# SIMPLE LEFT SYMMETRIC ALGEBRAS OVER A REDUCTIVE LIE ALGEBRA 

Akira Mizuhara

Received October 1, 2001


#### Abstract

In $[\mathrm{Ba}],[\mathrm{Bu}]$ and $[\mathrm{M}]$, we studied the structures of a left symmetric algebra over a real reductive Lie algebra.

In this paper, we shall give some examples of simple left symmetric algebras over a reductive Lie algebra.


## I. Preliminaries.

[A] Let $\mathfrak{g}$ be a Lie algebra over $K$ of dimension $n$ and $E^{n}$ be an affine space over $K$ of dimension $n$, where $K$ denotes the field $R$ of all real numbers or the field $C$ of all complex numbers.

Let $\rho=(\varphi, \pi)$ be an affine representation of $\mathfrak{g}$ in $E$, where $\varphi(a)$ (resp. $\pi(a))$ denotes the linear (resp. translation) part of $\rho(a)(a \in \mathfrak{g})$. $\rho$ is called admissible affine representation of $\mathfrak{g}$ in $E$ if $\pi$ is a linear isomorphism of $\mathfrak{g}$ onto $E$. For a given linear representation $\varphi$ of $\mathfrak{g}$ in $E$, if there exists a point $P$ of $E$ such that $\pi(x)=\varphi(x) P(x \in \mathfrak{g})$ is a linear isomorphism of $\mathfrak{g}$ onto $E, \varphi$ is called an admissible affine representation of $\mathfrak{g}$ in $E$ at the point $P$.

Let $A$ be a left symmetric algebra over $\mathfrak{g}$. Denote by $L(a)$ (resp. $R(a)$ ) the left (resp. right) multiplication of $A$ by an element $a$. Then the mapping $\tilde{L}$ of $\mathfrak{g}$ into the Lie algebra $\operatorname{aff}(A)$ of all infinitesimal affine transformations on $A$ defined by

$$
\tilde{L}(a)=(L(a), a)
$$

is an admissible affine representation of $\mathfrak{g}$ in $A$, which is called the left affine representation of a left symmetric algebra $A$ over $\mathfrak{g}$.

Let $\rho=(\varphi, \pi)$ be an admissible affine representation of $\mathfrak{g}$ in $E$. Define a binomial product in $\mathfrak{g}$ by the formula

$$
a b=\pi^{-1}(\varphi(a) \pi(b)) \quad(a, b \in \mathfrak{g}) .
$$

Then the algebra $A=(\mathfrak{g}, \rho)$ with the above multiplication is a left symmetric algebra over $\mathfrak{g}([\mathrm{S}],[\mathrm{M}])$.
[B] For an element $a=\left(a_{i j}, a_{i}\right)$ of aff $(E)$, denote by $\bar{a}$ a vector field on an affine space $E\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with a system $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of affine coordinates defined by

$$
\bar{a}=-\sum\left(a_{i j} x_{j}+a_{i}\right) \frac{\partial}{\partial x_{i}} .
$$

[^0]For an affine representation $\rho=(\varphi, \pi)$ of $\mathfrak{g}$ in $E$, denote by $F_{\rho}(x)$ (resp. $F_{\varphi}(x)$ ) a polynomial on $E$ defined by

$$
F_{\rho}(x) \omega_{0}=\overline{\rho\left(a_{1}\right)} \wedge \overline{\rho\left(a_{2}\right)} \wedge \cdots \wedge \overline{\rho\left(a_{n}\right)} \quad\left(\operatorname{resp} . F_{\varphi}(x) \omega_{0}=\overline{\varphi\left(a_{1}\right)} \wedge \overline{\varphi\left(a_{2}\right)} \wedge \cdots \wedge \overline{\varphi\left(a_{n}\right)}\right)
$$

where $\left\{a_{i}\right\}$ is a base of $\mathfrak{g}$ and $\omega_{0}$ denotes the tensor field defined by

$$
\omega_{0}=\left(\frac{\partial}{\partial x_{1}}\right) \wedge\left(\frac{\partial}{\partial x_{2}}\right) \wedge \cdots \wedge\left(\frac{\partial}{\partial x_{n}}\right)
$$

The polynomial $F_{\rho}(x)$ (resp. $\left.F_{\varphi}(x)\right)$ is uniquely determined by $(\mathfrak{g}, \rho)$ (resp. $(\mathfrak{g}, \varphi)$ ), up to a constant multiple. Denote this polynomial by $F_{\rho}=|\rho(\mathfrak{g})|\left(\operatorname{resp} . F_{\varphi}=|\varphi(\mathfrak{g})|\right)$ and call it the polynomial for $(\mathfrak{g}, \rho)$ (resp. $(\mathfrak{g}, \varphi)$ ).

For an affine representation $\rho=(\varphi, \pi)$ of $\mathfrak{g}$ in $E$ and an infinitesimal character $\chi$ of $\mathfrak{g}$, a polynomial $F(x)$ on $E$ is called a relative invariant of $(\mathfrak{g}, \rho)$ (resp. ( $\mathfrak{g}, \varphi)$ ) corresponding to $\chi$ if the following equality holds:

$$
L_{\overline{\rho(a)}} F=\chi(a) F \quad\left(\operatorname{resp} . L_{\overline{\varphi(a)}} F=\chi(a) F\right)
$$

where $L_{\bar{X}}$ denotes the Lie differentiation with respect to a vector field $\bar{X}$.
We can prove the following ( $[\mathrm{M}]$ ).

Lemma 1. Let $\rho=(\varphi, \pi)$ be an affine representation of $\mathfrak{g}$ in $E$, and $F_{\rho}$ (resp. $F_{\varphi}$ ) the polynomial for $(\mathfrak{g}, \rho)$ (resp. $(\mathfrak{g}, \varphi)$ ). Then $F_{\rho}\left(\right.$ resp. $\left.F_{\varphi}\right)$ is a relative invariant of $(\mathfrak{g}, \rho)$ (resp. $(\mathfrak{g}, \varphi)$ ) corresponding to an infinitesimal character $\chi$ defined by

$$
\chi(a)=\operatorname{Tr} \operatorname{ad} a-\operatorname{Tr} \varphi(a) \quad(a \in \mathfrak{g})
$$

For a left symmetric algebra $A$ over $\mathfrak{g}$, we have

$$
L(a)-R(a)=\operatorname{ad} a \quad(a \in \mathfrak{g})
$$

Thus we have the following.

Corollary. Let $F=|\tilde{L}(\mathfrak{g})|$ be the polynomial for a left symmetric algebra $A$ over $\mathfrak{g}$. Then it is a relative invariant of $(\mathfrak{g}, \tilde{L})$ corresponding to $\chi(a)=-\operatorname{Tr} R(a)(a \in \mathfrak{g})$.

Lemma 2. Let $F$ and $G$ be relative invariants of an affine representation $(\mathfrak{g}, \rho)$ in $E$ corresponding to the same infinitesimal character $\chi$. If $(\mathfrak{g}, \rho)$ is admissible, then $G$ coincides with $F$ up to a constant multiple.

In fact, we have $L_{\overline{\rho(a)}}(G / F)=0(a \in \mathfrak{g})$. Thus, if $(\mathfrak{g}, \rho)$ is admissible, then $G / F$ is a constant.
[C] Let $A$ be a left symmetric algebra over a Lie algebra $\mathfrak{g}$, and $h$ a symmetric bilinear form on $A$. $h$ is called of Hessian type ([S]) if, for $x, y, z \in A$, the following equality holds:

$$
h(x y, z)+h(y, x z)=h(y x, z)+h(x, y z) .
$$

Put

$$
h(x, y)=\operatorname{Tr} R(x y) \quad(x, y \in A) .
$$

$h$ is a symmetric bilinear form on $A$ of Hessian type. It is called the canonical 2 -form on $A$. $A$ is called non degenerate if the canonical 2 -form is non degenerate.

Lemma 3. Let $A$ be a left symmetric algebra over a Lie algebra $\mathfrak{g}$ satisfying the following conditions:
(1) A has an identity $e$,
(2) $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}] \oplus\{e\}$.

Then non trivial symmetric bilinear forms $h_{1}$ and $h_{2}$ on $A$ of Hessian type are conformal.
In fact, for $x, y \in A$, there exist $z \in[\mathfrak{g}, \mathfrak{g}]$ and $\alpha \in K$ such that $x y=z+\alpha e$. Moreover, for any symmetric bilinear form $h$ of Hessian type, the following equalities hold:

$$
h([x, y], e)=0 \quad \text { and } \quad h(x, y)=h(e, x y) \quad(x, y \in A) .
$$

Therefore, we have

$$
h_{i}(x, y)=h_{i}(e, x y)=\alpha h_{i}(e, e) \quad(i=1,2) .
$$

Lemma 4. Let $B$ be an ideal of a left symmetric algebra $A$ with a symmetric bilinear form $h$ of Hessian type. Denote by $B^{\perp}$ the orthogonal complement of $B$ in $A$ with respect to $h$. Then $B^{\perp}$ is a subalgebra of $A$.

In fact, for $x, y \in B^{\perp}$ and $b \in B$,

$$
h(b, x y)=h(b x, y)+h(x, b y)-h(x b, y)=0 .
$$

Let $A$ be a left symmetric algebra over $\mathfrak{g}$ corresponding to an admissible affine representation $\rho=(\varphi, \pi)$ in $E$, and $F_{\varphi}$ the polynomial for $(\mathfrak{g}, \varphi)$, where there exists a point $P$ of $E$ such that $\pi(a)=\varphi(a) P(a \in \mathfrak{g})$.

Denote by $g$ a tensor field of type $(0,2)$ on a domain $\Omega=\left\{x \in E ; F_{\varphi}(x) \neq 0\right\}$ defined by

$$
g_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\log \left|F_{\varphi}\right|\right) .
$$

Denote by $h$ a symmetric bilinear form on $A=(\mathfrak{g}, \rho)$ defined by

$$
h(a, b)=\left.g(\overline{\rho(a)}, \overline{\rho(b)})\right|_{x=0} \quad(a, b \in A)
$$

$h$ is called a symmetric bilinear form defined by $F_{\varphi}$.
We obtain the following ([M]).
Lemma 5. A symmetric bilinear form $h$ on $A$ defined by the polynomial $F=|\tilde{L}(\mathfrak{g})|$ for a left symmetric algebra $A$ coincides with the canonical 2-form on $A$.

For admissible affine representations $(\mathfrak{g}, \rho)$ and $\left(\mathfrak{g}, \rho^{\prime}\right)$ in $E,\left(\mathfrak{g}, \rho^{\prime}\right)$ is called $F$-equivalent to $(\mathfrak{g}, \rho)$, if the polynomial $F_{\varphi^{\prime}}$ for $\left(\mathfrak{g}, \varphi^{\prime}\right)$ coincides with the polynomial $F_{\varphi}$ for $(\mathfrak{g}, \varphi)$, up to a constant multiple.

By the definition of a symmetric bilinear form defined by $F_{\varphi}$, we obtain the following.
Lemma 6. For two admissible affine representations $(\mathfrak{g}, \rho)$ and $\left(\mathfrak{g}, \rho^{\prime}\right)$ in $E$, if they are $F$-equivalent, then the rank of the symmetric bilinear form on $A^{\prime}=\left(\mathfrak{g}, \rho^{\prime}\right)$ defined by $F_{\varphi^{\prime}}$ coincides with that of the symmetric bilinear form on $A=(\mathfrak{g}, \rho)$ defined by $F_{\varphi}$.
[D] Let $G$ be a connected Lie group of dimension $n$ over $K, \mathfrak{g}$ its Lie algebra, and $E$ an affine space over $K$ of dimension $n$.

Denote by $\Phi$ a linear representation of $G$ in $E$, and $\chi$ a character of $G$. A polynomial $F(x)$ on $E$ is called a relative invariant for $(G, \Phi)$ corresponding to $\chi$ if

$$
F(\Phi(g) x)=\chi(g) F(x) \quad(x \in E, g \in G)
$$

Denote by $\varphi$ (resp. the same letter $\chi$ ) the induced linear representation (resp. the induced infinitesimal character) of $\mathfrak{g}$. Then $F$ is a relative invariant of $(\mathfrak{g}, \varphi)$ corresponding to $\chi$.

Let $\Psi$ be a mapping of a domain $\Omega=\{x \in E ; F(x) \neq 0\}$ into an affine space $E^{*}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ of dimension $n$ defined by

$$
y_{i}=\left(\frac{1}{F(x)}\right)\left(\frac{\partial F(x)}{\partial x_{i}}\right) \quad(1 \leq i \leq n)
$$

Then it can be easily proved that

$$
\Psi(\Phi(g) x)=\Phi^{*}(g) \Psi(x) \quad(x \in \Omega, g \in G)
$$

where $\Phi^{*}$ denotes the contragradient representation of $G$ in $E^{*}$.
Lemma 7. Let $(\mathfrak{g}, \varphi)$ be an admissible affine representation of $\mathfrak{g}$ in $E$ at a point $P,\left(\mathfrak{g}, \varphi^{*}\right)$ the induced contragradient representation of $\mathfrak{g}$ in $E^{*}$, and $A=(\mathfrak{g}, \rho)$ a left symmetric algebra over $\mathfrak{g}$ corresponding to $(\mathfrak{g}, \varphi)$ at $P$. Then the following conditions are mutually equivalent.
(1) $\left(\mathfrak{g}, \varphi^{*}\right)$ is admissible at $Q=\Psi(P)$,
(2) the Hessian of the mapping $\Psi$ does not vanish at $P$,
(3) $A$ is non degenerate.

Proof. Denote by $H(x)$ the Hessian matrix of the mapping $\Psi$. The mapping $\Psi$ is a diffeomorphism in a neighbourhood of $P$ if and only if $\left(\mathfrak{g}, \varphi^{*}\right)$ is admissible at the point $Q=\Psi(P)$. Moreover, since we have $H(x)_{i j}=g_{i j}(1 \leq i, j \leq n)$, by Lemmas 5 and 6 , we obtain the equivalence of (2) and (3).

## [E]

Lemma 8. Let $A$ be a left symmetric algebra over a Lie algebra $\mathfrak{g}$. Let $B$ be a minimal commutative ideal of $A$.

Assume that the Lie algebra $\mathfrak{b}$ of $B$ is contained in the center $\mathfrak{C}$ of $\mathfrak{g}$. Then
(1) $B$ is simple, or
(2) $B$ is nilpotent.

Proof. Assume that the semi simple part $S$ of an associative algebra $B$ is non trivial. Then $S$ is decomposed into a direct sum $\oplus_{i=1}^{r} S_{i}$ of simple algebras $S_{i}(1 \leq 1 \leq r)$.

First we shall prove that $r=1$. In fact, denote by $e_{i}(1 \leq i \leq r)$ the identity element of $S_{i}$. Put $B_{i}=B e_{i}(1 \leq i \leq r)$. Then, for $x \in A$ and $b \in B$, since $\mathfrak{b}$ is contained in the center, we have

$$
x\left(b e_{i}\right)=x\left(e_{i} b\right)=\left(x e_{i}\right) b=\left(e_{i} x\right) b=e_{i}(x b) \in B_{i} .
$$

Thus $B_{i}$ is an ideal of $A$. This implies that $r=1$ and $S$ is simple.
Next denote by $e$ the identity element of $S$. Put

$$
N_{0}=\{n \in N ; n e=0\} .
$$

Similarly as above, we can easily prove that $N_{0}$ is an ideal of $A$. Thus we obtain that $N_{0}=\{0\}$ and $e$ is the identity of $B$. Now, for $n \in N$ and $x \in A$, we have

$$
x n=x(e n)=(x e) n \in N,
$$

that is, $N$ is an ideal of $A$. Thus, again by the minimality of $B$, we have $N=\{0\}$ and $B=S$.
[F] In this section, let $\mathfrak{g}=\mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra over $K$ of dimension $n$, where $\mathfrak{S}$ (resp. $\mathfrak{C}$ ) denotes the semi simple ideal $(\neq\{0\})$ (resp. the center) of $\mathfrak{g}$.

Let $\rho=(\varphi, \pi)$ be an admissible affine representation of $\mathfrak{g}$ in $E^{n}$, and $A=(\mathfrak{g}, \rho)$ a left symmetric algebra over $\mathfrak{g}$ corresponding to $\rho$.

Assume that

$$
\begin{equation*}
\operatorname{deg}(\varphi \mid \mathfrak{S})=\operatorname{dim} \mathfrak{g} \tag{*}
\end{equation*}
$$

Lemma 9. Under the assumption (*), let $B$ be a non commutative minimal ideal of $A$, then there exists a subalgebra $\bar{B}$ of $A$ such that
(1) $A=B \oplus \bar{B}$, semi direct sum with $B \bar{B}=0$,
(2) $B($ resp. $\bar{B})$ has a right identity.

For the proof, see $[M]$.
Lemma 10. Under the assumption (*), let $B$ be a non degenerate minimal commutative ideal of $A$, then there exists an ideal $\bar{B}$ of $A$ such that $A=B \oplus \bar{B}$ (direct sum).

Proof. Let $\mathfrak{b}$ be the Lie algebra of $B$. Then, since $\mathfrak{b}$ is contained in the center and $B$ is non degenerate, $B$ is simple, by Lemma 8 . Denote by $B^{\perp}$ the orthogonal complement of $B$ with respect to the canonical 2 -form $h$ of $A$. Then, since $B$ is non degenerate, $B^{\perp}$ is a subalgebra of $A$ satisfying $A=B \oplus B^{\perp}$.
Moreover, by the assumption $(*), A$ has a right identity. Thus, by the Lemma below, we have $B B^{\perp}=0$. This implies that $B^{\perp}$ is an ideal of $A$.

Lemma. Let $A$ be a left symmetric algebra, $B$ an ideal of $A$, and $\bar{B}$ a subalgebra of $A$ satisfying $A=B \oplus \bar{B}$ (semi direct sum).

If the following conditions (1) and (2) are satisfied, then $B \bar{B}=0$.
(1) $B \perp \bar{B}$ with respect to the canonical 2-form $h$ of $A$,
(2) $A$ (resp. B) has a right identity e (resp. $e_{1}$ ).

Proof. For $b \in B$, we have $b\left(e-e_{1}\right)=0$. Thus, by (1), $e_{2}=e-e_{1}$ is an element of $\bar{B}$. Moreover, for $c \in \bar{B}$, we have $c e_{2}=c$ and $c e_{1}=0$. This implies that, for $b \in B$ and $c \in \bar{B}$, we have

$$
b c=(b c) e_{1}=b\left(c e_{1}\right)+(c b) e_{1}-c\left(b e_{1}\right)=0
$$

[G] Let $E=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ be an affine space over $K$ of dimension $n^{2}$, where $V_{i}=$ $K^{n}\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ denotes an affine space over $K$ with a system $x_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ of affine coordinates.

Denote by $F(x)$ the polynomial defined by

$$
F(x)=\operatorname{det}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Lemma 11. Let $\bar{X}$ be an infinitesimal linear transformation on $E$ defined by $X=E_{n} \otimes c$, $\left(c=\left(c_{i j}\right) \in \operatorname{gl}(n, K)\right)$. Then we have

$$
L_{\bar{X}} F=-(\operatorname{Tr} X) F
$$

In fact, it can be easily proved that

$$
L_{\bar{X}} F= \begin{cases}0, & c=e_{i j}(i \neq j) \\ -F, & c=e_{i i}\end{cases}
$$

where $e_{i j}$ denotes the matrix unit in $g l(n, K)$.
Let $E^{\prime}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{n+1}$ be an affine space over $K$ of dimension $n(n+1)$, where $W_{i}=K^{n}\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ denotes an affine space over $K$ of dimension $n$ with a system $x_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ of affine coordinates.

Denote by $F(i)(1 \leq i \leq n+1)$ the polynomial on $E^{\prime}$ defined by

$$
F(i)=\operatorname{det}\left(x_{1}, x_{2}, \ldots, \hat{x_{i}}, \ldots, x_{n+1}\right) .
$$

Similarly as above, we can easily prove the following.

Lemma 12. Let $\bar{X}$ be an infinitesimal linear transformation on $E^{\prime}$ defined by $X=$ $E_{n} \otimes e_{i j}$, where $e_{i j}$ denotes the matrix unit in $\operatorname{gl}(n+1, K)$. Then we have

$$
L_{\bar{X}} F(k)= \begin{cases}-F(k), & i=j \neq k \\ (-1)^{i-j} F(i), & j=k \neq i, \\ 0, & \text { otherwise }\end{cases}
$$

II. Let $\mathfrak{g}=\mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra over $K$, where $\mathfrak{S}$ (resp. $\mathfrak{C}$ ) denotes the semi simple ideal $(\neq\{0\})$ (resp. the center) of $\mathfrak{g}$.

In the following sections, we shall give some examples of simple left symmetric algebras $A=(\mathfrak{g}, \varphi)$ over $\mathfrak{g}$.
[A] Let $E=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$ be an affine space over $K$ of dimension $n^{2}$, where $V_{i}=$ $K^{n}\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ denotes an affine space over $K$ with a system $x_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ of affine coordinates.

Put $\mathfrak{S}=\operatorname{sl}(n, K)$ and $\mathfrak{C}=\{e\}$.
Denote by $\varphi$ a linear representation of $\mathfrak{g}$ in $E$ defined by

$$
\begin{aligned}
& \varphi \mid \mathfrak{S}=\mathrm{id} \otimes E_{n}, \\
& \varphi(e)=E_{n} \otimes a \quad(a \in \operatorname{gl}(n, K))
\end{aligned}
$$

Denote by $F$ a polynomial on $E$ defined by

$$
F=\operatorname{det}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and by $P$ a point in $E$ defined by

$$
P=\left(e_{1}, e_{2}, \ldots, e_{n}\right)
$$

where $\left\{e_{i}\right\}$ denotes the canonical base of $K^{n}$.

## Theorem 1.

(1) $(\mathfrak{g}, \varphi)$ is admissible at some point in $E$ if and only if $\operatorname{Tr} a \neq 0$.
(2) If $(\mathfrak{g}, \varphi)$ is admissible, then $F$ is the polynomial for $(\mathfrak{g}, \varphi)$ and $(\mathfrak{g}, \varphi)$ is admissible at $P$.
(3) Let $A=(\mathfrak{g}, \varphi)$ be a left symmetric algebra corresponding to an admissible affine representation $(\mathfrak{g}, \varphi)$ at $P$. Then $A$ is simple and non degenerate.
(4) A has a right identity.

Proof. (1) It is clear that a Lie subalgebra $\left\{\overline{s \otimes E_{n}}, s \in \operatorname{sl}(n, K)\right\}$ of the Lie algebra of all infinitesimal linear transformations on $E$ spans the tangent space at $P$ of a hypersurface through $P$ defined by $\{x \in E ; F(x)=F(P)\}$. Moreover $\overline{E_{n} \otimes a}$ is transversal to the hypersurface if and only if $\operatorname{Tr} a \neq 0$. Thus we obtain (1).
(2) It is clear that $F$ is a relative invariant corresponding to the infinitesimal character $-(\operatorname{Tr} \varphi)$. Therefore, if $(\mathfrak{g}, \varphi)$ is admissible, $F$ is the polynomial for $(\mathfrak{g}, \varphi)$, by Lemma 2.
(3) Simplicity is followed from the fact that $\operatorname{dim} \mathfrak{C}=1$. Moreover, since $F$ coincides with the polynomial for a non degenerate associative algebra $\operatorname{gl}(n, K), A=(\mathfrak{g}, \varphi)$ is non degenerate, by Lemma 7 .
(4) is followed from the fact that $\operatorname{deg} \varphi \mid \mathfrak{S}=\operatorname{dim} \mathfrak{g}$.
[B] Let $E=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r}$ be an affine space over $K$ of dimension $\sum_{i=1}^{r} n_{i}^{2}$, where

$$
\begin{aligned}
& V_{i}=\bigoplus_{j=1}^{n_{i}} V_{i j} \quad(1 \leq i \leq r) \\
& V_{i j}=K^{n_{i}}\left(x(i)_{j 1}, x(i)_{j 2}, \ldots, x(i)_{j n_{i}}\right)\left(1 \leq i \leq r, 1 \leq j \leq n_{i}\right)
\end{aligned}
$$

denotes an affine space over $K$ with a system $x(i)_{j}=\left(x(i)_{j 1}, x(i)_{j 2}, \ldots, x(i)_{j n_{i}}\right)$ of affine coordinates.

Let $\mathfrak{g}=\mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra over $K$, where

$$
\mathfrak{S}=\bigoplus_{i=1}^{r} \mathfrak{S}_{i}, \quad \mathfrak{S}_{i}=\operatorname{sl}\left(n_{i}, K\right) \quad\left(1 \leq i \leq r, n_{i} \geq 2\right)
$$

$\mathfrak{C}=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ denotes the center of $\mathfrak{g}$ spanned by $\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ over $K$.
Denote by $P$ a point of $E$ defined by $P=\sum_{i=1}^{r} P_{i}$, where $P_{i}=\left(e(i)_{1}, e(i)_{2}, \ldots, e(i)_{n_{i}}\right) \in$ $V_{i}(1 \leq i \leq r),\left\{e(i)_{1}, e(i)_{2}, \ldots, e(i)_{n_{i}}\right\}$ denotes the canonical base of $K^{n_{i}}$.

Denote by $\varphi$ a linear representation of $\mathfrak{g}$ in $E$ defined as follows:

$$
\begin{aligned}
& \varphi \mid V_{i}=\varphi_{i} \quad(1 \leq i \leq r) \\
& \varphi_{i}\left(s_{j}\right)=\delta_{i j}\left(s_{j} \otimes E_{n_{j}}\right) \quad\left(s_{j} \in \mathfrak{S}_{j}\right) \\
& \varphi_{i}\left(e_{j}\right)=E_{n_{i}} \otimes a(j, i) \quad(1 \leq i, j \leq r)
\end{aligned}
$$

where $a(j, i)=\left(a(j, i)_{k}\right)_{k=1,2, \ldots, n_{i}}$ denotes an element of $D\left(n_{i}, K\right)$ of all diagonal matrices in $\operatorname{gl}\left(n_{i}, K\right)$.

Denote by $F(i)(1 \leq i \leq r)$ a polynomial on $V_{i}$ defined by

$$
F(i)=\operatorname{det}\left(x(i)_{1}, x(i)_{2}, \ldots, x(i)_{n_{i}}\right)
$$

and put $F=\prod_{i=1}^{r} F(i)$.

## Theorem 2.

(1) $(\mathfrak{g}, \varphi)$ is admissible at some point in $E$ if and only if $\operatorname{det}(\operatorname{Tr} a(j, i))_{i, j=1,2, \ldots, r} \neq 0$.
(2) If $(\mathfrak{g}, \varphi)$ is admissible at some point in $E$, then $F$ is the polynomial for $(\mathfrak{g}, \varphi)$ and $(\mathfrak{g}, \varphi)$ is admissible at $P$.
(3) Let $A=(\mathfrak{g}, \varphi)$ be a left symmetric algebra over $\mathfrak{g}$ corresponding to an admissible affine representation $(\mathfrak{g}, \varphi)$ at $P$. Then $A$ is non degenerate.
(4) If $B$ is a proper ideal of $A$, then it is expressed as a sum $\bigoplus_{j=1}^{s} A_{i_{j}}$, where $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ is a subset of $\{1,2, \ldots, r\}$ and $A_{i}=\pi^{-1}\left(V_{i}\right)(1 \leq i \leq r)$.

Proof. (1) it is clear that a Lie subalgebra $\{\overline{\varphi(s)} ; s \in \mathfrak{S}\}$ of the Lie algebra of all infinitesimal linear transformations on $E$ spans the tangent space at $P$ of a submanifold of $E$ defined by

$$
\{x \in E ; F(i)(x)=F(i)(P), \quad 1 \leq i \leq r\}
$$

Moreover, we have

$$
L_{\overline{\varphi\left(e_{j}\right)}} F(i)=-(\operatorname{Tr} a(j, i)) F(i) \quad(1 \leq i, j \leq r)
$$

This implies (1).
(2) is followed from Lemma 2.
(3) By (1), a relative invariant $F$ corresponding to an infinitesimal character $-(\operatorname{Tr} \varphi)$ coincides with the polynomial for $(\mathfrak{g}, \varphi)$. Moreover, since the symmetric bilinear form on $V_{i}$ defined by $F(i)(1 \leq i \leq r)$ is non degenerate, $A$ is non degenerate.
(4) Denote by $A_{i}=\pi^{-1}\left(V_{i}\right)$ the inverse image of $V_{i}$ of the linear isomorphism $\pi$ defined by $\pi(x)=\varphi(x) P(x \in \mathfrak{g})$. Then $A_{i}$ is a left ideal of $A$. Denote by $\mathfrak{g}_{i}(1 \leq i \leq r)$ the Lie algebra of $A_{i}$. Then, since $\mathfrak{g}_{i} \supset \mathfrak{S}_{i}$ and the codimension of $\mathfrak{S}_{i}$ in $\mathfrak{g}_{i}=1, A_{i}$ is a simple subalgebra of $A$.

Let $B$ be a proper ideal of $A$, and $\mathfrak{b}$ the Lie algebra of $B$. Because of $\operatorname{deg} \varphi \mid \mathfrak{S}=\operatorname{dim} \mathfrak{g}$, we have $\mathfrak{b} \not \supset \mathfrak{S}$. Moreover, because of simplicity of $A_{i}$, if $\mathfrak{b} \not \supset \mathfrak{S}_{i}$, then we have $\mathfrak{b} \cap \mathfrak{S}_{i}=\{0\}$. Thus, after a suitable choice of indeces if necessary, we may assume that there exists an integer $s(1 \leq s \leq r)$ such that

$$
\mathfrak{b} \supset \mathfrak{S}_{i}, \quad 1 \leq i \leq s \text { and } \mathfrak{b} \cap \mathfrak{S}_{i}=\{0\}, \quad s+1 \leq j \leq r
$$

Assume that $\mathfrak{b} \supset \mathfrak{S}_{i}$. Then, since

$$
\pi\left(\mathfrak{S}_{i}\right) \varsubsetneqq \pi\left(\mathfrak{S}_{i} \mathfrak{S}_{i}\right)=\varphi\left(\mathfrak{S}_{i}\right) \pi\left(\mathfrak{S}_{i}\right) \subset \pi(\mathfrak{b})
$$

we have $\pi(\mathfrak{b}) \supset V_{i}$. This completes the proof of (4).
Example. In the above theorem, put $\left\{\varphi\left(e_{i}\right)\right\}_{1 \leq i \leq r}$ as follows:
Non vanishing terms of $\left\{a(i, j)_{k}\right\}$ are

$$
\begin{cases}a(1,1)_{1}=1, & a(1, r)_{2}=2 r, \\ a(i, i)_{1}=2 i-1, & a(i, i-1)_{2}=2 i-2(2 \leq i \leq r)\end{cases}
$$

Then $(\mathfrak{g}, \varphi)$ is admissible and the left symmetric algebra $A=(\mathfrak{g}, \varphi)$ corresponding to an admissible affine representation $(\mathfrak{g}, \varphi)$ at $P$ is simple.
[C] Let $V$ be an affine space over $K$ of dimension $m$. A commutative algebra $\Delta$ over $K$ is called a commutative algebra ober $V$, if $\Delta$ is a commutative subalgebra of $g l(V)$ consisting of upper triangular linear transformations of $V$ with respect to some fixed base of $V$ such that
(1) $\operatorname{dim} \Delta=m$,
(2) the semi simple part of the algebra $\Delta$ is spanned by the identity transformation of $V$.

Let $a=\left(a_{i j}\right)$ and $b_{i}(2 \leq i \leq m)$ be matrices in $\operatorname{gl}(m, K)$ expressed as

$$
\begin{aligned}
& a_{i j}= \begin{cases}1, & j=i+1, \\
0, & \text { otherwise }, \text { and }\end{cases} \\
& b_{i}=e_{1 i} \quad(2 \leq i \leq m)
\end{aligned}
$$

where $e_{i j}$ denotes the matrix unit in $g l(m, K)$. Then a commutative algebra over $K$ spanned by $\left\{\mathrm{id}, a, a^{2}, \ldots, a^{m-1}\right\}$ (resp. $\left\{\mathrm{id}, b_{2}, \ldots, b_{m}\right\}$ ) is a commutative algebra over $K^{m}$. We call it a commutative algebra over $K^{m}$ of 1 st kind (resp. 2nd kind).

Let $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ be a $r$-tuple of positive integers $m_{i}$ such that $m_{1}+m_{2}+\cdots+m_{r}=$ $m$. A commutative algebra $\Delta$ over $V$ is called of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ if there exists a direct sum decomposition $V=\bigoplus_{i=1}^{r} V_{i}$ and a set of commutative algebras $\Delta(i)$ over $V_{i}$ such that
(1) $\operatorname{dim} V_{i}=m_{i} \quad(1 \leq i \leq r)$,
(2) $\Delta=\bigoplus_{i=1}^{r} \Delta(i)$.

A commutative algebra $\Delta=\bigoplus_{i=1}^{r} \Delta(i)$ over $V$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ is called of 1 st kind (resp. 2nd kind) if $\Delta(i)$ is of 1 st kind for any $i$ (resp. $r=1$ and $\Delta$ is of 2 nd kind).

Let $\mathfrak{g}=\mathfrak{S} \oplus \mathfrak{C}$ be a reductive Lie algebra of dimension $n(n+1)$, where $\mathfrak{S}=\operatorname{sl}(n, K)$ and $\mathfrak{C}$ denotes the center of $\mathfrak{g}$ of dimension $n+1$.

Denote by $\varphi$ a linear representation of $\mathfrak{g}$ into an affine space $E$ over $K$ of dimension $n(n+1)$ defined as follows:
(1) $\varphi \mid \mathfrak{S}=\mathrm{id} \otimes E_{n+1}$,
(2) there exists a $r$-tuple $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ of positive integers $m_{i}$ such that $m_{1}+m_{2}+$ $\cdots+m_{r}=n+1$ such that

$$
\varphi \mid \mathfrak{C}=E_{n} \otimes \varphi_{0}
$$

where $\varphi_{0}(\mathfrak{C})$ is a commutative algebra over $K^{n+1}$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. We call $(\mathfrak{g}, \varphi)$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$.

Let $E=\bigoplus_{i=1}^{n+1} V_{i}$ be a direct sum decomposition of $E$, where $V_{i}=K^{n}\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)(1 \leq$ $i \leq n+1)$ denotes an affine space over $K$ with a system $x_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ of affine coordinates.

Denote by $F(i)$ a polynomial defined by

$$
F(i)=\operatorname{det}\left(x_{1}, x_{2}, \ldots, \hat{x_{i}}, \ldots, x_{n+1}\right)
$$

By Lemma 12 , it is easily showed that if $(\mathfrak{g}, \varphi)$ is of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$, then

$$
F=\prod_{j=1}^{r} F\left(i_{j}\right)^{m_{j}}
$$

is a relative invariant of $(\mathfrak{g}, \varphi)$ corresponding to the infinitesimal character $\chi=-(\operatorname{Tr} \varphi)$, where

$$
\left\{\begin{aligned}
i_{1} & =1 \\
i_{2} & =m_{1}+1 \\
& \ldots \\
i_{r} & =m_{1}+m_{2}+\cdots+m_{r-1}+1
\end{aligned}\right.
$$

Denote by $P$ a point of $E$ defined by

$$
P=\left(e_{1}, e_{2}, \ldots, e_{n}, e_{1}+e_{2}+\cdots+e_{n}\right)
$$

where $\left\{e_{i}\right\}$ denotes the canonical base of $K^{n}$. Then we have $F(P) \neq 0$. Thus, by Lemma 2 , we obtain the following.

Proposition 1. Let $(\mathfrak{g}, \varphi)$ be a linear representation in $E$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. If $(\mathfrak{g}, \varphi)$ is admissible at some point, then
(1) $F$ is the polynomial for $(\mathfrak{g}, \varphi)$,
(2) $(\mathfrak{g}, \varphi)$ is admissible at $P$.

Let $(\mathfrak{g}, \varphi)$ be a linear representation of $\mathfrak{g}$ in $E$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. We may assume that $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$.

First we shall prove the following.
Theorem 3. Let $(\mathfrak{g}, \varphi)$ be a linear representation of $\mathfrak{g}$ in $E$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. If it is of 1st kind or of 2nd kind, then it is admissible.

Proof. Let $(\mathfrak{g}, \varphi)$ be a linear representation of $\mathfrak{g}$ in $E$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. By the definition of $(\mathfrak{g}, \varphi)$, there exists an element $e$ of $\mathfrak{C}$ such that $\varphi(e)=E_{n(n+1)}$. Therefore, by the definition of $(\mathfrak{g}, \varphi)$, the action of $\{\varphi(s)(s \in \mathfrak{S})$ and $\varphi(e)\}$ on $E$ is equivalent to that of $\left\{x \otimes E_{n+1} ; x \in \operatorname{gl}(n, K)\right\}$ on $E$.

Denote by $Q$ a point of $E$ defined by

$$
{ }^{t} Q=\left(e_{1}+e_{2}+\cdots+e_{n}, e_{1}, e_{2}, \ldots, e_{n}\right)
$$

Then the action of $\left\{x \otimes E_{n+1} ; x \in \operatorname{gl}(n, K)\right\}$ at a point $Q$ is expressed as follows:

$$
\left(e_{11} \otimes E_{n+1}, e_{21} \otimes E_{n+1}, \ldots, e_{n n} \otimes E_{n+1}\right) Q=\left[\begin{array}{cccc}
E_{n} & E_{n} & \cdots & E_{n} \\
E_{n} & & & 0 \\
& E_{n} & & \\
& & \ddots & \\
0 & & & E_{n}
\end{array}\right]
$$

Denote by $\mathfrak{C}_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ a subalgebra of $\mathfrak{C}$ such that $\mathfrak{C}=\{e\} \oplus \mathfrak{C}_{0}$. Put

$$
\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right) Q=\left[\begin{array}{c}
D_{1} \\
D_{2} \\
\vdots \\
D_{n+1}
\end{array}\right]
$$

where $D_{i}(1 \leq i \leq n+1)$ denotes a matrix in $\operatorname{gl}(n, K)$, and

$$
\bar{D}=D_{1}-\sum_{i=2}^{n+1} D_{i}
$$

Then the subspace $\varphi(\mathfrak{g}) Q$ is spanned by column vectors of the following matrix:

$$
\left[\begin{array}{ccccc}
E_{n} & E_{n} & \cdots & E_{n} & D_{1} \\
E_{n} & & & 0 & D_{2} \\
& E_{n} & & & D_{3} \\
& & \ddots & & \\
0 & & & E_{n} & D_{n+1}
\end{array}\right]
$$

which is equivalent to

$$
\left[\begin{array}{ccccc}
0 & \cdots & & 0 & \bar{D} \\
E_{n} & & & 0 & D_{2} \\
& E_{n} & & & D_{3} \\
& & \ddots & & \\
0 & & & E_{n} & D_{n+1}
\end{array}\right]
$$

After a suitable choice of a base $\left\{a_{i}\right\}$ of $\mathfrak{C}_{0}$, we can easily prove the following:
(1) Assume that $(\mathfrak{g}, \varphi)$ is of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ and of 1 st kind.
(i) If $r=n+1$, then $m_{1}=m_{2}=\cdots=m_{r}=1$ and $\bar{D}=-E_{n}$.
(ii) If $r \leq n$, then $m_{1} \geq 2$ and $\bar{D}$ is expressed as follows:

$$
\bar{D}=\left[\begin{array}{cccc}
\overline{D_{1}} & & & 0 \\
& \overline{D_{2}} & & \\
& & \ddots & \\
0 & & & \overline{D_{r}}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \left.\overline{D_{1}}=\left[\begin{array}{ccccc}
1 & & & & 0 \\
-1 & 1 & & & \\
\cdots & & \ddots & & \\
-1 & -1 & \cdots & -1 & 1
\end{array}\right]\right\} m_{1}-1, \text { and } \\
& \left.\overline{D_{i}}=\left[\begin{array}{ccccc}
-1 & & & & 0 \\
-1 & -1 & & & \\
\cdots & \ddots & & \\
-1 & -1 & \cdots & -1 & -1
\end{array}\right]\right\} m_{i} \quad(2 \leq i \leq r)
\end{aligned}
$$

(2) If $(\mathfrak{g}, \varphi)$ is of 2 nd kind, then

$$
\bar{D}=E_{n}
$$

Hence $(\mathfrak{g}, \varphi)$ is admissible at a point $Q$.
Next let $A=(\mathfrak{g}, \varphi)$ be an algebra over $\mathfrak{g}$ corresponding an admissible affine representation $(\mathfrak{g}, \varphi)$ at $P$ of type ( $m_{1}, m_{2}, \ldots, m_{r}$ ).

By the definition, there exists an element $e \in \mathfrak{C}$ such that $\varphi(e)=E_{n(n+1)}$. Denote by $\bar{B}$ a linear subspace of $A$ spanned by $\{s \in \mathfrak{S}$ and $e\}$. Then $\bar{B}$ is a subalgebra of $A$ which is isomorphic to an associative algebra $\operatorname{gl}(n, K)$.

In fact, for $s, s^{\prime} \in \mathcal{S}$, there exist $t \in \mathfrak{S}$ and $\alpha \in K$ such that $s s^{\prime}=t+\alpha E_{n}$ in $\operatorname{gl}(n, K)$. Therefore, by the definition of $\varphi$, we have $s s^{\prime}=t+\alpha e$ in $A$. Thus $\bar{B}$ is a subalgebra of $A$ which is isomorphic to $\mathrm{gl}(n, K)$.

Let $h\left(\right.$ resp. $\left.h_{1}\right)$ be the canonical 2 -form on $A($ resp. $\bar{B})$. Then, by Lemma $3, h \mid \bar{B}$ and $h_{1}$ are conformal. Moreover, since $\bar{B}$ is isomorphic to $\mathrm{gl}(n, K), h_{1}$ is non degenerate. Thus, denote by $A^{\perp}$ the orthogonal complement of $A$ with respect to $h$, we have $\bar{B} \cap A^{\perp}=\{0\}$.

By Lemma 4, we obtain the following.
Proposition 2. Let $A=(\mathfrak{g}, \varphi)$ be a left symmetric algebra as above. Then $A^{\perp}$ is a subalgebra of $A$ of dimension $\leq n$ satisfying $\bar{B} \cap A^{\perp}=\{0\}$.

Let $B$ be a proper ideal of $A$, and $\mathfrak{b}$ its Lie algebra. By the definition of $\varphi$, we have $\mathfrak{b} \not \supset \mathfrak{S}$. Moreover, since $B \cap \bar{B}=\{0\}$ and $\pi(\mathfrak{b})$ is $\varphi(\mathfrak{S})$-invariant, we have

$$
\operatorname{dim} B=n \text { and } \mathfrak{b} \subset \mathfrak{C}
$$

Therefore, by Lemmas 8 and $10, B$ is nilpotent. Thus we have $r=1$ and $\varphi(\mathfrak{C})$ is a commutative algebra on $K^{n+1}$ of 2 nd kind.

Conversely, assume that $(\mathfrak{g}, \varphi)$ satisfies the conditions described as above. Then $(\mathfrak{g}, \varphi)$ is admissible at a point $Q$, by Theorem 3. Therefore, by Lemma 2, it is admissible at a point $P$. Denote by $A=(\mathfrak{g}, \varphi)$ a left symmetric algebra corresponding to an admissible affine representation $(\mathfrak{g}, \varphi)$ at $P$. Then $\pi^{-1}\left(V_{1}\right)$ is a left ideal of $A$ contained in $\mathfrak{C}$. Thus it is an ideal of $A$ of dimension $n$ (which is contained in the radical $R(A)$ of $A$ ). This proves the following.

Theorem 4. Let $A=(\mathfrak{g}, \varphi)$ be a left symmetric algebra over $\mathfrak{g}$ corresponding to an admissible affine representation $(\mathfrak{g}, \varphi)$ at $P$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. If $A$ has a proper ideal $B$, then
(1) $\operatorname{dim} B=n$,
(2) $r=1$,
(3) $\varphi_{0}(\mathfrak{C})$ is of 2 nd kind.

Conversely, if $(\mathfrak{g}, \varphi)$ is a linear representation satisfying the above conditions (2) and (3), then it is admissible at $P$ and the corresponding algebra $A=(\mathfrak{g}, \varphi)$ has a commutative nilpotent ideal of dimension $n$.

Remark. Let $A=(\mathfrak{g}, \varphi)$ be a left symmetric algebra over $\mathfrak{g}$ corresponding to an admissible affine representation at $P$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. Then the radical $R(A)$ of $A$ is non trivial if and only if $r=1$.

Let $(\mathfrak{g}, \varphi)$ be an admissible affine representation in $E$ of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$ with $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$. Since $F=\prod_{j=1}^{r} F\left(i_{j}\right)^{m_{j}}$ is a relative invariant of $(\mathfrak{g}, \varphi)$ corresponding to the infinitesimal character $\chi=-(\operatorname{Tr} \varphi)$, it is the polynomial for $(\mathfrak{g}, \varphi)$, by Lemma 2 .

Denote by $\left(\mathfrak{g}, \varphi^{*}\right)$ the contragradient representation of $(\mathfrak{g}, \varphi)$. Then $\left(\mathfrak{g}, \varphi^{*}\right)$ is a linear representation of $\mathfrak{g}$ in $E^{*}$, where

$$
\begin{aligned}
& E^{*}=V_{1}^{*} \oplus V_{2}^{*} \oplus \cdots \oplus V_{n+1}^{*} \\
& V_{i}^{*}=K^{n}\left(y_{i 1}, y_{i 2}, \ldots, y_{i n}\right)
\end{aligned}
$$

denotes an affine space over $K$ with a system $y_{i}=\left(y_{i 1}, y_{i 2}, \ldots, y_{i n}\right)$ of affine coordinates. Put

$$
F^{*}=F^{*}\left(m_{1}\right)^{m_{1}} F^{*}\left(m_{1}+m_{2}\right)^{m_{2}} \cdots F^{*}\left(m_{1}+\cdots+m_{r}\right)^{m_{r}}
$$

where $F^{*}(i)$ denotes the polynomial on $E^{*}$ defined by

$$
F^{*}(i)=\operatorname{det}\left(y_{1}, y_{2}, \ldots, \hat{y_{i}}, \ldots, y_{n+1}\right) .
$$

Then it is clear that $F^{*}$ is a relative invariant of ( $\mathfrak{g}, \varphi^{*}$ ) corresponding to the infinitesimal character $\chi^{*}=-\left(\operatorname{Tr} \varphi^{*}\right)$.

Denote by $\Omega$ the domain in $E$ defined by $\Omega=\{x \in E ; F(x) \neq 0\}$, and by $\Psi$ a mapping of $\Omega$ into $E^{*}$ defined by

$$
y_{i j}=\left(\frac{1}{F(x)}\right) \frac{\partial}{\partial x_{i j}}(F(x)) \quad(x \in \Omega)
$$

for $1 \leq i \leq n+1,1 \leq j \leq n$. Put

$$
(i ; j, k)=\left(\left(\frac{1}{F(i)}\right)\left(\frac{\partial}{\partial x_{j k}} F(i)\right)\right)(P)
$$

for $1 \leq i, j \leq n+1,1 \leq k \leq n$.
By a direct computation, we obtain the following.
Lemma 13. Non vanishing terms of $(i ; j, k)$ are as follows:
(1) $(i ; j, i)=-1, \quad i \neq j, 1 \leq i, j \leq n$,
(2) $(i ; n+1, i)=1,1 \leq i \leq n$,
(3) $(i ; j, j)=1, \quad i \neq j, 1 \leq i, j \leq n$,
(4) $(n+1, j, j)=1,1 \leq j \leq n$.

Denote by $\Psi(P)(j, k)$ the $(j, k)$-component of the point $\Psi(P)$ in $E^{*}$.

## Lemma 14.

(1) In the case that $r=n+1$ and $m_{i}=1(1 \leq i \leq n+1)$,

$$
\Psi(P)(j, k)= \begin{cases}-1, & j \neq k, 1 \leq j \leq n, \\ n, & j=k, 1 \leq j \leq n, \\ 1, & j=n+1,1 \leq k \leq n\end{cases}
$$

(2) In the case that $m_{1} \geq 2$.

$$
\Psi(P)\left(j, m_{1}\right)= \begin{cases}n+1, & j=m_{1} \\ 0, & \text { otherwise }\end{cases}
$$

In fact, in the first case, we have

$$
\Psi(P)(j, k)=\sum_{i=1}^{n+1}(i ; j, k)
$$

In the second case, we have

$$
\Psi(P)\left(j, m_{1}\right)=\sum_{s=1}^{r} m_{s}\left(i_{s} ; j, m_{1}\right)
$$

Using them and the above Lemma, we obtain the desired results.
In the case that $m_{1} \geq 2$. By the above Lemma 14 , we have $F^{*}\left(m_{1}\right)(\Psi(P))=0$, that is, $F^{*}(\Psi(P))=0$. Therefore, by Lemma 8 , the Hessian of the mapping $\Psi$ vanishes at $P$. Thus $A=(\mathfrak{g}, \varphi)$ is degenerate, by Lemmas 6 and 7.

Next consider the case that $r=n+1$. In this case, $(\mathfrak{g}, \varphi)$ is admissible at $P$, by Theorem 3. Moreover, by the above Lemma 14, we have

$$
\begin{aligned}
& F^{*}(i)(\Psi(P))=(-1)^{n-i}(n+1)^{n-1}, \quad 1 \leq i \leq n \\
& F^{*}(n+1)(\Psi(P))=(n+1)^{n-1}
\end{aligned}
$$

Hence we have $F^{*}(\Psi(P)) \neq 0$. Since $F^{*}$ is a relative invariant of $\left(\mathfrak{g}, \varphi^{*}\right)$ corresponding to $\chi^{*}=-\left(\operatorname{Tr} \varphi^{*}\right)$ and $F^{*}(\Psi(P)) \neq 0$, the Hessian of $\Psi$ does not vanish at $P$, by Lemma 8 . This implies that $A=(\mathfrak{g}, \varphi)$ is non degenerate, by Lemma 6 .

Thus we obtain the following.
Theorem 5. Let $(\mathfrak{g}, \varphi)$ be a linear representation of type $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$.
(1) If $r=n+1$, then it is admissible at a point $P$, and the corresponding algebra $A=(\mathfrak{g}, \varphi)$ is non degenerate.
(2) If $1 \leq r \leq n$ and $(\mathfrak{g}, \varphi)$ is admissible at some point, then the corresponding algebra $A=(\mathfrak{g}, \varphi)$ is degenerate.

## References

[Ba] O. Baues, Left symmetric algebras for gl(n), Transactions A.M.S. 351(1999), 2979-2996.
[Bu] D. Burde, Left invariant affine structures on reductive Lie groups, J. Algebra 181(1996), 884-902.
[M] A. Mizuhara, Left symmetric algebras over a real reductive Lie algebra, to appear in Math. Japonica.
[S] H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble 30(1980), 91-128.

Faculty of science, Kyoto Sangyo University, Kamigamo, Kitaku, Kyoto, 603-8555, JAPAN
email: mizuhara@cc.kyoto-su.ac.jp


[^0]:    2000 Mathematics Subject Classification. 17D25.
    Key words and phrases. Left symmetric algebra, simple algebra, non degenerate algebra, reductive Lie algebra.

