SIMPLE LEFT SYMMETRIC ALGEBRAS OVER A REDUCTIVE LIE ALGEBRA

AKIRA MIZUHARA

Received October 1, 2001

ABSTRACT. In [Ba], [Bu] and [M], we studied the structures of a left symmetric algebra over a real reductive Lie algebra.

In this paper, we shall give some examples of simple left symmetric algebras over a reductive Lie algebra.

I. Preliminaries.

[A] Let \mathfrak{g} be a Lie algebra over K of dimension n and E^n be an affine space over K of dimension n, where K denotes the field R of all real numbers or the field C of all complex numbers.

Let $\rho = (\varphi, \pi)$ be an affine representation of \mathfrak{g} in E, where $\varphi(a)$ (resp. $\pi(a)$) denotes the linear (resp. translation) part of $\rho(a)$ $(a \in \mathfrak{g})$. ρ is called *admissible affine representation* of \mathfrak{g} in E if π is a linear isomorphism of \mathfrak{g} onto E. For a given linear representation φ of \mathfrak{g} in E, if there exists a point P of E such that $\pi(x) = \varphi(x)P$ $(x \in \mathfrak{g})$ is a linear isomorphism of \mathfrak{g} onto E, φ is called an *admissible affine representation of* \mathfrak{g} in E at the point P.

Let A be a left symmetric algebra over \mathfrak{g} . Denote by L(a) (resp. R(a)) the left (resp. right) multiplication of A by an element a. Then the mapping \tilde{L} of \mathfrak{g} into the Lie algebra aff(A) of all infinitesimal affine transformations on A defined by

$$\tilde{L}(a) = (L(a), a)$$

is an admissible affine representation of \mathfrak{g} in A, which is called the left affine representation of a left symmetric algebra A over \mathfrak{g} .

Let $\rho = (\varphi, \pi)$ be an admissible affine representation of \mathfrak{g} in E. Define a binomial product in \mathfrak{g} by the formula

$$ab = \pi^{-1} \left(\varphi(a) \pi(b) \right) \quad (a, b \in \mathfrak{g}).$$

Then the algebra $A = (\mathfrak{g}, \rho)$ with the above multiplication is a left symmetric algebra over \mathfrak{g} ([S], [M]).

[B] For an element $a = (a_{ij}, a_i)$ of $\operatorname{aff}(E)$, denote by \overline{a} a vector field on an affine space $E(x_1, x_2, \ldots, x_n)$ with a system (x_1, x_2, \ldots, x_n) of affine coordinates defined by

$$\overline{a} = -\sum (a_{ij}x_j + a_i)\frac{\partial}{\partial x_i}.$$

²⁰⁰⁰ Mathematics Subject Classification. 17D25.

Key words and phrases. Left symmetric algebra, simple algebra, non degenerate algebra, reductive Lie algebra.

Akira MIZUHARA

For an affine representation $\rho = (\varphi, \pi)$ of \mathfrak{g} in E, denote by $F_{\rho}(x)$ (resp. $F_{\varphi}(x)$) a polynomial on E defined by

$$F_{\rho}(x)\omega_{0} = \overline{\rho(a_{1})} \wedge \overline{\rho(a_{2})} \wedge \dots \wedge \overline{\rho(a_{n})} \quad \left(\text{resp. } F_{\varphi}(x)\omega_{0} = \overline{\varphi(a_{1})} \wedge \overline{\varphi(a_{2})} \wedge \dots \wedge \overline{\varphi(a_{n})}\right)$$

where $\{a_i\}$ is a base of \mathfrak{g} and ω_0 denotes the tensor field defined by

$$\omega_0 = \left(\frac{\partial}{\partial x_1}\right) \wedge \left(\frac{\partial}{\partial x_2}\right) \wedge \dots \wedge \left(\frac{\partial}{\partial x_n}\right).$$

The polynomial $F_{\rho}(x)$ (resp. $F_{\varphi}(x)$) is uniquely determined by (\mathfrak{g}, ρ) (resp. (\mathfrak{g}, φ)), up to a constant multiple. Denote this polynomial by $F_{\rho} = |\rho(\mathfrak{g})|$ (resp. $F_{\varphi} = |\varphi(\mathfrak{g})|$) and call it the polynomial for (\mathfrak{g}, ρ) (resp. (\mathfrak{g}, φ)).

For an affine representation $\rho = (\varphi, \pi)$ of \mathfrak{g} in E and an infinitesimal character χ of \mathfrak{g} , a polynomial F(x) on E is called a *relative invariant of* (\mathfrak{g}, ρ) (resp. (\mathfrak{g}, φ)) corresponding to χ if the following equality holds:

$$L_{\overline{\rho(a)}}F = \chi(a)F \quad \left(\text{resp. } L_{\overline{\varphi(a)}}F = \chi(a)F \right),$$

where $L_{\overline{X}}$ denotes the Lie differentiation with respect to a vector field \overline{X} .

We can prove the following ([M]).

Lemma 1. Let $\rho = (\varphi, \pi)$ be an affine representation of \mathfrak{g} in E, and F_{ρ} (resp. F_{φ}) the polynomial for (\mathfrak{g}, ρ) (resp. (\mathfrak{g}, φ)). Then F_{ρ} (resp. F_{φ}) is a relative invariant of (\mathfrak{g}, ρ) (resp. (\mathfrak{g}, φ)) corresponding to an infinitesimal character χ defined by

$$\chi(a) = \operatorname{Tr} \operatorname{ad} a - \operatorname{Tr} \varphi(a) \quad (a \in \mathfrak{g}).$$

For a left symmetric algebra A over \mathfrak{g} , we have

$$L(a) - R(a) = \operatorname{ad} a \quad (a \in \mathfrak{g}).$$

Thus we have the following.

Corollary. Let $F = |\tilde{L}(\mathfrak{g})|$ be the polynomial for a left symmetric algebra A over \mathfrak{g} . Then it is a relative invariant of $(\mathfrak{g}, \tilde{L})$ corresponding to $\chi(a) = -\operatorname{Tr} R(a)$ $(a \in \mathfrak{g})$.

Lemma 2. Let F and G be relative invariants of an affine representation (\mathfrak{g}, ρ) in E corresponding to the same infinitesimal character χ . If (\mathfrak{g}, ρ) is admissible, then G coincides with F up to a constant multiple.

In fact, we have $L_{\overline{\rho(a)}}(G/F) = 0$ $(a \in \mathfrak{g})$. Thus, if (\mathfrak{g}, ρ) is admissible, then G/F is a constant.

[C] Let A be a left symmetric algebra over a Lie algebra \mathfrak{g} , and h a symmetric bilinear form on A. h is called of Hessian type ([S]) if, for $x, y, z \in A$, the following equality holds:

$$h(xy,z) + h(y,xz) = h(yx,z) + h(x,yz).$$

Put

$$h(x, y) = \operatorname{Tr} R(xy) \quad (x, y \in A).$$

h is a symmetric bilinear form on A of Hessian type. It is called the canonical 2-form on A. A is called non degenerate if the canonical 2-form is non degenerate.

Lemma 3. Let A be a left symmetric algebra over a Lie algebra \mathfrak{g} satisfying the following conditions:

- (1) A has an identity e,
- (2) $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}] \oplus \{e\}.$

Then non trivial symmetric bilinear forms h_1 and h_2 on A of Hessian type are conformal.

In fact, for $x, y \in A$, there exist $z \in [\mathfrak{g}, \mathfrak{g}]$ and $\alpha \in K$ such that $xy = z + \alpha e$. Moreover, for any symmetric bilinear form h of Hessian type, the following equalities hold:

$$h\left([x,y],e\right) = 0$$
 and $h(x,y) = h(e,xy)$ $(x,y \in A).$

Therefore, we have

$$h_i(x,y) = h_i(e,xy) = \alpha h_i(e,e) \quad (i = 1,2).$$

Lemma 4. Let B be an ideal of a left symmetric algebra A with a symmetric bilinear form h of Hessian type. Denote by B^{\perp} the orthogonal complement of B in A with respect to h. Then B^{\perp} is a subalgebra of A.

In fact, for $x, y \in B^{\perp}$ and $b \in B$,

$$h(b, xy) = h(bx, y) + h(x, by) - h(xb, y) = 0.$$

Let A be a left symmetric algebra over \mathfrak{g} corresponding to an admissible affine representation $\rho = (\varphi, \pi)$ in E, and F_{φ} the polynomial for (\mathfrak{g}, φ) , where there exists a point P of E such that $\pi(a) = \varphi(a)P$ $(a \in \mathfrak{g})$.

Denote by g a tensor field of type (0,2) on a domain $\Omega = \{x \in E ; F_{\varphi}(x) \neq 0\}$ defined by

$$g_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} \left(\log |F_{\varphi}| \right).$$

Denote by h a symmetric bilinear form on $A = (\mathfrak{g}, \rho)$ defined by

$$h(a,b) = g \, \left(\overline{\rho(a)}, \overline{\rho(b)}\right) \Big|_{x=0} \quad (a,b \in A).$$

h is called a symmetric bilinear form defined by F_{φ} . We obtain the following ([M]).

Lemma 5. A symmetric bilinear form h on A defined by the polynomial $F = |\tilde{L}(\mathfrak{g})|$ for a left symmetric algebra A coincides with the canonical 2-form on A.

For admissible affine representations (\mathfrak{g}, ρ) and (\mathfrak{g}, ρ') in E, (\mathfrak{g}, ρ') is called *F*-equivalent to (\mathfrak{g}, ρ) , if the polynomial $F_{\varphi'}$ for (\mathfrak{g}, φ') coincides with the polynomial F_{φ} for (\mathfrak{g}, φ) , up to a constant multiple.

By the definition of a symmetric bilinear form defined by F_{φ} , we obtain the following.

Lemma 6. For two admissible affine representations (\mathfrak{g}, ρ) and (\mathfrak{g}, ρ') in E, if they are F-equivalent, then the rank of the symmetric bilinear form on $A' = (\mathfrak{g}, \rho')$ defined by $F_{\varphi'}$ coincides with that of the symmetric bilinear form on $A = (\mathfrak{g}, \rho)$ defined by F_{φ} .

[D] Let G be a connected Lie group of dimension n over K, \mathfrak{g} its Lie algebra, and E an affine space over K of dimension n.

Denote by Φ a linear representation of G in E, and χ a character of G. A polynomial F(x) on E is called a *relative invariant for* (G, Φ) *corresponding to* χ if

$$F(\Phi(g)x) = \chi(g)F(x) \quad (x \in E, g \in G).$$

Denote by φ (resp. the same letter χ) the induced linear representation (resp. the induced infinitesimal character) of \mathfrak{g} . Then F is a relative invariant of (\mathfrak{g}, φ) corresponding to χ .

Let Ψ be a mapping of a domain $\Omega = \{x \in E ; F(x) \neq 0\}$ into an affine space $E^*(y_1, y_2, \dots, y_n)$ of dimension *n* defined by

$$y_i = \left(\frac{1}{F(x)}\right) \left(\frac{\partial F(x)}{\partial x_i}\right) \quad (1 \le i \le n).$$

Then it can be easily proved that

$$\Psi(\Phi(g)x) = \Phi^*(g)\Psi(x) \quad (x \in \Omega, \, g \in G),$$

where Φ^* denotes the contragradient representation of G in E^* .

Lemma 7. Let (\mathfrak{g}, φ) be an admissible affine representation of \mathfrak{g} in E at a point P, $(\mathfrak{g}, \varphi^*)$ the induced contragradient representation of \mathfrak{g} in E^* , and $A = (\mathfrak{g}, \rho)$ a left symmetric algebra over \mathfrak{g} corresponding to (\mathfrak{g}, φ) at P. Then the following conditions are mutually equivalent.

- (1) $(\mathfrak{g}, \varphi^*)$ is admissible at $Q = \Psi(P)$,
- (2) the Hessian of the mapping Ψ does not vanish at P,
- (3) A is non degenerate.

Proof. Denote by H(x) the Hessian matrix of the mapping Ψ . The mapping Ψ is a diffeomorphism in a neighbourhood of P if and only if $(\mathfrak{g}, \varphi^*)$ is admissible at the point $Q = \Psi(P)$. Moreover, since we have $H(x)_{ij} = g_{ij}$ $(1 \le i, j \le n)$, by Lemmas 5 and 6, we obtain the equivalence of (2) and (3).

Lemma 8. Let A be a left symmetric algebra over a Lie algebra \mathfrak{g} . Let B be a minimal commutative ideal of A.

Assume that the Lie algebra \mathfrak{b} of B is contained in the center \mathfrak{C} of \mathfrak{g} . Then

- (1) B is simple, or
- (2) B is nilpotent.

Proof. Assume that the semi simple part S of an associative algebra B is non trivial. Then S is decomposed into a direct sum $\bigoplus_{i=1}^{r} S_i$ of simple algebras S_i $(1 \le 1 \le r)$.

First we shall prove that r = 1. In fact, denote by e_i $(1 \le i \le r)$ the identity element of S_i . Put $B_i = Be_i$ $(1 \le i \le r)$. Then, for $x \in A$ and $b \in B$, since \mathfrak{b} is contained in the center, we have

$$x(be_i) = x(e_ib) = (xe_i)b = (e_ix)b = e_i(xb) \in B_i.$$

Thus B_i is an ideal of A. This implies that r = 1 and S is simple.

Next denote by e the identity element of S. Put

$$N_0 = \{n \in N ; ne = 0\}.$$

Similarly as above, we can easily prove that N_0 is an ideal of A. Thus we obtain that $N_0 = \{0\}$ and e is the identity of B. Now, for $n \in N$ and $x \in A$, we have

$$xn = x(en) = (xe)n \in N,$$

that is, N is an ideal of A. Thus, again by the minimality of B, we have $N = \{0\}$ and B = S.

[F] In this section, let $\mathfrak{g} = \mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra over K of dimension n, where \mathfrak{S} (resp. \mathfrak{C}) denotes the semi simple ideal ($\neq \{0\}$) (resp. the center) of \mathfrak{g} .

Let $\rho = (\varphi, \pi)$ be an admissible affine representation of \mathfrak{g} in E^n , and $A = (\mathfrak{g}, \rho)$ a left symmetric algebra over \mathfrak{g} corresponding to ρ .

Assume that

$$\deg\left(\varphi \mid \mathfrak{S}\right) = \dim \mathfrak{g}. \tag{(*)}$$

Lemma 9. Under the assumption (*), let B be a non commutative minimal ideal of A, then there exists a subalgebra \overline{B} of A such that

- (1) $A = B \oplus \overline{B}$, semi direct sum with $B\overline{B} = 0$,
- (2) B (resp. \overline{B}) has a right identity.

For the proof, see [M].

Lemma 10. Under the assumption (*), let B be a non degenerate minimal commutative ideal of A, then there exists an ideal \overline{B} of A such that $A = B \oplus \overline{B}$ (direct sum).

Akira MIZUHARA

Proof. Let \mathfrak{b} be the Lie algebra of B. Then, since \mathfrak{b} is contained in the center and B is non degenerate, B is simple, by Lemma 8. Denote by B^{\perp} the orthogonal complement of B with respect to the canonical 2-form h of A. Then, since B is non degenerate, B^{\perp} is a subalgebra of A satisfying $A = B \oplus B^{\perp}$.

Moreover, by the assumption (*), A has a right identity. Thus, by the Lemma below, we have $BB^{\perp} = 0$. This implies that B^{\perp} is an ideal of A.

Lemma. Let A be a left symmetric algebra, B an ideal of A, and \overline{B} a subalgebra of A satisfying $A = B \oplus \overline{B}$ (semi direct sum).

If the following conditions (1) and (2) are satisfied, then $B\overline{B} = 0$.

- (1) $B \perp \overline{B}$ with respect to the canonical 2-form h of A,
- (2) A (resp. B) has a right identity e (resp. e_1).

Proof. For $b \in B$, we have $b(e - e_1) = 0$. Thus, by (1), $e_2 = e - e_1$ is an element of \overline{B} . Moreover, for $c \in \overline{B}$, we have $ce_2 = c$ and $ce_1 = 0$. This implies that, for $b \in B$ and $c \in \overline{B}$, we have

$$bc = (bc)e_1 = b(ce_1) + (cb)e_1 - c(be_1) = 0.$$

[G] Let $E = V_1 \oplus V_2 \oplus \cdots \oplus V_n$ be an affine space over K of dimension n^2 , where $V_i = K^n(x_{i1}, x_{i2}, \ldots, x_{in})$ denotes an affine space over K with a system $x_i = (x_{i1}, x_{i2}, \ldots, x_{in})$ of affine coordinates.

Denote by F(x) the polynomial defined by

$$F(x) = \det(x_1, x_2, \dots, x_n).$$

Lemma 11. Let \overline{X} be an infinitesimal linear transformation on E defined by $X = E_n \otimes c$, $(c = (c_{ij}) \in gl(n, K))$. Then we have

$$L_{\overline{X}}F = -(\operatorname{Tr} X) F.$$

In fact, it can be easily proved that

$$L_{\overline{X}}F = \begin{cases} 0, & c = e_{ij} \ (i \neq j) \\ -F, & c = e_{ii}, \end{cases}$$

where e_{ij} denotes the matrix unit in gl(n, K).

Let $E' = W_1 \oplus W_2 \oplus \cdots \oplus W_{n+1}$ be an affine space over K of dimension n(n+1), where $W_i = K^n(x_{i1}, x_{i2}, \ldots, x_{in})$ denotes an affine space over K of dimension n with a system $x_i = (x_{i1}, x_{i2}, \ldots, x_{in})$ of affine coordinates.

Denote by F(i) $(1 \le i \le n+1)$ the polynomial on E' defined by

$$F(i) = \det(x_1, x_2, \dots, \hat{x_i}, \dots, x_{n+1}).$$

Similarly as above, we can easily prove the following.

Lemma 12. Let \overline{X} be an infinitesimal linear transformation on E' defined by $X = E_n \otimes e_{ij}$, where e_{ij} denotes the matrix unit in gl(n + 1, K). Then we have

$$L_{\overline{X}}F(k) = \begin{cases} -F(k), & i = j \neq k, \\ (-1)^{i-j}F(i), & j = k \neq i, \\ 0, & otherwise. \end{cases}$$

II. Let $\mathfrak{g} = \mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra over K, where \mathfrak{S} (resp. \mathfrak{C}) denotes the semi-simple ideal ($\neq \{0\}$) (resp. the center) of \mathfrak{g} .

In the following sections, we shall give some examples of simple left symmetric algebras $A = (\mathfrak{g}, \varphi)$ over \mathfrak{g} .

[A] Let $E = V_1 \oplus V_2 \oplus \cdots \oplus V_n$ be an affine space over K of dimension n^2 , where $V_i = K^n(x_{i1}, x_{i2}, \ldots, x_{in})$ denotes an affine space over K with a system $x_i = (x_{i1}, x_{i2}, \ldots, x_{in})$ of affine coordinates.

Put $\mathfrak{S} = \mathrm{sl}(n, K)$ and $\mathfrak{C} = \{e\}.$

Denote by φ a linear representation of \mathfrak{g} in E defined by

$$\varphi | \mathfrak{S} = \mathrm{id} \otimes E_n, \varphi(e) = E_n \otimes a \quad (a \in \mathrm{gl}(n, K)).$$

Denote by F a polynomial on E defined by

$$F = \det(x_1, x_2, \dots, x_n),$$

and by P a point in E defined by

$$P = (e_1, e_2, \ldots, e_n),$$

where $\{e_i\}$ denotes the canonical base of K^n .

Theorem 1.

- (1) (\mathfrak{g}, φ) is admissible at some point in E if and only if $\operatorname{Tr} a \neq 0$.
- (2) If (\mathfrak{g}, φ) is admissible, then F is the polynomial for (\mathfrak{g}, φ) and (\mathfrak{g}, φ) is admissible at P.
- (3) Let $A = (\mathfrak{g}, \varphi)$ be a left symmetric algebra corresponding to an admissible affine representation (\mathfrak{g}, φ) at P. Then A is simple and non degenerate.
- (4) A has a right identity.

Proof. (1) It is clear that a Lie subalgebra $\{\overline{s \otimes E_n}, s \in sl(n, K)\}$ of the Lie algebra of all infinitesimal linear transformations on E spans the tangent space at P of a hypersurface through P defined by $\{x \in E ; F(x) = F(P)\}$. Moreover $\overline{E_n \otimes a}$ is transversal to the hypersurface if and only if $\operatorname{Tr} a \neq 0$. Thus we obtain (1).

(2) It is clear that F is a relative invariant corresponding to the infinitesimal character $-(\operatorname{Tr} \varphi)$. Therefore, if (\mathfrak{g}, φ) is admissible, F is the polynomial for (\mathfrak{g}, φ) , by Lemma 2.

(3) Simplicity is followed from the fact that dim $\mathfrak{C} = 1$. Moreover, since F coincides with the polynomial for a non degenerate associative algebra gl(n, K), $A = (\mathfrak{g}, \varphi)$ is non degenerate, by Lemma 7.

(4) is followed from the fact that $\deg \varphi | \mathfrak{S} = \dim \mathfrak{g}$.

[B] Let $E = V_1 \oplus V_2 \oplus \cdots \oplus V_r$ be an affine space over K of dimension $\sum_{i=1}^{r} n_i^2$, where

$$V_{i} = \bigoplus_{j=1}^{n_{i}} V_{ij} \quad (1 \le i \le r),$$

$$V_{ij} = K^{n_{i}}(x(i)_{j1}, x(i)_{j2}, \dots, x(i)_{jn_{i}}) \quad (1 \le i \le r, \ 1 \le j \le n_{i})$$

denotes an affine space over K with a system $x(i)_j = (x(i)_{j1}, x(i)_{j2}, \dots, x(i)_{jn_i})$ of affine coordinates.

Let $\mathfrak{g} = \mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra over K, where

$$\mathfrak{S} = \bigoplus_{i=1}^{r} \mathfrak{S}_{i}, \quad \mathfrak{S}_{i} = \mathrm{sl}(n_{i}, K) \quad (1 \le i \le r, n_{i} \ge 2)$$

 $\mathfrak{C} = \{e_1, e_2, \dots, e_r\}$ denotes the center of \mathfrak{g} spanned by $\{e_1, e_2, \dots, e_r\}$ over K.

Denote by P a point of E defined by $P = \sum_{i=1}^{r} P_i$, where $P_i = (e(i)_1, e(i)_2, \dots, e(i)_{n_i}) \in (1, 1, 1, \dots, n_i)$

 $V_i \ (1 \leq i \leq r), \ \{e(i)_1, e(i)_2, \dots, e(i)_{n_i}\}$ denotes the canonical base of K^{n_i} . Denote by φ a linear representation of \mathfrak{g} in E defined as follows:

$$\begin{array}{l} \varphi | V_i = \varphi_i \quad (1 \leq i \leq r), \\ \varphi_i(s_j) = \delta_{ij} \left(s_j \otimes E_{n_j} \right) \quad (s_j \in \mathfrak{S}_j), \\ \varphi_i(e_j) = E_{n_i} \otimes a(j,i) \quad (1 \leq i, j \leq r) \end{array}$$

where $a(j,i) = (a(j,i)_k)_{k=1,2,...,n_i}$ denotes an element of $D(n_i, K)$ of all diagonal matrices in $gl(n_i, K)$.

Denote by F(i) $(1 \le i \le r)$ a polynomial on V_i defined by

$$F(i) = \det(x(i)_1, x(i)_2, \dots, x(i)_{n_i})$$

and put $F = \prod_{i=1}^{r} F(i)$.

Theorem 2.

- (1) (\mathfrak{g},φ) is admissible at some point in E if and only if $\det(\operatorname{Tr} a(j,i))_{i,j=1,2,\ldots,r}\neq 0$.
- (2) If (\mathfrak{g}, φ) is admissible at some point in E, then F is the polynomial for (\mathfrak{g}, φ) and (\mathfrak{g}, φ) is admissible at P.
- (3) Let $A = (\mathfrak{g}, \varphi)$ be a left symmetric algebra over \mathfrak{g} corresponding to an admissible affine representation (\mathfrak{g}, φ) at P. Then A is non degenerate.
- (4) If B is a proper ideal of A, then it is expressed as a sum $\bigoplus_{j=1}^{s} A_{i_j}$, where $\{i_1, i_2, \ldots, i_s\}$ is a subset of $\{1, 2, \ldots, r\}$ and $A_i = \pi^{-1}(V_i)$ $(1 \le i \le r)$.

Proof. (1) it is clear that a Lie subalgebra $\{\overline{\varphi(s)}; s \in \mathfrak{S}\}$ of the Lie algebra of all infinitesimal linear transformations on E spans the tangent space at P of a submanifold of E defined by

$$\{x \in E ; F(i)(x) = F(i)(P), 1 \le i \le r\}.$$

Moreover, we have

$$L_{\overline{\varphi(e_j)}}F(i) = -(\operatorname{Tr} a(j,i))F(i) \quad (1 \le i, j \le r).$$

This implies (1).

(2) is followed from Lemma 2.

(3) By (1), a relative invariant F corresponding to an infinitesimal character $-(\operatorname{Tr} \varphi)$ coincides with the polynomial for (\mathfrak{g}, φ) . Moreover, since the symmetric bilinear form on V_i defined by F(i) $(1 \leq i \leq r)$ is non degenerate, A is non degenerate.

(4) Denote by $A_i = \pi^{-1}(V_i)$ the inverse image of V_i of the linear isomorphism π defined by $\pi(x) = \varphi(x)P$ ($x \in \mathfrak{g}$). Then A_i is a left ideal of A. Denote by \mathfrak{g}_i ($1 \leq i \leq r$) the Lie algebra of A_i . Then, since $\mathfrak{g}_i \supset \mathfrak{S}_i$ and the codimension of \mathfrak{S}_i in $\mathfrak{g}_i = 1$, A_i is a simple subalgebra of A.

Let *B* be a proper ideal of *A*, and \mathfrak{b} the Lie algebra of *B*. Because of deg $\varphi | \mathfrak{S} = \dim \mathfrak{g}$, we have $\mathfrak{b} \not\supseteq \mathfrak{S}$. Moreover, because of simplicity of A_i , if $\mathfrak{b} \not\supseteq \mathfrak{S}_i$, then we have $\mathfrak{b} \cap \mathfrak{S}_i = \{0\}$. Thus, after a suitable choice of indeces if necessary, we may assume that there exists an integer s $(1 \leq s \leq r)$ such that

$$\mathfrak{b} \supset \mathfrak{S}_i, \ 1 \leq i \leq s \text{ and } \mathfrak{b} \cap \mathfrak{S}_i = \{0\}, \ s+1 \leq j \leq r.$$

Assume that $\mathfrak{b} \supset \mathfrak{S}_i$. Then, since

$$\pi(\mathfrak{S}_i) \subsetneq \pi(\mathfrak{S}_i \mathfrak{S}_i) = \varphi(\mathfrak{S}_i) \pi(\mathfrak{S}_i) \subset \pi(\mathfrak{b}),$$

we have $\pi(\mathfrak{b}) \supset V_i$. This completes the proof of (4).

Example. In the above theorem, put $\{\varphi(e_i)\}_{1 \le i \le r}$ as follows:

Non vanishing terms of $\{a(i, j)_k\}$ are

$$\begin{cases} a(1,1)_1 = 1, & a(1,r)_2 = 2r, \\ a(i,i)_1 = 2i - 1, & a(i,i-1)_2 = 2i - 2 & (2 \le i \le r). \end{cases}$$

Then (\mathfrak{g}, φ) is admissible and the left symmetric algebra $A = (\mathfrak{g}, \varphi)$ corresponding to an admissible affine representation (\mathfrak{g}, φ) at P is simple.

[C] Let V be an affine space over K of dimension m. A commutative algebra Δ over K is called a commutative algebra ober V, if Δ is a commutative subalgebra of gl(V) consisting of upper triangular linear transformations of V with respect to some fixed base of V such that

- (1) $\dim \Delta = m$,
- (2) the semi simple part of the algebra Δ is spanned by the identity transformation of V.

Let $a = (a_{ij})$ and b_i $(2 \le i \le m)$ be matrices in gl(m, K) expressed as

$$a_{ij} = \begin{cases} 1, & j = i+1, \\ 0, & \text{otherwise, and} \\ b_i = e_{1i} & (2 \le i \le m), \end{cases}$$

where e_{ij} denotes the matrix unit in gl(m, K). Then a commutative algebra over K spanned by $\{id, a, a^2, \ldots, a^{m-1}\}$ (resp. $\{id, b_2, \ldots, b_m\}$) is a commutative algebra over K^m . We call it a commutative algebra over K^m of 1st kind (resp. 2nd kind).

Akira MIZUHARA

Let (m_1, m_2, \ldots, m_r) be a r-tuple of positive integers m_i such that $m_1 + m_2 + \cdots + m_r = m$. A commutative algebra Δ over V is called of type (m_1, m_2, \ldots, m_r) if there exists a direct sum decomposition $V = \bigoplus_{i=1}^r V_i$ and a set of commutative algebras $\Delta(i)$ over V_i such that

(1) dim $V_i = m_i$ $(1 \le i \le r),$

(2)
$$\Delta = \bigoplus_{i=1}^{r} \Delta(i).$$

A commutative algebra $\Delta = \bigoplus_{i=1}^{r} \Delta(i)$ over V of type (m_1, m_2, \dots, m_r) is called of 1st kind (resp. 2nd kind) if $\Delta(i)$ is of 1st kind for any i (resp. r = 1 and Δ is of 2nd kind).

Let $\mathfrak{g} = \mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra of dimension n(n+1), where $\mathfrak{S} = \mathrm{sl}(n, K)$ and \mathfrak{C} denotes the center of \mathfrak{g} of dimension n+1.

Denote by φ a linear representation of \mathfrak{g} into an affine space E over K of dimension n(n+1) defined as follows:

- (1) $\varphi | \mathfrak{S} = \mathrm{id} \otimes E_{n+1},$
- (2) there exists a r-tuple (m_1, m_2, \ldots, m_r) of positive integers m_i such that $m_1 + m_2 + \cdots + m_r = n + 1$ such that

$$\varphi|\mathfrak{C}=E_n\otimes\varphi_0,$$

where $\varphi_0(\mathfrak{C})$ is a commutative algebra over K^{n+1} of type (m_1, m_2, \ldots, m_r) . We call (\mathfrak{g}, φ) of type (m_1, m_2, \ldots, m_r) .

Let $E = \bigoplus_{i=1}^{n+1} V_i$ be a direct sum decomposition of E, where $V_i = K^n(x_{i1}, x_{i2}, \ldots, x_{in})$ $(1 \le i \le n+1)$ denotes an affine space over K with a system $x_i = (x_{i1}, x_{i2}, \ldots, x_{in})$ of affine coordinates.

Denote by F(i) a polynomial defined by

$$F(i) = \det(x_1, x_2, \dots, \hat{x_i}, \dots, x_{n+1}).$$

By Lemma 12, it is easily showed that if (\mathfrak{g}, φ) is of type (m_1, m_2, \ldots, m_r) , then

$$F = \prod_{j=1}^{r} F(i_j)^{m_j}$$

is a relative invariant of (\mathfrak{g}, φ) corresponding to the infinitesimal character $\chi = -(\operatorname{Tr} \varphi)$, where

$$\begin{cases} i_1 = 1, \\ i_2 = m_1 + 1, \\ \dots \\ i_r = m_1 + m_2 + \dots + m_{r-1} + 1. \end{cases}$$

Denote by P a point of E defined by

$$P = (e_1, e_2, \dots, e_n, e_1 + e_2 + \dots + e_n),$$

where $\{e_i\}$ denotes the canonical base of K^n . Then we have $F(P) \neq 0$. Thus, by Lemma 2, we obtain the following.

Proposition 1. Let (\mathfrak{g}, φ) be a linear representation in E of type (m_1, m_2, \ldots, m_r) . If (\mathfrak{g}, φ) is admissible at some point, then

- (1) F is the polynomial for (\mathfrak{g}, φ) ,
- (2) (\mathfrak{g}, φ) is admissible at P.

Let (\mathfrak{g}, φ) be a linear representation of \mathfrak{g} in E of type (m_1, m_2, \ldots, m_r) . We may assume that $m_1 \geq m_2 \geq \cdots \geq m_r$.

First we shall prove the following.

Theorem 3. Let (\mathfrak{g}, φ) be a linear representation of \mathfrak{g} in E of type (m_1, m_2, \ldots, m_r) . If it is of 1st kind or of 2nd kind, then it is admissible.

Proof. Let (\mathfrak{g}, φ) be a linear representation of \mathfrak{g} in E of type (m_1, m_2, \ldots, m_r) . By the definition of (\mathfrak{g}, φ) , there exists an element e of \mathfrak{C} such that $\varphi(e) = E_{n(n+1)}$. Therefore, by the definition of (\mathfrak{g}, φ) , the action of $\{\varphi(s) \mid (s \in \mathfrak{S}) \text{ and } \varphi(e)\}$ on E is equivalent to that of $\{x \otimes E_{n+1} ; x \in \mathrm{gl}(n, K)\}$ on E.

Denote by Q a point of E defined by

$${}^{t}Q = (e_1 + e_2 + \dots + e_n, e_1, e_2, \dots, e_n)$$

Then the action of $\{x \otimes E_{n+1}; x \in gl(n, K)\}$ at a point Q is expressed as follows:

$$(e_{11} \otimes E_{n+1}, e_{21} \otimes E_{n+1}, \dots, e_{nn} \otimes E_{n+1}) Q = \begin{bmatrix} E_n & E_n & \cdots & E_n \\ E_n & & & 0 \\ & E_n & & \\ & & \ddots & \\ 0 & & & E_n \end{bmatrix}$$

Denote by $\mathfrak{C}_0 = \{a_1, a_2, \dots, a_n\}$ a subalgebra of \mathfrak{C} such that $\mathfrak{C} = \{e\} \oplus \mathfrak{C}_0$. Put

$$(\varphi(a_1),\ldots,\varphi(a_n))Q = \begin{bmatrix} D_1\\ D_2\\ \vdots\\ D_{n+1} \end{bmatrix},$$

where D_i $(1 \le i \le n+1)$ denotes a matrix in gl(n, K), and

$$\overline{D} = D_1 - \sum_{i=2}^{n+1} D_i.$$

Then the subspace $\varphi(\mathfrak{g})Q$ is spanned by column vectors of the following matrix:

$$\begin{bmatrix} E_n & E_n & \cdots & E_n & D_1 \\ E_n & & 0 & D_2 \\ & E_n & & D_3 \\ & & \ddots & & \\ 0 & & & E_n & D_{n+1} \end{bmatrix},$$

which is equivalent to

$$\begin{bmatrix} 0 & \cdots & 0 & \overline{D} \\ E_n & & 0 & D_2 \\ & E_n & & D_3 \\ & & \ddots & \\ 0 & & & E_n & D_{n+1} \end{bmatrix}$$

After a suitable choice of a base $\{a_i\}$ of \mathfrak{C}_0 , we can easily prove the following: (1) Assume that (\mathfrak{g}, φ) is of type (m_1, m_2, \ldots, m_r) and of 1st kind.

(i) If r = n + 1, then $m_1 = m_2 = \cdots = m_r = 1$ and $\overline{D} = -E_n$.

(ii) If $r \leq n$, then $m_1 \geq 2$ and \overline{D} is expressed as follows:

$$\overline{D} = \begin{bmatrix} \overline{D_1} & & 0 \\ & \overline{D_2} & & 0 \\ & & \ddots & \\ 0 & & & \overline{D_r} \end{bmatrix}$$

where

(2) If (\mathfrak{g}, φ) is of 2nd kind, then

$$\overline{D} = E_n.$$

Hence (\mathfrak{g}, φ) is admissible at a point Q.

Next let $A = (\mathfrak{g}, \varphi)$ be an algebra over \mathfrak{g} corresponding an admissible affine representation (\mathfrak{g}, φ) at P of type (m_1, m_2, \ldots, m_r) .

By the definition, there exists an element $e \in \mathfrak{C}$ such that $\varphi(e) = E_{n(n+1)}$. Denote by \overline{B} a linear subspace of A spanned by $\{s \in \mathfrak{S} \text{ and } e\}$. Then \overline{B} is a subalgebra of A which is isomorphic to an associative algebra gl(n, K).

In fact, for $s, s' \in \mathfrak{S}$, there exist $t \in \mathfrak{S}$ and $\alpha \in K$ such that $ss' = t + \alpha E_n$ in gl(n, K). Therefore, by the definition of φ , we have $ss' = t + \alpha e$ in A. Thus \overline{B} is a subalgebra of A which is isomorphic to gl(n, K).

Let h (resp. h_1) be the canonical 2-form on A (resp. \overline{B}). Then, by Lemma 3, $h|\overline{B}$ and h_1 are conformal. Moreover, since \overline{B} is isomorphic to gl(n, K), h_1 is non degenerate. Thus, denote by A^{\perp} the orthogonal complement of A with respect to h, we have $\overline{B} \cap A^{\perp} = \{0\}$.

By Lemma 4, we obtain the following.

Proposition 2. Let $A = (\mathfrak{g}, \varphi)$ be a left symmetric algebra as above. Then A^{\perp} is a subalgebra of A of dimension $\leq n$ satisfying $\overline{B} \cap A^{\perp} = \{0\}$.

Let *B* be a proper ideal of *A*, and \mathfrak{b} its Lie algebra. By the definition of φ , we have $\mathfrak{b} \not\supseteq \mathfrak{S}$. Moreover, since $B \cap \overline{B} = \{0\}$ and $\pi(\mathfrak{b})$ is $\varphi(\mathfrak{S})$ -invariant, we have

dim B = n and $\mathfrak{b} \subset \mathfrak{C}$.

Therefore, by Lemmas 8 and 10, B is nilpotent. Thus we have r = 1 and $\varphi(\mathfrak{C})$ is a commutative algebra on K^{n+1} of 2nd kind.

Conversely, assume that (\mathfrak{g}, φ) satisfies the conditions described as above. Then (\mathfrak{g}, φ) is admissible at a point Q, by Theorem 3. Therefore, by Lemma 2, it is admissible at a point P. Denote by $A = (\mathfrak{g}, \varphi)$ a left symmetric algebra corresponding to an admissible affine representation (\mathfrak{g}, φ) at P. Then $\pi^{-1}(V_1)$ is a left ideal of A contained in \mathfrak{C} . Thus it is an ideal of A of dimension n (which is contained in the radical R(A) of A). This proves the following.

Theorem 4. Let $A = (\mathfrak{g}, \varphi)$ be a left symmetric algebra over \mathfrak{g} corresponding to an admissible affine representation (\mathfrak{g}, φ) at P of type (m_1, m_2, \ldots, m_r) . If A has a proper ideal B, then

- (1) dim B = n,
- (2) r = 1,
- (3) $\varphi_0(\mathfrak{C})$ is of 2nd kind.

Conversely, if (\mathfrak{g}, φ) is a linear representation satisfying the above conditions (2) and (3), then it is admissible at P and the corresponding algebra $A = (\mathfrak{g}, \varphi)$ has a commutative nilpotent ideal of dimension n.

Remark. Let $A = (\mathfrak{g}, \varphi)$ be a left symmetric algebra over \mathfrak{g} corresponding to an admissible affine representation at P of type (m_1, m_2, \ldots, m_r) . Then the radical R(A) of A is non trivial if and only if r = 1.

Let (\mathfrak{g}, φ) be an admissible affine representation in E of type (m_1, m_2, \ldots, m_r) with $m_1 \geq m_2 \geq \cdots \geq m_r$. Since $F = \prod_{j=1}^r F(i_j)^{m_j}$ is a relative invariant of (\mathfrak{g}, φ) corresponding to the infinitesimal character $\chi = -(\operatorname{Tr} \varphi)$, it is the polynomial for (\mathfrak{g}, φ) , by Lemma 2.

Denote by $(\mathfrak{g}, \varphi^*)$ the contragradient representation of (\mathfrak{g}, φ) . Then $(\mathfrak{g}, \varphi^*)$ is a linear

representation of \mathfrak{g} in E^* , where

$$E^* = V_1^* \oplus V_2^* \oplus \dots \oplus V_{n+1}^*, V_i^* = K^n(y_{i1}, y_{i2}, \dots, y_{in})$$

denotes an affine space over K with a system $y_i = (y_{i1}, y_{i2}, \dots, y_{in})$ of affine coordinates. Put

$$F^* = F^*(m_1)^{m_1} F^*(m_1 + m_2)^{m_2} \cdots F^*(m_1 + \cdots + m_r)^{m_r}$$

where $F^*(i)$ denotes the polynomial on E^* defined by

$$F^*(i) = \det(y_1, y_2, \dots, \hat{y}_i, \dots, y_{n+1}).$$

Then it is clear that F^* is a relative invariant of $(\mathfrak{g}, \varphi^*)$ corresponding to the infinitesimal character $\chi^* = -(\operatorname{Tr} \varphi^*).$

Denote by Ω the domain in E defined by $\Omega = \{x \in E ; F(x) \neq 0\}$, and by Ψ a mapping of Ω into E^* defined by

$$y_{ij} = \left(\frac{1}{F(x)}\right) \frac{\partial}{\partial x_{ij}} \left(F(x)\right) \quad (x \in \Omega).$$

for $1 \le i \le n + 1$, $1 \le j \le n$. Put

$$(i; j, k) = \left(\left(\frac{1}{F(i)} \right) \left(\frac{\partial}{\partial x_{jk}} F(i) \right) \right) (P),$$

for $1 \leq i, j \leq n+1, 1 \leq k \leq n$.

By a direct computation, we obtain the following.

Lemma 13. Non vanishing terms of (i; j, k) are as follows:

- (1) $(i; j, i) = -1, i \neq j, 1 \leq i, j \leq n,$
- (2) $(i; n+1, i) = 1, 1 \le i \le n,$
- (3) $(i; j, j) = 1, i \neq j, 1 \le i, j \le n,$
- (4) $(n+1, j, j) = 1, \ 1 \le j \le n.$

Denote by $\Psi(P)(j,k)$ the (j,k)-component of the point $\Psi(P)$ in E^* .

Lemma 14.

(1) In the case that r = n + 1 and $m_i = 1$ $(1 \le i \le n + 1)$, $\Psi(P)(j,k) = \begin{cases} -1, & j \neq k, \ 1 \leq j \leq n, \\ n, & j = k, \ 1 \leq j \leq n, \\ 1 & i = n+1, \ 1 \leq k \leq n. \end{cases}$

$$\left(\begin{array}{c} 1, \\ j = n+1, \end{array}\right)$$

(2) In the case that $m_1 \geq 2$.

$$\Psi(P)(j,m_1) = \begin{cases} n+1, & j=m_1, \\ 0, & otherwise. \end{cases}$$

In fact, in the first case, we have

$$\Psi(P)(j,k) = \sum_{i=1}^{n+1} (i;j,k).$$

In the second case, we have

$$\Psi(P)(j,m_1) = \sum_{s=1}^r m_s(i_s; j, m_1).$$

Using them and the above Lemma, we obtain the desired results.

In the case that $m_1 \geq 2$. By the above Lemma 14, we have $F^*(m_1)(\Psi(P)) = 0$, that is, $F^*(\Psi(P)) = 0$. Therefore, by Lemma 8, the Hessian of the mapping Ψ vanishes at P. Thus $A = (\mathfrak{g}, \varphi)$ is degenerate, by Lemmas 6 and 7.

Next consider the case that r = n+1. In this case, (\mathfrak{g}, φ) is admissible at P, by Theorem 3. Moreover, by the above Lemma 14, we have

$$\begin{split} F^*(i)(\Psi(P)) &= (-1)^{n-i}(n+1)^{n-1}, \ 1 \leq i \leq n, \\ F^*(n+1)(\Psi(P)) &= (n+1)^{n-1}. \end{split}$$

Hence we have $F^*(\Psi(P)) \neq 0$. Since F^* is a relative invariant of $(\mathfrak{g}, \varphi^*)$ corresponding to $\chi^* = -(\operatorname{Tr} \varphi^*)$ and $F^*(\Psi(P)) \neq 0$, the Hessian of Ψ does not vanish at P, by Lemma 8. This implies that $A = (\mathfrak{g}, \varphi)$ is non degenerate, by Lemma 6.

Thus we obtain the following.

Theorem 5. Let (\mathfrak{g}, φ) be a linear representation of type (m_1, m_2, \ldots, m_r) .

- (1) If r = n + 1, then it is admissible at a point P, and the corresponding algebra $A = (\mathfrak{g}, \varphi)$ is non degenerate.
- (2) If $1 \leq r \leq n$ and (\mathfrak{g}, φ) is admissible at some point, then the corresponding algebra $A = (\mathfrak{g}, \varphi)$ is degenerate.

References

- [Ba] O. Baues, Left symmetric algebras for gl(n), Transactions A.M.S. 351(1999), 2979–2996.
- [Bu] D. Burde, Left invariant affine structures on reductive Lie groups, J. Algebra 181(1996), 884–902.
- [M] A. Mizuhara, Left symmetric algebras over a real reductive Lie algebra, to appear in Math. Japonica.
- [S] H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble 30(1980), 91–128.

FACULTY OF SCIENCE, KYOTO SANGYO UNIVERSITY, KAMIGAMO, KITAKU, KYOTO, 603-8555, JAPAN

email: mizuhara@cc.kyoto-su.ac.jp