S]) if, for x; y; z 2 A, the following equality holds:

h(xy; z) + h(y; xz) = h(yx; z) + h(x; yz):

Put

h(x; y) = TrR(xy) (x; y 2 A):

h is a symmetric bilinear form on A of Hessian type. It is called the canonical 2-form on A.

A is called non degenerate if the canonical 2-form is non degenerate.

Lemma 3. Let A be a left symmetric algebra over a Lie algebra g satisfying the following

conditions:

(1) A has an identity e,

(2) g = [g;g]� feg.

Then non trivial symmetric bilinear forms h1 and h2 on A of Hessian type are conformal.

In fact, for x; y 2 A, there exist z 2 [g;g] and � 2 K such that xy = z + �e. Moreover,

for any symmetric bilinear form h of Hessian type, the following equalities hold:

h ([x; y] ; e) = 0 and h(x; y) = h(e; xy) (x; y 2 A):

Therefore, we have

hi(x; y) = hi(e; xy) = �hi(e; e) (i = 1; 2):

2

Lemma 4. Let B be an ideal of a left symmetric algebra A with a symmetric bilinear

form h of Hessian type. Denote by B?
the orthogonal complement of B in A with respect

to h. Then B?
is a subalgebra of A.

In fact, for x; y 2 B? and b 2 B,

h(b; xy) = h(bx; y) + h(x; by) � h(xb; y) = 0:

2

Let A be a left symmetric algebra over g corresponding to an admissible aÆne repre-

sentation � = ('; �) in E, and F' the polynomial for (g; '), where there exists a point P

of E such that �(a) = '(a)P (a 2 g).

Denote by g a tensor �eld of type (0; 2) on a domain 
 = fx 2 E ; F'(x) 6= 0g de�ned

by

gij =
@2

@xi@xj
(log jF'j) :

Denote by h a symmetric bilinear form on A = (g; �) de�ned by

h(a; b) = g
�
�(a); �(b)

����
x=0

(a; b 2 A):
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h is called a symmetric bilinear form de�ned by F'.

We obtain the following ([M]).

Lemma 5. A symmetric bilinear form h on A de�ned by the polynomial F =
���~L(g)

��� for
a left symmetric algebra A coincides with the canonical 2-form on A.

For admissible aÆne representations (g; �) and (g; �0) in E, (g; �0) is called F -equivalent

to (g; �), if the polynomial F'0 for (g; '0) coincides with the polynomial F' for (g; '), up

to a constant multiple.

By the de�nition of a symmetric bilinear form de�ned by F', we obtain the following.

Lemma 6. For two admissible aÆne representations (g; �) and (g; �0) in E, if they are

F -equivalent, then the rank of the symmetric bilinear form on A0 = (g; �0) de�ned by F'0

coincides with that of the symmetric bilinear form on A = (g; �) de�ned by F'.

[D] Let G be a connected Lie group of dimension n over K, g its Lie algebra, and E an

aÆne space over K of dimension n.

Denote by � a linear representation of G in E, and � a character of G. A polynomial

F (x) on E is called a relative invariant for (G;�) corresponding to � if

F (�(g)x) = �(g)F (x) (x 2 E; g 2 G):

Denote by ' (resp. the same letter �) the induced linear representation (resp. the

induced in�nitesimal character) of g. Then F is a relative invariant of (g; ') corresponding

to �.

Let 	 be a mapping of a domain 
 = fx 2 E ; F (x) 6= 0g into an aÆne spaceE�(y1; y2; : : : ; yn)

of dimension n de�ned by

yi =

�
1

F (x)

��
@F (x)

@xi

�
(1 � i � n):

Then it can be easily proved that

	 (�(g)x) = ��(g)	(x) (x 2 
; g 2 G);

where �� denotes the contragradient representation of G in E�.

Lemma 7. Let (g; ') be an admissible aÆne representation of g in E at a point P , (g; '�)

the induced contragradient representation of g in E�
, and A = (g; �) a left symmetric algebra

over g corresponding to (g; ') at P . Then the following conditions are mutually equivalent.

(1) (g; '�) is admissible at Q = 	(P ),

(2) the Hessian of the mapping 	 does not vanish at P ,

(3) A is non degenerate.

Proof. Denote by H(x) the Hessian matrix of the mapping 	. The mapping 	 is a

di�eomorphism in a neighbourhood of P if and only if (g; '�) is admissible at the point

Q = 	(P ). Moreover, since we have H(x)ij = gij (1 � i; j � n), by Lemmas 5 and 6, we

obtain the equivalence of (2) and (3). 2
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[E]

Lemma 8. Let A be a left symmetric algebra over a Lie algebra g. Let B be a minimal

commutative ideal of A.

Assume that the Lie algebra b of B is contained in the center C of g. Then

(1) B is simple, or

(2) B is nilpotent.

Proof. Assume that the semi simple part S of an associative algebra B is non trivial.

Then S is decomposed into a direct sum
rL

i=1

Si of simple algebras Si (1 � 1 � r).

First we shall prove that r = 1. In fact, denote by ei (1 � i � r) the identity element

of Si. Put Bi = Bei (1 � i � r). Then, for x 2 A and b 2 B, since b is contained in the

center, we have

x(bei) = x(eib) = (xei)b = (eix)b = ei(xb) 2 Bi:

Thus Bi is an ideal of A. This implies that r = 1 and S is simple.

Next denote by e the identity element of S. Put

N0 = fn 2 N ; ne = 0g :

Similarly as above, we can easily prove that N0 is an ideal of A. Thus we obtain that

N0 = f0g and e is the identity of B. Now, for n 2 N and x 2 A, we have

xn = x(en) = (xe)n 2 N;

that is, N is an ideal of A. Thus, again by the minimality of B, we have N = f0g and

B = S.

2

[F] In this section, let g =S�C be a reductive Lie algebra over K of dimension n, where

S (resp. C) denotes the semi simple ideal ( 6= f0g) (resp. the center) of g.

Let � = ('; �) be an admissible aÆne representation of g in En, and A = (g; �) a left

symmetric algebra over g corresponding to �.

Assume that

deg
�
'
��S� = dimg: (�)

Lemma 9. Under the assumption (�), let B be a non commutative minimal ideal of A,

then there exists a subalgebra B of A such that

(1) A = B �B, semi direct sum with BB = 0,

(2) B (resp. B) has a right identity.

For the proof, see [M].

Lemma 10. Under the assumption (�), let B be a non degenerate minimal commutative

ideal of A, then there exists an ideal B of A such that A = B �B (direct sum).
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Proof. Let b be the Lie algebra of B. Then, since b is contained in the center and B is

non degenerate, B is simple, by Lemma 8. Denote by B? the orthogonal complement of

B with respect to the canonical 2-form h of A. Then, since B is non degenerate, B? is a

subalgebra of A satisfying A = B �B?.

Moreover, by the assumption (�), A has a right identity. Thus, by the Lemma below, we

have BB? = 0. This implies that B? is an ideal of A. 2

Lemma. Let A be a left symmetric algebra, B an ideal of A, and B a subalgebra of A

satisfying A = B �B (semi direct sum).

If the following conditions (1) and (2) are satis�ed, then BB = 0.

(1) B ? B with respect to the canonical 2-form h of A,

(2) A (resp. B) has a right identity e (resp. e1).

Proof. For b 2 B, we have b(e � e1) = 0. Thus, by (1), e2 = e � e1 is an element of B.

Moreover, for c 2 B, we have ce2 = c and ce1 = 0. This implies that, for b 2 B and c 2 B,

we have

bc = (bc)e1 = b(ce1) + (cb)e1 � c(be1) = 0:

2

[G] Let E = V1 � V2 � � � � � Vn be an aÆne space over K of dimension n2, where Vi =

Kn(xi1; xi2; : : : ; xin) denotes an aÆne space over K with a system xi = (xi1; xi2; : : : ; xin)

of aÆne coordinates.

Denote by F (x) the polynomial de�ned by

F (x) = det(x1; x2; : : : ; xn):

Lemma 11. Let X be an in�nitesimal linear transformation on E de�ned by X = En
c,

(c = (cij) 2 gl(n;K)). Then we have

L
X
F = � (TrX)F:

In fact, it can be easily proved that

L
X
F =

�
0; c = eij (i 6= j);

�F; c = eii;

where eij denotes the matrix unit in gl(n;K). 2

Let E0 =W1�W2� � � ��Wn+1 be an aÆne space over K of dimension n(n+1), where

Wi = Kn(xi1; xi2; : : : ; xin) denotes an aÆne space over K of dimension n with a system

xi = (xi1; xi2; : : : ; xin) of aÆne coordinates.

Denote by F (i) (1 � i � n+ 1) the polynomial on E0 de�ned by

F (i) = det(x1; x2; : : : ; x̂i; : : : ; xn+1):

Similarly as above, we can easily prove the following.
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Lemma 12. Let X be an in�nitesimal linear transformation on E0
de�ned by X =

En 
 eij , where eij denotes the matrix unit in gl(n+ 1;K). Then we have

L
X
F (k) =

8<
:

�F (k); i = j 6= k;

(�1)i�jF (i); j = k 6= i;

0; otherwise:

II. Let g = S � C be a reductive Lie algebra over K, where S (resp. C) denotes the

semi simple ideal (6= f0g) (resp. the center) of g.

In the following sections, we shall give some examples of simple left symmetric algebras

A = (g; ') over g.

[A] Let E = V1 � V2 � � � � � Vn be an aÆne space over K of dimension n2, where Vi =

Kn(xi1; xi2; : : : ; xin) denotes an aÆne space over K with a system xi = (xi1; xi2; : : : ; xin)

of aÆne coordinates.

Put S = sl(n;K) and C = feg.

Denote by ' a linear representation of g in E de�ned by

'jS = id
En;

'(e) = En 
 a (a 2 gl(n;K)):

Denote by F a polynomial on E de�ned by

F = det(x1; x2; : : : ; xn);

and by P a point in E de�ned by

P = (e1; e2; : : : ; en);

where feig denotes the canonical base of K
n.

Theorem 1.

(1) (g; ') is admissible at some point in E if and only if Tr a 6= 0.

(2) If (g; ') is admissible, then F is the polynomial for (g; ') and (g; ') is admissible at

P .

(3) Let A = (g; ') be a left symmetric algebra corresponding to an admissible aÆne

representation (g; ') at P . Then A is simple and non degenerate.

(4) A has a right identity.

Proof. (1) It is clear that a Lie subalgebra
�
s 
En; s 2 sl(n;K)

	
of the Lie algebra of

all in�nitesimal linear transformations on E spans the tangent space at P of a hypersur-

face through P de�ned by fx 2 E ; F (x) = F (P )g. Moreover En 
 a is transversal to the

hypersurface if and only if Tr a 6= 0. Thus we obtain (1).

(2) It is clear that F is a relative invariant corresponding to the in�nitesimal character

� (Tr'). Therefore, if (g; ') is admissible, F is the polynomial for (g; '), by Lemma 2.

(3) Simplicity is followed from the fact that dimC = 1. Moreover, since F coincides

with the polynomial for a non degenerate associative algebra gl(n;K), A = (g; ') is non

degenerate, by Lemma 7.

(4) is followed from the fact that deg'jS = dimg. 2
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[B] Let E = V1 � V2 � � � � � Vr be an aÆne space over K of dimension

rX
i=1

n2
i
, where

Vi =
niL
j=1

Vij (1 � i � r);

Vij = Kni(x(i)j1 ; x(i)j2; : : : ; x(i)jni
) (1 � i � r; 1 � j � ni)

denotes an aÆne space over K with a system x(i)j = (x(i)j1 ; x(i)j2; : : : ; x(i)jni
) of aÆne

coordinates.

Let g =S�C be a reductive Lie algebra over K, where

S =

rM
i=1

Si; Si = sl(ni;K) (1 � i � r; ni � 2);

C = fe1; e2; : : : ; erg denotes the center of g spanned by fe1; e2; : : : ; erg over K.

Denote by P a point of E de�ned by P =

rX
i=1

Pi, where Pi = (e(i)1; e(i)2; : : : ; e(i)ni
) 2

Vi (1 � i � r), fe(i)1; e(i)2; : : : ; e(i)ni
g denotes the canonical base of Kni.

Denote by ' a linear representation of g in E de�ned as follows:

'jVi = 'i (1 � i � r);

'i(sj ) = Æij
�
sj 
Enj

�
(sj 2Sj);

'i(ej ) = Eni

 a(j; i) (1 � i; j � r);

where a(j; i) = (a(j; i)k)k=1;2;::: ;ni
denotes an element of D(ni;K) of all diagonal matrices

in gl(ni;K).

Denote by F (i) (1 � i � r) a polynomial on Vi de�ned by

F (i) = det(x(i)1; x(i)2; : : : ; x(i)ni
);

and put F =

rY
i=1

F (i).

Theorem 2.

(1) (g; ') is admissible at some point in E if and only if det(Tr a(j; i))i;j=1;2;::: ;r 6= 0.

(2) If (g; ') is admissible at some point in E, then F is the polynomial for (g; ') and

(g; ') is admissible at P .

(3) Let A = (g; ') be a left symmetric algebra over g corresponding to an admissible

aÆne representation (g; ') at P . Then A is non degenerate.

(4) If B is a proper ideal of A, then it is expressed as a sum

sL
j=1

Aij
, where fi1; i2; : : : ; isg

is a subset of f1; 2; : : : ; rg and Ai = ��1(Vi) (1 � i � r).

Proof. (1) it is clear that a Lie subalgebra
n
'(s) ; s 2S

o
of the Lie algebra of all

in�nitesimal linear transformations on E spans the tangent space at P of a submanifold of

E de�ned by

fx 2 E ; F (i)(x) = F (i)(P ); 1 � i � rg :
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Moreover, we have

L
'(ej)

F (i) = �(Tr a(j; i))F (i) (1 � i; j � r):

This implies (1).

(2) is followed from Lemma 2.

(3) By (1), a relative invariant F corresponding to an in�nitesimal character �(Tr')

coincides with the polynomial for (g; '). Moreover, since the symmetric bilinear form on

Vi de�ned by F (i) (1 � i � r) is non degenerate, A is non degenerate.

(4) Denote by Ai = ��1(Vi) the inverse image of Vi of the linear isomorphism � de�ned

by �(x) = '(x)P (x 2 g). Then Ai is a left ideal of A. Denote by g
i
(1 � i � r) the Lie

algebra of Ai. Then, since g
i
� Si and the codimension of Si in gi = 1, Ai is a simple

subalgebra of A.

Let B be a proper ideal of A, and b the Lie algebra of B. Because of deg'jS = dimg, we

have b 6�S. Moreover, because of simplicity of Ai, if b 6�Si, then we have b\Si = f0g.

Thus, after a suitable choice of indeces if necessary, we may assume that there exists an

integer s (1 � s � r) such that

b �Si; 1 � i � s and b \Si = f0g ; s+ 1 � j � r:

Assume that b �Si. Then, since

�(Si)
6=
��(SiSi) = '(Si)�(Si) � �(b);

we have �(b) � Vi. This completes the proof of (4). 2

Example. In the above theorem, put f'(ei)g1�i�r as follows:

Non vanishing terms of fa(i; j)kg are�
a(1; 1)1 = 1; a(1; r)2 = 2r;

a(i; i)1 = 2i� 1; a(i; i � 1)2 = 2i� 2 (2 � i � r):

Then (g; ') is admissible and the left symmetric algebra A = (g; ') corresponding to an

admissible aÆne representation (g; ') at P is simple.

[C] Let V be an aÆne space over K of dimension m. A commutative algebra � over K is

called a commutative algebra ober V , if � is a commutative subalgebra of gl(V ) consisting

of upper triangular linear transformations of V with respect to some �xed base of V such

that

(1) dim� = m,

(2) the semi simple part of the algebra � is spanned by the identity transformation of

V .

Let a = (aij ) and bi (2 � i � m) be matrices in gl(m;K) expressed as

aij =

�
1; j = i+ 1;

0; otherwise; and

bi = e1i (2 � i � m);

where eij denotes the matrix unit in gl(m;K). Then a commutative algebra overK spanned

by
�
id; a; a2; : : : ; am�1

	
(resp. fid; b2; : : : ; bmg) is a commutative algebra overK

m. We call

it a commutative algebra over Km
of 1st kind (resp. 2nd kind).
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Let (m1;m2; : : : ;mr) be a r-tuple of positive integersmi such that m1+m2+� � �+mr =

m. A commutative algebra � over V is called of type (m1;m2; : : : ;mr) if there exists a

direct sum decomposition V =
rL

i=1

Vi and a set of commutative algebras �(i) over Vi such

that

(1) dimVi = mi (1 � i � r),

(2) � =
rL

i=1

�(i).

A commutative algebra � =
rL

i=1

�(i) over V of type (m1;m2; : : : ;mr) is called of 1st

kind (resp. 2nd kind) if �(i) is of 1st kind for any i (resp. r = 1 and � is of 2nd kind).

Let g = S� C be a reductive Lie algebra of dimension n(n + 1), where S = sl(n;K)

and C denotes the center of g of dimension n+ 1.

Denote by ' a linear representation of g into an aÆne space E over K of dimension

n(n + 1) de�ned as follows:

(1) 'jS = id
En+1,

(2) there exists a r-tuple (m1;m2; : : : ;mr) of positive integers mi such that m1 +m2 +

� � �+mr = n+ 1 such that

'jC = En 
 '0;

where '0(C) is a commutative algebra over K
n+1 of type (m1;m2; : : : ;mr). We call (g; ')

of type (m1;m2; : : : ;mr).

Let E =
n+1L
i=1

Vi be a direct sumdecomposition ofE, where Vi = Kn(xi1; xi2; : : : ; xin) (1 �

i � n + 1) denotes an aÆne space over K with a system xi = (xi1; xi2; : : : ; xin) of aÆne

coordinates.

Denote by F (i) a polynomial de�ned by

F (i) = det(x1; x2; : : : ; x̂i; : : : ; xn+1):

By Lemma 12, it is easily showed that if (g; ') is of type (m1;m2; : : : ;mr), then

F =

rY
j=1

F (ij)
mj

is a relative invariant of (g; ') corresponding to the in�nitesimal character � = �(Tr'),

where 8>><
>>:

i1 = 1;

i2 =m1 + 1;

� � �

ir = m1 +m2 + � � �+mr�1 + 1:

Denote by P a point of E de�ned by

P = (e1; e2; : : : ; en; e1 + e2 + � � � + en);
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where feig denotes the canonical base of K
n. Then we have F (P ) 6= 0. Thus, by Lemma

2, we obtain the following.

Proposition 1. Let (g; ') be a linear representation in E of type (m1;m2; : : : ;mr). If

(g; ') is admissible at some point, then

(1) F is the polynomial for (g; '),

(2) (g; ') is admissible at P .

Let (g; ') be a linear representation of g in E of type (m1;m2; : : : ;mr). We may assume

that m1 � m2 � � � � � mr.

First we shall prove the following.

Theorem 3. Let (g; ') be a linear representation of g in E of type (m1;m2; : : : ;mr).

If it is of 1st kind or of 2nd kind, then it is admissible.

Proof. Let (g; ') be a linear representation of g in E of type (m1;m2; : : : ;mr). By the

de�nition of (g; '), there exists an element e of C such that '(e) = En(n+1). Therefore, by

the de�nition of (g; '), the action of
�
'(s) (s 2S) and '(e)

	
on E is equivalent to that

of fx 
En+1 ; x 2 gl(n;K)g on E.

Denote by Q a point of E de�ned by

tQ = (e1 + e2 + � � �+ en; e1; e2; : : : ; en):

Then the action of fx 
En+1 ; x 2 gl(n;K)g at a point Q is expressed as follows:

(e11 
En+1; e21 
En+1; : : : ; enn 
En+1)Q =

2
666664

En En � � � En

En 0
En

. . .

0 En

3
777775
:

Denote by C0 = fa1; a2; : : : ; ang a subalgebra of C such that C = feg �C0.

Put

('(a1); : : : ; '(an))Q =

2
6664

D1

D2

...

Dn+1

3
7775 ;

where Di (1 � i � n+ 1) denotes a matrix in gl(n;K), and

D = D1 �

n+1X
i=2

Di:

Then the subspace '(g)Q is spanned by column vectors of the following matrix:2
666664

En En � � � En D1

En 0 D2

En D3

. . .

0 En Dn+1

3
777775
;
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which is equivalent to

2
666664

0 � � � 0 D

En 0 D2

En D3

. . .

0 En Dn+1

3
777775

After a suitable choice of a base faig of C0, we can easily prove the following:

(1) Assume that (g; ') is of type (m1;m2; : : : ;mr) and of 1st kind.

(i) If r = n+ 1, then m1 = m2 = � � � = mr = 1 and D = �En.

(ii) If r � n, then m1 � 2 and D is expressed as follows:

D =

2
6664
D1 0

D2

. . .

0 Dr

3
7775

where

D1 =

2
666664

1 0
�1 1

� � �
. . .

1

�1 �1 � � � �1 1

3
777775

9>>>>>=
>>>>>;
m1 � 1; and

Di =

2
666664

�1 0
�1 �1

� � �
. . .

�1

�1 �1 � � � �1 �1

3
777775

9>>>>>=
>>>>>;
mi (2 � i � r):

(2) If (g; ') is of 2nd kind, then

D = En:

Hence (g; ') is admissible at a point Q. 2

Next let A = (g; ') be an algebra over g corresponding an admissible aÆne representa-

tion (g; ') at P of type (m1;m2; : : : ;mr).

By the de�nition , there exists an element e 2 C such that '(e) = En(n+1). Denote by

B a linear subspace of A spanned by
�
s 2S and e

	
. Then B is a subalgebra of A which

is isomorphic to an associative algebra gl(n;K).

In fact, for s; s0 2S, there exist t 2S and � 2 K such that ss0 = t+ �En in gl(n;K).

Therefore, by the de�nition of ', we have ss0 = t+ �e in A. Thus B is a subalgebra of A

which is isomorphic to gl(n;K).

Let h (resp. h1) be the canonical 2-form on A (resp. B). Then, by Lemma 3, hjB and

h1 are conformal. Moreover, since B is isomorphic to gl(n;K), h1 is non degenerate. Thus,

denote by A? the orthogonal complement of A with respect to h, we have B \A? = f0g.
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By Lemma 4, we obtain the following.

Proposition 2. Let A = (g; ') be a left symmetric algebra as above. Then A? is a

subalgebra of A of dimension � n satisfying B \ A? = f0g.

Let B be a proper ideal of A, and b its Lie algebra. By the de�nition of ', we have

b 6�S. Moreover, since B \B = f0g and �(b) is '(S)-invariant, we have

dimB = n and b � C:

Therefore, by Lemmas 8 and 10, B is nilpotent. Thus we have r = 1 and '(C) is a

commutative algebra on Kn+1 of 2nd kind.

Conversely, assume that (g; ') satis�es the conditions described as above. Then (g; ')

is admissible at a point Q, by Theorem 3. Therefore, by Lemma 2, it is admissible at a

point P . Denote by A = (g; ') a left symmetric algebra corresponding to an admissible

aÆne representation (g; ') at P . Then ��1(V1) is a left ideal of A contained in C. Thus it

is an ideal of A of dimension n (which is contained in the radical R(A) of A). This proves

the following.

Theorem 4. Let A = (g; ') be a left symmetric algebra over g corresponding to an

admissible aÆne representation (g; ') at P of type (m1;m2; : : : ;mr). If A has a proper

ideal B, then

(1) dimB = n,

(2) r = 1,

(3) '0(C) is of 2nd kind.

Conversely, if (g; ') is a linear representation satisfying the above conditions (2) and

(3), then it is admissible at P and the corresponding algebra A = (g; ') has a commutative

nilpotent ideal of dimension n.

Remark. Let A = (g; ') be a left symmetric algebra over g corresponding to an admis-

sible aÆne representation at P of type (m1;m2; : : : ;mr). Then the radical R(A) of A is

non trivial if and only if r = 1.

Let (g; ') be an admissible aÆne representation in E of type (m1;m2; : : : ;mr) with

m1 � m2 � � � � � mr. Since F =

rY
j=1

F (ij)
mj is a relative invariant of (g; ') corresponding

to the in�nitesimal character � = �(Tr'), it is the polynomial for (g; '), by Lemma 2.

Denote by (g; '�) the contragradient representation of (g; '). Then (g; '�) is a linear

representation of g in E�, where

E� = V �

1 � V �

2 � � � � � V �

n+1;

V �

i
= Kn(yi1; yi2; : : : ; yin)

denotes an aÆne space over K with a system yi = (yi1; yi2; : : : ; yin) of aÆne coordinates.

Put

F � = F �(m1)
m1F �(m1 +m2)

m2 � � �F �(m1 + � � �+mr)
mr
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where F �(i) denotes the polynomial on E� de�ned by

F �(i) = det (y1; y2; : : : ; ŷi; : : : ; yn+1) :

Then it is clear that F � is a relative invariant of (g; '�) corresponding to the in�nitesimal

character �� = �(Tr'�).

Denote by 
 the domain in E de�ned by 
 = fx 2 E ; F (x) 6= 0g, and by 	 a mapping

of 
 into E� de�ned by

yij =

�
1

F (x)

�
@

@xij
(F (x)) (x 2 
);

for 1 � i � n+ 1, 1 � j � n. Put

(i; j; k) =

��
1

F (i)

��
@

@xjk
F (i)

��
(P );

for 1 � i; j � n+ 1, 1 � k � n.

By a direct computation, we obtain the following.

Lemma 13. Non vanishing terms of (i; j; k) are as follows:

(1) (i; j; i) = �1, i 6= j, 1 � i; j � n,

(2) (i;n+ 1; i) = 1, 1 � i � n,

(3) (i; j; j) = 1, i 6= j, 1 � i; j � n,

(4) (n+ 1; j; j) = 1, 1 � j � n.

Denote by 	(P )(j; k) the (j; k)-component of the point 	(P ) in E�.

Lemma 14.

(1) In the case that r = n+ 1 and mi = 1 (1 � i � n+ 1),

	(P )(j; k) =

8<
:

�1; j 6= k; 1 � j � n;

n; j = k; 1 � j � n;

1; j = n+ 1; 1 � k � n:

(2) In the case that m1 � 2.

	(P )(j;m1) =

�
n+ 1; j = m1;

0; otherwise:

In fact, in the �rst case, we have

	(P )(j; k) =

n+1X
i=1

(i; j; k):

In the second case, we have

	(P )(j;m1) =

rX
s=1

ms(is; j;m1):



LEFT SYMMETRIC ALGEBRAS 47

Using them and the above Lemma, we obtain the desired results. 2

In the case that m1 � 2. By the above Lemma 14, we have F �(m1)(	(P )) = 0, that

is, F �(	(P )) = 0. Therefore, by Lemma 8, the Hessian of the mapping 	 vanishes at P .

Thus A = (g; ') is degenerate, by Lemmas 6 and 7.

Next consider the case that r = n+1. In this case, (g; ') is admissible at P , by Theorem

3. Moreover, by the above Lemma 14, we have

F �(i)(	(P )) = (�1)n�i(n+ 1)n�1; 1 � i � n;

F �(n + 1)(	(P )) = (n + 1)n�1:

Hence we have F �(	(P )) 6= 0. Since F � is a relative invariant of (g; '�) corresponding to

�� = �(Tr'�) and F �(	(P )) 6= 0, the Hessian of 	 does not vanish at P , by Lemma 8.

This implies that A = (g; ') is non degenerate, by Lemma 6.

Thus we obtain the following.

Theorem 5. Let (g; ') be a linear representation of type (m1;m2; : : : ;mr).

(1) If r = n + 1, then it is admissible at a point P , and the corresponding algebra

A = (g; ') is non degenerate.

(2) If 1 � r � n and (g; ') is admissible at some point, then the corresponding algebra

A = (g; ') is degenerate.
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