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Abstract. In this paper, we �rst prove some theorems connected with the convex-

ity of fuzzy-valued maps. In the course of our discussion, we shall have a necessary

and suÆcient condition for fuzzy-valued maps to be convex. Next, we establish some

minimization theorems for fuzzy-valued maps on compact topological spaces.

1. Introduction

The theory of fuzzy sets was initiated by Zadeh [12] with a view to dealing mathematically

with objects or systems which cannot be characterized precisely. Since then, many kinds of

fuzzy concepts have been provided for various scienti�c disciplines and other ones. Amongst

these, the concept of fuzzy numbers was introduced by Dubois and Prade [3] as a natural way

of treating inde�niteness (fuzziness) of our judgment about the objects under consideration.

This was a fuzzy analogue of the concept of real numbers and led to optimization problems

with constraints in terms of fuzzy-valued maps, that is, the mappings whose values are

fuzzy numbers (see Section 4):

C being a subset (describing the constraints by fuzzy numbers) of a linear space

and F being a fuzzy-valued map on C, �nd x0 2 C such that F (x0) � F (x) for

all x 2 C;

where � denotes the partial order relation on the set of all fuzzy numbers (see Section

2). Indeed, from a standpoint of linear programming problems, such problems have been

discussed by Dubois and Prade [4], Ram��k and �R��m�anek [8], Campos and Verdegay [2],

Ram��k and Rommelfanger [9, 10] and others. On the other hand, Nanda and Kar [6]

introduced the concept of the convexity of fuzzy-valued maps on a convex subset of a linear

space and gave some characterizations of various types of convex fuzzy-valued maps on

a linear space. They also deduced some properties of a minimum solution to the above

problems.

In this paper, we study the convexity of fuzzy-valued maps and establish some minimiza-

tion theorems for fuzzy-valued maps. In Section 2, we give notation and terminology to be

employed throughout the present paper. In Section 3, we prove some theorems connected

with the convexity of fuzzy-valued maps on a convex subset of a linear space. Then we shall

have a necessary and suÆcient condition for fuzzy-valued maps to be convex. In Section

4, after a brief introduction of optimization problems with fuzzy constraints, we de�ne the

lower semicontinuity of fuzzy-valued maps on a topological space and obtain a suÆcient
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condition for them to be lower semicontinuous. Next, we establish some minimization the-

orems for lower semicontinuous fuzzy-valued maps on a compact convex subset of a linear

topological space connected with the existence of solutions to the above mentioned fuzzy

optimization problems.

2. Preliminaries

Throughout this paper, all linear spaces are real, and we denote by R the set of real

numbers and by 1E the characteristic function for an arbitrary set E. We shall also use the

letter R to denote the real line. Let X be a linear topological space and let C;D be subsets

of X. Then clC denotes the closure of C, and there is de�ned C+D = fc+d : c 2 C; d 2 Dg

and �C = f�c : c 2 Cg for any � 2 R:

Let A be a fuzzy set inR. We denote by Ar the r-level set of A, which is a subset ofR and

is de�ned by Ar = fx 2 R : A(x) � rg for every r 2 (0; 1] and A0 = clfx 2 R : A(x) > 0g,

respectively. Then A is said to be convex (respectively closed) if for every r 2 (0; 1], Ar is

a convex (respectively closed) subset of R.

Let A;B be fuzzy sets in R. By Zadeh's extension principle [13], we de�ne the addition

� to yield a fuzzy set A �B in R by

(A �B)(z) = sup
z=x+y;x;y2R

min(A(x); B(y))

for all z 2 R. Also, we de�ne the multiplication � to yield a fuzzy set A�B in R by

(A �B)(z) = sup
z=xy;x;y2R

min(A(x); B(y))

for all z 2 R. Then [A�B]r and [A�B]r denote the r-level sets of A �B and A�B for

every r 2 [0; 1]; respectively. Note that, if both A and B are convex, then A�B is convex;

see [7].

Let A be a fuzzy set in R. A is said to be a fuzzy number [3, 5] if it satis�es the following

conditions:

(i) A is convex;

(ii) there exists a unique real number m 2 R such that A(m) = 1;

(iii) A0 is a bounded subset of R.

Then the symbol F denotes the set of fuzzy numbers. Note that for any A 2 F , A0 is a

compact convex subset of R and that for every A;B 2 F , A �B belongs to F .

Let A;B 2 F . We de�ne an order relation � on F [8] as follows:

A � B if and only if supAr � supBr and inf Ar � inf Br for all r 2 [0; 1]:

Note that the order relation � satis�es the axioms of a partial order relation. Let A 2 F

and let � 2 R. For the sake of convenience, we shall write A � � instead of A � 1f�g.

Similarly, we shall write A � � (respectively �A, A�) for A � 1f�g (respectively 1f�g � A,

A � 1f�g). Then we observe that if � 6= 0, then (�A)(z) = A( z
�
) for all z 2 R and that

(0A)(z) = 1f0g(z) for all z 2 R. Consequently, it follows that [�A]r = �Ar for all r 2 [0; 1]

and hence, that �A 2 F .

Let C be a convex subset of a linear space and let f be a real-valued function on C. f

is said to be convex if f(�x + (1 � �)y) � �f(x) + (1 � �)f(y) for any x; y 2 C and any

� 2 (0; 1): f is called concave if �f is convex. Moreover, f is said to be quasi-concave

if for every c 2 R, fx 2 C : f(x) � cg is a convex subset of C. Let C; I be nonempty

sets and let ' be a real-valued function on C � I. Then ' is called concavelike in its

second variable if for any y1; y2 2 I and any � 2 (0; 1), there exists y0 2 I such that

'(x; y0) � �'(x; y1) + (1 � �)'(x; y2) for all x 2 C. We know the following minimax

theorem; see, for instance, [11].
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Let C be a compact convex subset of a linear topological space, let I be a nonempty set

and let ' be a real-valued function on C � I satisfying the following conditions:

(i) For each y 2 I; the function x 7! '(x; y) is lower semicontinuous and convex;

(ii) ' is concavelike in its second variable.

Then the following holds:

sup
y2I

min
x2C

'(x; y) = min
x2C

sup
y2I

'(x; y):

3. Convexity of fuzzy-valued maps

Let X be a nonempty set. A mapping F : X ! F de�ned on X is called a fuzzy-valued

map on X if for every x 2 X; F (x) belongs to F . Let C be a convex subset of a linear space

and let F be a fuzzy-valued map on C. F is said to be convex [6] if for every x; y 2 C and

every � 2 (0; 1),

F (�x + (1� �)y) � �F (x) � (1 � �)F (y):

In this section, we study the convexity of fuzzy-valued maps on a linear space. We �rst

have the following two lemmas.

Lemma 3.1. For every A 2 F ; we have

lim
r!+0

supAr = supA0 and lim
r!+0

inf Ar = inf A0:

Proof. It is easy to see that for every r1; r2 2 (0; 1] with r1 > r2, Ar1 � Ar2 � A0.

So, we have that supAr1 � supAr2 � supA0: Therefore, since A0 is a nonempty bounded

subset of R, lim
r!+0

supAr = sup
r>0

supAr exists. Put � = lim
r!+0

supAr and � = supA0. Then,

by virtue of the above, it is clear that that � � �: Conversely, let us take any x 2 R with

A(x) > 0. Then, by choosing r0 > 0 such that A(x) > r0 > 0, we observe that x belongs

to Ar0 and hence, that x � supAr0 � sup
r>0

supAr = �: Consequently, since x 2 R with

A(x) > 0 is arbitrary, we deduce that for every y 2 A0; y � �. This implies that � � �.

Thus, we have proved that � = �: Similarly, we show that lim
r!+0

inf Ar = inf A0:

Lemma 3.2. For every A 2 F and every r 2 (0; 1]; we have

lim
Æ!r�0

AÆ = inf
Æ<r

supAÆ = supAr and lim
Æ!r�0

AÆ = sup
Æ<r

inf AÆ = inf Ar:

Proof. Let r 2 (0; 1] be �xed arbitrarily and take any Æ > 0 with Æ < r. Since Ar � AÆ,

we see at once that lim
Æ!r�0

AÆ = inf
Æ<r

supAÆ exists. Set � = supAr and � = inf
Æ<r

supAÆ. Then,

by the above observation, the inequality � � � evidently follows. In order to prove that

the inverse inequality holds, let us assume that � < �. Then there exists x0 2 R such that

� < x0 < �. We infer that

inf AÆ � inf Ar � supAr = � < x0 < � = inf
Æ<r

supAÆ � supAÆ

and hence, by convexity of a subset AÆ of R, that x0 belongs to AÆ . Since Æ < r is arbitrary,

this implies that x0 2
\
Æ<r

AÆ = Ar. Consequently, we have that x0 � supAr = � < x0.

This is a contradiction. So, we deduce that � = �: By the same way, we prove that

lim
Æ!r�0

inf AÆ = sup
Æ<r

inf AÆ = inf Ar.

By Lemmas 3.1and 3.2, we obtain the following lemma.

Lemma 3.3. For every A;B 2 F and every r 2 [0; 1]; we have

sup[A�B]r = supAr + supBr and inf[A�B]r = inf Ar + inf Br:
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Proof. Let A;B 2 F . We know that A � B belongs to F . Let us �x an arbitrary

r 2 (0; 1]: Then the inequality sup[A � B]r � supAr + supBr is obvious. Indeed, if

z 2 Ar +Br; then there exist x0 2 Ar and y0 2 Br such that z = x0 + y0: Since A(x0) � r

and B(y0) � r; we infer that

(A �B)(z) = sup
z=x+y;x;y2R

min(A(x); B(y))

� min(A(x0); B(y0)) � r

and hence, that z 2 [A�B]r: This implies that [A�B]r � Ar +Br and consequently, that

sup[A �B]r � sup(Ar +Br) = supAr + supBr:

We next claim that the inverse inequality holds. Let z 2 [A�B]r and choose any Æ > 0

with Æ < r. Since (A � B)(z) > Æ, there exist x0; y0 2 R such that min(A(x0); B(y0)) � Æ

and z = x0+ y0: This implies that z 2 AÆ +BÆ and consequently, that [A�B]r � AÆ +BÆ:

Hence, we have that sup[A �B]r � supAÆ + supBÆ. Therefore, since Æ > 0 with Æ < r is

arbitrary, it follows from Lemma 3.2 that sup[A �B]r � supAr + supBr:

Thus, we deduce that sup[A�B]r = supAr+supBr for all r 2 (0; 1]: Further, by applying

Lemma 3.1 to both sides of the above equality, we have that sup[A�B]0 = supA0+supB0.

By the same method, we prove that inf[A �B]r = inf Ar + inf Br for all r 2 [0; 1]: Hence,

we have proved the lemma.

Let F be a fuzzy-valued map on a nonempty set X. [F (x)]r denotes the r-level set of

F (x) 2 F for every x 2 X and every r 2 [0; 1].

We now prove the following theorem.

Theorem 3.1. Let C be a convex subset of a linear space and let F be a convex fuzzy-

valued map on C. Then, for any r 2 [0; 1]; the real-valued function fr on C de�ned by

fr(x) = sup[F (x)]r for every x 2 C is convex.

Proof. Let x; y 2 C, let � 2 (0; 1) and let r 2 [0; 1]. We know that [�F (x)]r = �[F (x)]r
and that �F (x) 2 F : Since F is convex, it is obvious that

fr(�x + (1� �)y) = sup[F (�x + (1� �)y)]r

� sup[�F (x) � (1 � �)F (y)]r :

Moreover, we infer by Lemma 3.3 that

sup[�F (x) � (1 � �)F (y)]r = sup[�F (x)]r + sup[(1� �)F (y)]r

= sup�[F (x)]r + sup(1 � �)[F (y)]r

= � sup[F (x)]r + (1 � �) sup[F (y)]r

= �fr(x) + (1� �)fr(y):

Hence, we deduce that for any r 2 [0; 1],

fr(�x + (1� �)y) � �fr(x) + (1� �)fr(y):

This completes the proof.

By the same way, we prove the following theorem.

Theorem 3.2. Let C be a convex subset of a linear space and let F be a convex fuzzy-

valued map on C. Then, for any r 2 [0; 1]; the real-valued function gr on C de�ned by

gr(x) = inf[F (x)]r for every x 2 C is convex.

Let A;B 2 F and let us assume that both A and B are closed, that is, for every

r 2 [0; 1]; each of the r-level sets Ar ; Br is a closed subset of R. Then we know that

[A � B]r = Ar + Br for all r 2 [0; 1], so that, the proof of Theorems 3.1 and 3.2 is

straightforward; see [7]. However, if both A and B are not closed, we can not use this fact.
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Indeed, the following example implies that if A is not closed, then there exists r 2 [0; 1]

such that [A�B]r 6= Ar +Br.

Example 3.1. De�ne A 2 F by

A(x) =

8<
:

0; if x < �1;

1� jxj; if �1 � x < 1
2
;

0; if 1
2
� x;

and de�ne B 2 F by

B(x) =

8<
:

0; if x < �3
2
;

1� jx+ 1j; if �3
2
� x � 0;

0; if 0 < x:

Then we observe that (A � B)(0) = sup
x2R

min(A(x); B(�x)) = 1
2
and consequently, that

0 2 [A � B] 1
2

: On the other hand, since A 1

2

= [�1
2
; 1
2
) and B 1

2

= [�3
2
;�1

2
], it follows that

0 =2 A 1

2

+B 1

2

= [�2; 0). Therefore, we have that [A�B] 1
2

6= A 1

2

+B 1

2

.

Let F be a fuzzy-valued map on a nonempty set X and let r 2 [0; 1]. Throughout

the rest of the present paper, fFr and gFr denote the real-valued functions on X de�ned

by fFr (x) = sup[F (x)]r for every x 2 X and by gFr (x) = inf[F (x)]r for every x 2 X,

respectively.

Using Lemma 3.3, we also have the following theorem.

Theorem 3.3. Let C be a convex subset of a linear space and let F be a fuzzy-valued

map on C. Assume that for every r 2 [0; 1], both fFr and gFr are convex. Then F is convex.

Proof. Let x; y 2 C, let � 2 (0; 1) and let r 2 [0; 1]. By Lemma 3.3, we infer that

sup[�F (x) � (1 � �)F (y)]r = sup[�F (x)]r + sup[(1� �)F (y)]r

= � sup[F (x)]r + (1 � �) sup[F (y)]r

= �fFr (x) + (1 � �)fFr (y):

Therefore, it follows from hypothesis that

sup[F (�x + (1� �)y)]r = fFr (�x + (1� �)y)

� �fFr (x) + (1� �)fFr (y)

= sup[�F (x) � (1� �)F (y)]r :

Similarly, we deduce that

inf[F (�x + (1� �)y)]r � inf[�F (x) � (1� �)F (y)]r :

Hence, we have proved the theorem.

We remark that Theorems 3.1, 3.2 and 3.3 give the characterization of the convexity of

a fuzzy-valued map F in the sense that F is convex if and only if for every r 2 [0; 1], both

fFr and gFr are convex.

For further comprehension, let us employ the concept of L-R fuzzy number [8].

Let S be a function from R to (�1; 1]. S is called a shape function [5] if it satis�es the

following conditions:

(i) S is quasi-concave;

(ii) S(x) = 1 if and only if x = 0;

(iii) the set fx 2 R : S(x) > 0g is a bounded subset of R;

(iv) S(x) = S(�x) for all x 2 R.
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Then, for any shape function S and any r 2 (0; 1], Sr and S0 denote the subsets fx 2 R :

S(x) � rg and clfx 2 R : S(x) > 0g of R, respectively. Moreover, for every r 2 [0; 1]; we

put kSr = supSr 2 [0;1).

Let S; T be shape functions, let m 2 R and let �; � � 0. Then the L-R fuzzy number �

is a fuzzy number de�ned by the relation

�(x) =

�
max(S(x�m

�
); 0); if x � m;

max(T (x�m
�

); 0); if x � m:

Then we shall say that � is generated by the shape functions S and T . Further, we shall

denote the L-R fuzzy number � by

� = (m;�; �)LSRT

in the form of a parametric representation.

We should mention that the above de�nition of � includes the cases where � = 0 and

� > 0 for instance. In these cases, we de�ne � by

�(x) =

�
0; if x < m;

max(T (x�m
�

); 0); if x � m:

Further, in the case where �; � = 0, � is de�ned by � = 1fmg.

As an immediate consequence of Theorem 3.3, we obtain the following theorem regarding

the convexity of fuzzy-valued maps whose range consist of L-R fuzzy numbers generated by

the same shape functions.

Theorem 3.4. Let C be a convex subset of a linear space, letm be a real-valued function

on C, let �; � : C ! [0;1) be functions and let S; T : R ! (�1; 1] be shape functions.

Let F be a fuzzy-valued map on C such that for every x 2 C, F (x) is an L-R fuzzy number

denoted by

F (x) = (m(x); �(x); �(x))LSRT

in the form of a parametric representation. Assume that m and � are convex and that � is

concave. Then F is convex.

Proof. Without loss of generality, we may assume that S(x) � 0 and T (x) � 0 for all

x 2 R. Let x 2 C and let r 2 [0; 1]. We observe that

[F (x)]r =
�
m(x) + �(x)Sr

�[�
m(x) + �(x)Tr

�

and therefore, that

fFr (x) = sup[F (x)]r = m(x) + supTr�(x) = m(x) + kTr �(x):

Similarly, we have that gFr (x) = inf[F (x)]r = m(x) + inf Sr�(x). Further, we infer by the

de�nition of a shape function that kSr + inf Sr = supSr + inf Sr = 0 and consequently, that

gFr (x) = m(x)� kSr �(x). Hence, since k
S
r ; k

T
r � 0, we deduce from the assumptions of m;�

and � that both fFr and gFr are convex. Thus, by Theorem 3.3, we have proved that F is

convex.

We next present the following result relating to the comparison of two L-R fuzzy numbers

of the same type, which was essentially stated in [5, 8]. For the sake of completeness, we

give the proof.

Proposition 3.1 ([5, 8]). Let m;n 2 R, let �; �; 
; Æ � 0 and let S; T be shape func-

tions. Then, for two L-R fuzzy numbers A and B denoted respectively by A = (m;�; �)LSRT
and B = (n; 
; Æ)LSRT in the form of a parametric representation, A � B if and only if

supA1 � supB1, supA0 � supB0 and inf A0 � inf B0.
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Proof. Since the \only if part" is obvious by the de�nition of the order relation �,

it suÆces to prove the \if part". Let r 2 [0; 1]. We observe that supAr = m + kTr � and

supBr = n+ kTr Æ. Therefore, since supA1 = m and supB1 = n, we infer that

kT0 (supAr � supBr) = kT0 (m+ kTr � � (n+ kTr Æ))

= kT0 (m� n) + kTr k
T
0 (� � Æ)

= kT0 (supA1 � supB1) + kTr (supA0 � supB0 � (supA1 � supB1))

= (kT0 � kTr )(supA1 � supB1) + kTr (supA0 � supB0):

It is obvious that kT0 � kTr � 0, so that, we have that supAr � supBr. By the same way,

we deduce that inf Ar � inf Br. This completes the proof.

Applying Lemma 3.3 and Proposition 3.1, we simply obtain the following result, which

was essentially presented in [5].

Proposition 3.2 ([5]). Let C be a convex subset of a linear space, let m be a real-

valued function on C, let �; � : C ! [0;1) be functions and let S; T : R ! (�1; 1] be

shape functions. Let F be a fuzzy-valued map on C such that for every x 2 C, F (x) is an

L-R fuzzy number denoted by

F (x) = (m(x); �(x); �(x))LSRT

in the form of a parametric representation. Then, F is convex if and only if fF1 ; f
F
0 and gF0

are convex.

Proof. Let x; y 2 C and let � 2 (0; 1). By Lemma 3.3 and Proposition 3.1, we

infer that F (�x + (1 � �)y) � �F (x) � (1 � �)F (y) if and only if fF1 (�x + (1 � �)y) �

�fF1 (x)+(1��)fF1 (y), fF0 (�x+(1��)y) � �fF0 (x)+(1��)fF0 (y) and gF0 (�x+(1��)y) �

�gF0 (x) + (1 � �)gF0 (y). This completes the proof.

4. Minimization theorems for fuzzy-valued maps

In this section, we establish minimization theorems for fuzzy-valued maps on a compact

topological space. First, let us begin with a brief introduction of optimization problems with

fuzzy constraints, which were discussed in the previous papers (see [2, 4, 8] for instance).

Let X = Rn, let E = Rn
+ = [0;1)n � X; let c1; c2; : : : ; cn 2 R and let f be a real-valued

function on E de�ned by

f(x) = c1x1 + c2x2 + � � � + cnxn

for every x = (x1; x2; : : : ; xn) 2 E. Let aij 2 R for every i = 1; 2; : : : ;m and every

j = 1; 2; : : : ; n, let g1; g2; : : : ; gm be real-valued functions on E de�ned respectively by

gi(x) = ai1x1 + ai2x2 + � � �+ ainxn

for every x = (x1; x2; : : : ; xn) 2 E and every i = 1; 2; : : : ;m and let

E0 = fx 2 E : g1(x) � b1; g2(x) � b2; : : : ; gm(x) � bmg;

where b1; b2; : : : ; bm 2 R. As a usual linear programming problem, we know the following:

Find x0 2 E0 such that f(x0) � f(x) for all x 2 E0.

However, in actual problems, the coeÆcients of the constraint functions g1; g2; : : : ; gm are

often fuzzy because of, for instance, vagueness or impreciseness of our judgment (estimation,

evaluation or measurement) about the data. The concept of fuzzy numbersmight be applied

to these cases.
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Let S; T be shape functions and let Aij be L-R fuzzy numbers denoted by Aij =

(aij ; �ij ; �ij )LSRT in the form of a parametric representation for every i = 1; 2; : : : ;m and

every j = 1; 2; : : : ; n, where �ij ; �ij � 0. Then we de�ne fuzzy-valued maps G1; G2; : : : ; Gm

on E respectively by

Gi(x) = Ai1x1 �Ai2x2 � � � � �Ainxn

for every x = (x1; x2; : : : ; xn) 2 E and every i = 1; 2; : : : ;m and let

E1 = fx 2 E : G1(x) � b1; G2(x) � b2; : : : ; Gm(x) � bmg:

Then, as a contingent plan, the following fuzzy optimization problem can be stated:

Find x0 2 E1 such that f(x0) � f(x) for all x 2 E1.

In the above, the objective function f is nonfuzzy, whereas the constraint functions are fuzzy.

So, it could be appropriate to consider that the objective function is also fuzzy, namely,

a fuzzy-valued map on E. In that situation, we might for instance employ a fuzzy-valued

map F on E instead of f de�ned by

F (x) = C1x1 � C2x2 � � � � � Cnxn

for every x = (x1; x2; : : : ; xn) 2 E, where C1; C2; : : : ; Cn are L-R fuzzy numbers denoted

respectively by

Ci = (ci; 
i; Æi)LSRT

in the form of a parametric representation for every i = 1; 2; : : : ; n, where 
i; Æi � 0.

Consequently, the following minimization problem has been presented:

Find x0 2 E1 such that F (x0) � F (x) for all x 2 E1.

It may be said from the above discussion that these problems are fuzzy analogues of linear

programming problems. Naturally, the following optimization problem in terms of fuzzy-

valued maps arises as a fuzzy analogue of convex problems; see also [6, 9, 10]:

C being a convex subset of a linear space and F being a convex fuzzy-valued

map on C, �nd x0 2 C such that F (x0) � F (x) for all x 2 C:

In the rest of the section, we prove some theorems in connection with the existence of

solutions to the above problem.

First of all, let us give a de�nition of the lower semicontinuity of fuzzy-valued maps on

a topological space.

Let F be a fuzzy-valued map on a topological space X. F is said to be lower semicon-

tinuous on X if for every r 2 [0; 1], both fFr and gFr are lower semicontinuous on X.

Next, concerning the concept of L-R fuzzy numbers, we prove the following theorem,

which gives a suÆcient condition for fuzzy-valued maps on a topological space to be lower

semicontinuous.

Theorem 4.1. Let C be a nonempty subset of a topological space, let m be a real-valued

function on C, let �; � : C ! [0;1) be functions and let S; T : R ! (�1; 1] be shape

functions. Let F be a fuzzy-valued map on C such that for every x 2 C, F (x) is an L-R

fuzzy number denoted by

F (x) = (m(x); �(x); �(x))LSRT

in the form of a parametric representation. Assume that m and � are lower semicontinuous

on C and that � is upper semicontinuous on C. Then F is lower semicontinuous on C.
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Proof. Let x 2 C and let r 2 [0; 1]. Since fFr (x) = m(x) + kTr �(x), we infer by

the assumptions of m;� that fr is lower semicontinuous on C. Similarly, by the equation

gFr (x) = m(x)�kSr �(x), it follows from the assumption of � that gr is lower semicontinuous

on C. This completes the proof.

Moreover, we need the following de�nition and notation. Let X; I be nonempty sets and

let fhi : i 2 Ig be a family of real-valued functions X. x0 2 X is said to be a common

minimizer of fhi : i 2 Ig in X if hi(x0) � hi(x) for every x 2 X and every i 2 I. Let F be

a fuzzy-valued map on X. We denote by PF the family ffFr ; g
F
r : r 2 [0; 1]g of real-valued

functions on X. Then, for any x0 2 X; it is easy to check that F (x0) � F (x) for every

x 2 X if and only if x0 is a common minimizer of PF in X.

Now, we establish the following minimization theorem.

Theorem 4.2. Let F be a lower semicontinuous fuzzy-valued map on a compact topo-

logical space X. Suppose that every �nite subfamily of PF
has a common minimizer in X.

Then there exists x0 2 X such that F (x0) � F (x) for every x 2 X.

Proof. For every r 2 [0; 1], let Cr = fx 2 X : fFr (x) = inf
y2X

fFr (y)g and let Dr = fx 2

X : gFr (x) = inf
y2X

gFr (y)g. We observe that both Cr and Dr are nonempty closed subsets

of X. Further, we infer by hypothesis that the family fCr \ Dr : r 2 [0; 1]g has �nite

intersection property. Therefore, we deduce that
\

r2[0;1]

(Cr \ Dr) 6= ;. This implies that

there exists x0 2 X such that for every x 2 X and every r 2 [0; 1], fFr (x0) � fFr (x) and

gFr (x0) � gFr (x), that is, x0 is a common minimizer of PF in X. Hence, we have x0 2 X

such that F (x0) � F (x) for every x 2 X: This completes the proof.

Further, we obtain the following minimization theorem for lower semicontinuous and

convex fuzzy-valued maps on a compact convex subset of a linear topological space.

Theorem 4.3. Let C be a compact convex subset of a linear topological space and let

F be a lower semicontinuous and convex fuzzy-valued map on C. Let ' be a real-valued

function on C�PF
de�ned by '(x; h) = h(x)�min

u2C
h(u) for every (x; h) 2 C�PF : Suppose

that ' is concavelike in its second variable. Then there exists x0 2 C such that F (x0) � F (x)

for all x 2 C.

Proof. By the hypothesis of F , we deduce from Theorems 3.1 and 3.2 that for every

h 2 PF , the function x 7! '(x; h) is convex. Therefore, we infer that ' satis�es the

assumptions of minimax theorem. Hence, we have that

sup
h2PF

min
x2C

'(x; h) = min
x2C

sup
h2PF

'(x; h)

and consequently, that min
x2C

sup
h2PF

'(x; h) = 0: This implies that there exists x0 2 C such

that '(x0; h) � 0 for all h 2 PF , that is, h(x0) � min
u2C

h(u) for all h 2 PF . This completes

the proof.

Moreover, we prove the following two theorems relating to the concept of L-R fuzzy

numbers.

Let F be a fuzzy-valued map on a nonempty set X. The symbol PF
0 denotes the family

ffF1 ; f
F
0 ; g

F
0 g of real-valued functions on X.

Theorem 4.4. Let C be a nonempty subset of a topological space, let m be a real-valued

function on C, let �; � : C ! [0;1) be functions and let S; T : R ! (�1; 1] be shape

functions. Let F be a fuzzy-valued map on C such that for every x 2 C, F (x) is an L-R
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fuzzy number denoted by

F (x) = (m(x); �(x); �(x))LSRT

in the form of a parametric representation. Then there exists x0 2 X such that F (x0) �

F (x) for all x 2 X if and only if there exists x0 2 X such that x0 is a common minimizer

of PF
0 in X.

Proof. Let x0 2 X: By Proposition 3.1, it is easy to verify that F (x0) � F (x) for all

x 2 X if and only if for every x 2 X, fF1 (x0) � fF1 (x), f
F
0 (x0) � fF0 (x) and g

F
0 (x0) � gF0 (x);

that is, x0 is a common minimizer of PF
0 in X. This completes the proof.

Theorem 4.5. Let C be a compact convex subset of a linear topological space, let F be

a convex fuzzy-valued map on C such that for every x 2 C, F (x) is an L-R fuzzy number

generated respectively by the same shape functions. Suppose that for every h 2 PF
0 ; h is

lower semicontinuous on C and that the real-valued function '0 on C � PF
0 de�ned by

'0(x; h) = h(x) �min
u2C

h(u) for every (x; h) 2 C � PF
0 is concavelike in its second variable.

Then there exists x0 2 C such that F (x0) � F (x) for all x 2 C.

Proof. Applying minimax theorem, we have that

sup
h2PF

0

min
x2C

'0(x; h) = min
x2C

sup
h2PF

0

'0(x; h):

Consequently, we deduce that there exists x0 2 C such that '0(x0; h) � 0 for all h 2 PF
0 ,

that is, h(x0) � min
u2C

h(u) for all h 2 PF
0 . Hence, by Theorem 4.4, the statement ensues.

By the above discussion, we remark that, when we impose on a fuzzy-valued map F

being \L-R fuzzy-valued", we can con�ne ourselves to the family PF
0 .

Finally, let us provide an example of fuzzy-valued maps satisfying the assumptions in

Theorem 4.5.

Example 4.1. Let C be a compact convex subset of a linear topological space, let

m : C ! R be a lower semicontinuous and convex function, let �; � � 0 and let S; T :

R! (�1; 1] be shape functions. By virtue of Theorems 3.4 and 4.1, let us de�ne a lower

semicontinuous and convex fuzzy-valued map F on C by the relation

F (x) = (m(x); �; �)LSRT

for every x 2 C. Then we infer that for every r 2 [0; 1], fFr (x) = m(x) + kTr � and

gFr (x) = m(x) � kSr � and therefore, that '0 is concavelike in its second variable.
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