ESTIMATES FOR MODULI OF COEFFICIENTS OF POSITIVE TRIGONOMETRIC POLYNOMIALS

Dedicated to Professor Tsuyoshi Ando on his seventieth birthday

Takateru Okayasu and Yasunori Ueta

Received April 20, 2001; revised December 17, 2001

Abstract. Suppose that a trigonometric polynomial

$$
\tau\left(e^{i \theta}\right)=\sum_{k=-N+1}^{N-1} \alpha_{k} e^{i k \theta}, \quad \theta \in[0,2 \pi),
$$

is positive, $\alpha_{N-1} \neq 0, N \geq 2$. Then a classical matter due to Fejér asserts that the estimate

$$
\left|\alpha_{1}\right| \leq \alpha_{0} \cos \frac{\pi}{N+1}
$$

for the modulus $\left|\alpha_{1}\right|$ of α_{1} holds and that the equality occurs only for the polynomial $\alpha_{0} \tau_{N}\left(e^{i(\theta-\varphi)}\right)$, where

$$
\tau_{N}\left(e^{i \theta}\right)=\frac{2}{N+1}\left|\sum_{k=0}^{N-1}\left(\sin \frac{(k+1) \pi}{N+1}\right) e^{i k \theta}\right|^{2}, \quad \theta \in[0,2 \pi),
$$

and $\varphi \in[0,2 \pi)$. In this paper, we will show that the corresponding estimate

$$
\left|\alpha_{n}\right| \leq \alpha_{0} \cos \frac{\pi}{\lceil N / n\rceil+1}
$$

for the modulus $\left|\alpha_{n}\right|$ of α_{n} is true, $1 \leq n \leq N-1,\lceil N / n\rceil$ the minimum integer not smaller than N / n, and that the equality for $n=n_{0}$ occurs only for the polynomial τ of the form

$$
\tau\left(e^{i \theta}\right)=\sigma\left(e^{i \theta}\right) \tau_{\left\lceil N / n_{0}\right\rceil}\left(e^{i n_{0}(\theta-\varphi)}\right), \quad \theta \in[0,2 \pi),
$$

where σ is a positive trigonometric polynomial and $\varphi \in[0,2 \pi)$.

1. Introduction.

Let S_{N}, where $N \geq 2$, be the $N \times N$ shift matrix, i.e.,

$$
S_{N}=\left(\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
& 1 & \ddots & & \\
& & \ddots & 0 & \\
& & & 1 & 0
\end{array}\right)
$$

[^0]Then it is known by Davidson and Holbrook [1], Corollary 2, that for n with $1 \leq n \leq N-1$, $\lceil N / n\rceil$ denoting the minimum integer not smaller than $N / n($ which in fact is $[(N-1) / n]+1$), the numerical radius

$$
w\left(\left(S_{N}\right)^{n}\right)=\sup _{\|\zeta\|=1}\left|\left\langle\left(S_{N}\right)^{n} \zeta, \zeta\right\rangle\right|
$$

of the power $\left(S_{N}\right)^{n}$ of S_{N} coincides with $\cos \frac{\pi}{\lceil N / n\rceil+1}$. But, in the case when $n=1$, Haagerup and de la Harpe [3], Proposition 1 (and T. Yoshino [5], Lemmas 6 and 7, p.134, also) proves that, given a unit vector $\zeta \in C^{N}$, the equality

$$
\left\langle S_{N} \zeta, \zeta\right\rangle=\cos \frac{\pi}{N+1}
$$

holds if and only if

$$
\zeta=e^{i \varphi} \zeta_{1} \text { for some } \varphi \in[0,2 \pi)
$$

where ζ_{1} is the vector in C^{N} of which m th coordinate is

$$
\left(\frac{2}{N+1}\right)^{1 / 2} \sin \frac{m \pi}{N+1}, \quad 1 \leq m \leq N
$$

Haagerup and de la Harpe observed further that this serves to lead us to the classical matter due to Fejér ([2]; [4], 8.4) which asserts that if a trigonometric polynomial

$$
\tau\left(e^{i \theta}\right)=\sum_{k=-N+1}^{N-1} \alpha_{k} e^{i k \theta}, \quad \theta \in[0,2 \pi)
$$

is positive, namely

$$
\tau\left(e^{i \theta}\right) \geq 0 \text { for any } \theta \in[0,2 \pi)
$$

and not identically zero (or equivalently $\alpha_{0}>0$) with $\alpha_{N-1} \neq 0$, then one has the estimate

$$
\left|\alpha_{1}\right| \leq \alpha_{0} \cos \frac{\pi}{N+1}
$$

for the modulus of α_{1}, and the equality occurs only for the polynomial $\alpha_{0} \tau_{N}\left(e^{i(\theta-\varphi)}\right)$, where

$$
\tau_{N}\left(e^{i \theta}\right)=\frac{2}{N+1}\left|\sum_{k=0}^{N-1}\left(\sin \frac{(k+1) \pi}{N+1}\right) e^{i k \theta}\right|^{2}, \quad \theta \in[0,2 \pi)
$$

It is easy for us to give the corresponding estimates for the moduli $\left|\alpha_{n}\right|$ of the nth coefficients α_{n} of $\tau,-N+1 \leq n \leq N-1$ (but for the case $n=0$ we give an appropriate understanding). In fact, By the Fejér-Riesz theorem (See [2], [4]), there exists a polynomial

$$
\sigma\left(e^{i \theta}\right)=\sum_{k=0}^{N-1} \gamma_{k} e^{i k \theta}
$$

such that

$$
\tau\left(e^{i \theta}\right)=\left|\sigma\left(e^{i \theta}\right)\right|^{2}=\sum_{k, l=0}^{N-1} \gamma_{k} \bar{\gamma}_{l} e^{i(k-l) \theta}
$$

(So it is immediate that $\alpha_{-n}=\bar{\alpha}_{n}, \quad-N+1 \leq n \leq N-1$). Let ζ be the vector in C^{N} of which k th coordinate are $\gamma_{k-1}, 1 \leq k \leq N$. Then we have

$$
\alpha_{0}=\|\zeta\|^{2} \text { and } \alpha_{n}=\left\langle\left(S_{N}\right)^{n} \zeta, \zeta\right\rangle, \quad 1 \leq n \leq N-1
$$

Therefore, by [1], Corollary 2, it actually follows that

$$
\left|\alpha_{n}\right|=\|\zeta\|^{2}\left|\left\langle\left(S_{N}\right)^{n} \frac{\zeta}{\|\zeta\|}, \frac{\zeta}{\|\zeta\|}\right\rangle\right| \leq \alpha_{0} \cos \frac{\pi}{\lceil N / n\rceil+1}
$$

We will devote ourselves in the following two sections to determining the polynomial τ for which the equality

$$
\left|\alpha_{n}\right|=\alpha_{0} \cos \frac{\pi}{\lceil N / n\rceil+1}, \quad 1 \leq n \leq N-1
$$

occurs. In the last section, an application will be given to positive "operator-valued" trigonometric polynomials.

2. Unit vectors which attain the numerical radius of $\left(S_{N}\right)^{n}$.

For the sake of convenience, we identify, through the canonical manner, the space C^{N} with a subspace of the space $C^{\lceil N / n\rceil} \otimes C^{n}$, and accordingly the power $\left(S_{N}\right)^{n}$ of S_{N} with the operator $P_{n}\left(S_{\lceil N / n\rceil} \otimes I_{n}\right) \mid C^{N}$ which restricts the operator $P_{n}\left(S_{\lceil N / n\rceil} \otimes I_{n}\right)$ on C^{N}, I_{n} the $n \times n$ unit matrix, P_{n} the orthogonal projection from $C^{[N / n\rceil} \otimes C^{n}$ onto C^{N}.

Let $\xi_{k} \in C^{\lceil N / n\rceil}$ be the unit vector of which m th coordinate is

$$
\left(\sum_{\nu=1}^{\lceil N / n\rceil} \sin ^{2} \frac{k \nu \pi}{\lceil N / n\rceil+1}\right)^{-1 / 2} \sin \frac{k m \pi}{\lceil N / n\rceil+1}, \quad 1 \leq m \leq\lceil N / n\rceil
$$

and $\iota_{l} \in C^{n}$ the unit vector of which l th coordinate is 1 and others 0 . Then the vectors $\xi_{k} \otimes \iota_{l}, 1 \leq k \leq\lceil N / n\rceil, 1 \leq l \leq n$, make an orthonormal basis for $C^{\lceil N / n\rceil} \otimes C^{n}$.

Lemma 1 Let $1 \leq n \leq N-1$, and let $\zeta \in C^{N}$ be a unit vector. Then

$$
\left\langle\left(S_{N}\right)^{n} \zeta, \zeta\right\rangle=\cos \frac{\pi}{\lceil N / n\rceil+1}
$$

occurs if and only if $\zeta \in C^{N}$ is of the form

$$
\begin{gathered}
\zeta=P_{n}\left(\xi_{1} \otimes \eta\right) \\
\text { where } \eta=\sum_{l=1}^{r} \beta_{l} \iota_{l} \text { with } \sum_{l=1}^{r}\left|\beta_{l}\right|^{2}=1, r=N-(\lceil N / n\rceil-1) n
\end{gathered}
$$

Proof. First assume that n divides N, that $\zeta \in C^{N}$ is a unit vector and that

$$
\left\langle\left(S_{N}\right)^{n} \zeta, \zeta\right\rangle=\cos \frac{\pi}{N / n+1}
$$

Put

$$
\zeta=\sum_{1 \leq k \leq N / n, n} \beta_{k, l}, \xi_{k} \otimes \iota l, \quad \text { with } \sum_{1 \leq k \leq N / n, 1 \leq l \leq n}\left|\beta_{k, l}\right|^{2}=1 .
$$

Then, since

$$
\operatorname{Re}\left(S_{N / n}\right) \xi_{k}=\left(\cos \frac{k \pi}{N / n+1}\right) \xi_{k}, 1 \leq k \leq N / n
$$

we have

$$
\begin{aligned}
\cos \frac{\pi}{N / n+1} & =\left\langle\left(S_{N / n} \otimes I_{n}\right) \zeta, \zeta\right\rangle \\
& =\left\langle\operatorname{Re}\left(S_{N / n} \otimes I_{n}\right) \sum_{k, l} \beta_{k, l} \xi_{k} \otimes \iota,, \sum_{k^{\prime}, l^{\prime}} \beta_{k^{\prime}, l^{\prime}} \xi_{k^{\prime}} \otimes \iota_{l^{\prime}}\right\rangle \\
& =\sum_{k, k^{\prime}, l, l^{\prime}} \beta_{k, l} \bar{\beta}_{k^{\prime}, l^{\prime}}\left\langle\operatorname{Re}\left(S_{N / n}\right) \xi_{k}, \xi_{k^{\prime}}\right\rangle\left\langle\iota, \iota_{l}\right\rangle \\
& =\sum_{k, k^{\prime}, l, l l^{\prime}} \beta_{k, l} \bar{\beta}_{k^{\prime}, l^{\prime}}\left\langle\left(\cos \frac{k \pi}{N / n+1}\right) \xi_{k}, \xi_{k^{\prime}}\right\rangle\left\langle\iota_{l}, l_{l^{\prime}}\right\rangle \\
& =\sum_{k, l}\left|\beta_{k, l}\right|^{2} \cos \frac{k \pi}{N / n+1} .
\end{aligned}
$$

This shows that $\beta_{k, l}=0$ for $k \geq 2$. So, putting $\beta_{l}=\beta_{1, l}$, we have

$$
\eta=\sum_{l=1}^{n} \beta_{l} l_{l} \quad \text { and } \quad \sum_{l=1}^{n}\left|\beta_{l}\right|^{2}=1 .
$$

Next assume that n does not divide N, and that a unt vector $\zeta \in C^{N}$ satisfies

$$
\left\langle\left(S_{N}\right)^{n} \zeta, \zeta\right\rangle=\cos \frac{\pi}{\lceil N / n\rceil+1} .
$$

Then we have $\left\langle\left(S_{\lceil N / n\rceil} \otimes I_{n}\right) \zeta, \zeta\right\rangle=\cos \frac{\pi}{\lceil N / n\rceil+1}$. It follows that ζ is of the form

$$
\zeta=\xi_{1} \otimes \sum_{l=1}^{n} \beta_{l l_{l}}
$$

with $\sum_{l=1}^{n}\left|\beta_{l}\right|^{2}=1$. But one has $\beta_{l}=0$ if $l>r$, since ζ is in C^{N}.
QED

3. Positive polynomial for which the modulus of α_{n} attains the bound.

Now we will show the aimed theorem in this paper:
Theorem 2 Suppose that a trigonometric polynomial

$$
\tau\left(e^{i \theta}\right)=\sum_{k=-N+1}^{N-1} \alpha_{k} e^{i k \theta}, \quad \theta \in[0,2 \pi),
$$

is positive and such that $\alpha_{N-1} \neq 0, N \geq 2$. If $1 \leq n_{0} \leq N-1$, and the equality

$$
\left|\alpha_{n_{0}}\right|=\alpha_{0} \cos \frac{\pi}{\left\lceil N / n_{0}\right\rceil+1}
$$

holds, then τ is of the form

$$
\tau\left(e^{i \theta}\right)=\sigma\left(e^{i \theta}\right) \tau_{\left\lceil N / n_{0}\right\rceil}\left(e^{i n_{0}(\theta-\varphi)}\right), \quad \theta \in[0,2 \pi)
$$

where σ is a positive trigonometric polynomial of degree $r_{0}-1, r_{0}=N-\left(\left\lceil N / n_{0}\right\rceil-1\right) n_{0}$, $\tau_{\left\lceil N / n_{0}\right\rceil}$ the trigonometric polynomial already introduced and $\varphi \in[0,2 \pi)$. Moreover, for any $n \neq n_{0}, 1 \leq n \leq N-1$, one has

$$
\left|\alpha_{n}\right|<\alpha_{0} \cos \frac{\pi}{\lceil N / n\rceil+1}
$$

Conversely, for the polynomial $\sigma\left(e^{i \theta}\right) \tau_{\left\lceil N / n_{0}\right\rceil}\left(e^{i n_{0}(\theta-\varphi)}\right)$, the modulus $\left|\alpha_{n_{0}}\right|$ of $\alpha_{n_{0}}$ is equal to $\alpha_{0} \cos \frac{\pi}{\left\lceil N / n_{0}\right\rceil+1}$.

Proof. By the Fejér-Riesz theorem one has a polynomial

$$
\sigma\left(e^{i \theta}\right)=\sum_{k=0}^{N-1} \gamma_{k} e^{i k \theta}
$$

such that

$$
\tau\left(e^{i \theta}\right)=\left|\sigma\left(e^{i \theta}\right)\right|^{2}=\sum_{k, l=0}^{N-1} \gamma_{k} \bar{\gamma}_{l} e^{i(k-l) \theta} .
$$

Assume that the equality

$$
\left|\alpha_{n_{0}}\right|=\alpha_{0} \cos \frac{\pi}{\left\lceil N / n_{0}\right\rceil+1}
$$

holds for $n_{0}, 1 \leq n_{0} \leq N-1$.
First we let $\alpha_{0}=1$ and $\alpha_{n_{0}} \geq 0$. The vector ζ of which k th coordinate is $\gamma_{k-1}(1 \leq$ $k \leq N)$ achieves the numerical radius $w\left(\left(S_{N}\right)^{n_{0}}\right)$ of the matrix $\left(S_{N}\right)^{n_{0}}$, so, by Lemma $1, \zeta$ is of the form

$$
\zeta=P_{n_{0}}\left(\xi_{1} \otimes \sum_{l=1}^{r_{0}} \beta_{l} \iota_{l}\right), \quad \sum_{l=1}^{r_{0}}\left|\beta_{l}\right|^{2}=1
$$

where $P_{n_{0}}$ is the orthogonal projection from $C^{\left\lceil N / n_{0}\right\rceil} \otimes C^{n_{0}}$ onto C^{N}, ξ_{1} the unit vector in $C^{\left\lceil N / n_{0}\right\rceil}$ of which k th coordinate is

$$
\left(\frac{2}{\left\lceil N / n_{0}\right\rceil+1}\right)^{1 / 2} \sin \frac{k \pi}{\left\lceil N / n_{0}\right\rceil+1}, \quad 1 \leq k \leq\left\lceil N / n_{0}\right\rceil
$$

ι_{l} the unit vector in $C^{n_{0}}$ of which l th coordinate is 1 and others $0,1 \leq l \leq r_{0}$. Then we have

$$
\gamma_{k}=\beta_{l}\left(\frac{2}{\left\lceil N / n_{0}\right\rceil+1}\right)^{1 / 2} \sin \frac{(j+1) \pi}{\left\lceil N / n_{0}\right\rceil+1}
$$

if $k=l+n_{0} j-1,1 \leq l \leq r_{0}, 0 \leq j \leq\left\lceil N / n_{0}\right\rceil-1$, and $\gamma_{k}=0$ otherwise. Therefore, we have

$$
\begin{aligned}
\tau\left(e^{i \theta}\right) & =\left|\sum_{k=0}^{N-1} \gamma_{k} e^{i k \theta}\right|^{2} \\
& =\frac{2}{\left\lceil N / n_{0}\right\rceil+1}\left|\sum_{j=0}^{\left\lceil N / n_{0}\right\rceil-1} \sum_{l=1}^{r_{0}} \beta_{l} \sin \frac{(j+1) \pi}{\left\lceil N / n_{0}\right\rceil+1} e^{i\left(l-1+n_{0} j\right) \theta}\right|^{2} \\
& =\left|\sum_{l=1}^{r_{0}} \beta_{l} e^{i(l-1) \theta}\right|^{2}\left(\frac{2}{\left\lceil N / n_{0}\right\rceil+1}\left|\sum_{j=1}^{\left\lceil N / n_{0}\right\rceil-1} \sin \frac{(j+1) \pi}{\left\lceil N / n_{0}\right\rceil+1} e^{i n_{0} j \theta}\right|^{2}\right)
\end{aligned}
$$

and $\beta_{r_{0}} \neq 0$. Therefore, putting

$$
\sigma\left(e^{i \theta}\right)=\left|\sum_{l=1}^{r_{0}} \beta_{l} e^{i(l-1) \theta}\right|^{2}, \quad \theta \in[0,2 \pi)
$$

which in fact is positive, we have

$$
\tau\left(e^{i \theta}\right)=\sigma\left(e^{i \theta}\right) \tau_{\left\lceil N / n_{0}\right\rceil}\left(e^{i n_{0} \theta}\right), \quad \theta \in[0,2 \pi)
$$

Assume that

$$
\left|\alpha_{n_{1}}\right|=\cos \frac{\pi}{\left\lceil N / n_{1}\right\rceil+1}
$$

holds for $n_{1}, 1 \leq n_{1} \leq N-1$. Then ζ is of the form

$$
\zeta=P_{n_{1}}^{\prime}\left(\xi_{1}^{\prime} \otimes \sum_{l=1}^{r_{1}} \beta_{l}^{\prime} \iota_{l}^{\prime}\right)
$$

where $P_{n_{1}}^{\prime}$ the projection from $C^{\left\lceil N / n_{1}\right\rceil} \otimes C^{n_{1}}$ onto C^{N}, ξ_{1}^{\prime} the vector in $C^{\left\lceil N / n_{1}\right\rceil}$ of which k th coordinate is

$$
e^{i \psi_{k}}\left(\frac{2}{\left\lceil N / n_{1}\right\rceil+1}\right)^{1 / 2} \sin \frac{k \pi}{\left\lceil N / n_{1}\right\rceil+1}, \quad \psi_{k} \in[0,2 \pi), \quad 1 \leq k \leq\left\lceil N / n_{1}\right\rceil
$$

ι_{l}^{\prime} the vector in $C^{n_{1}}$ of which l th coordinate is 1 and others 0 and $r_{1}=N-\left(\left\lceil N / n_{1}\right\rceil-1\right) n_{1}$. Therefore, we have

$$
P_{n_{1}}^{\prime}\left(\xi_{1}^{\prime} \otimes \sum_{l=1}^{r_{1}} \beta_{l}^{\prime} \iota_{l}^{\prime}\right)=P_{n_{0}}\left(\xi_{1} \otimes \sum_{l=1}^{r_{0}} \beta_{l} l_{l}\right)
$$

But it occurs only when $r_{1}=r_{0}$ and $n_{1}=n_{0}$.
Now we turn to the general case. We apply the foregoing argument to the positive trigonometric polynomial

$$
\tilde{\tau}\left(e^{i \theta}\right)=\tau\left(e^{i(\theta-\varphi)}\right) / \alpha_{0}, \quad \theta \in[0,2 \pi)
$$

$\varphi=\operatorname{Arg} \alpha_{n_{0}} / n_{0}$. Then we have the desired conclusion.
Conversely, let

$$
\tau\left(e^{i \theta}\right)=\sigma\left(e^{i \theta}\right) \tau_{\left\lceil N / n_{0}\right\rceil}\left(e^{i n_{0}(\theta-\varphi)}\right), \quad \theta \in[0,2 \pi)
$$

where σ is a positive trigonometric polynomial, then we can easily have the equality

$$
\left|\alpha_{n_{0}}\right|=\alpha_{0} \cos \frac{\pi}{\left\lceil N / n_{0}\right\rceil+1}
$$

QED

4. An application to operator-valued trigonometric polynomials.

Theorem 2 yields the estimates for numerical radii of operators which are coefficients of positive operator-valued trigonometric polynomials:

Corollary 3 Let A_{k} be bounded operators on a Hilbert space $H,-N+1 \leq k \leq N-1, N \geq$ 2. Suppose that

$$
\tau\left(e^{i \theta}\right)=\sum_{k=-N+1}^{N-1} A_{k} e^{i k \theta} \geq O
$$

for any $\theta \in[0,2 \pi)$. Then, $A_{0} \geq O$ and one has

$$
w\left(A_{n}\right) \leq\left\|A_{0}\right\| \cos \frac{\pi}{\lceil N / n\rceil+1}, \quad 1 \leq n \leq N-1
$$

Proof. Let $\zeta \in H$ and $\|\zeta\|=1$. Then

$$
\tau_{\zeta}\left(e^{i \theta}\right)=\sum_{k=-N+1}^{N-1}\left\langle A_{k} \zeta, \zeta\right\rangle e^{i k \theta}, \quad \theta \in[0,2 \pi),
$$

is a positive trigonometric polynomial. So it follows that $A_{0} \geq O$. If $\left\langle A_{0} \zeta, \zeta\right\rangle>0$, then we know that the inequality

$$
\left|\left\langle A_{n} \zeta, \zeta\right\rangle\right| \leq\left\langle A_{0} \zeta, \zeta\right\rangle \cos \frac{\pi}{\lceil N / n\rceil+1}
$$

holds. If $\left\langle A_{0} \zeta, \zeta\right\rangle=0$, then we have $\left\langle A_{n} \zeta, \zeta\right\rangle=0,1 \leq n \leq N-1$, and so, we know that the above inequality turns out to be trivial. Hence we have

$$
w\left(A_{n}\right) \leq\left\|A_{0}\right\| \cos \frac{\pi}{\lceil N / n\rceil+1}
$$

QED

References

[1] K. R. Davidson and A. R. Holbrook, Numerical radii of zero-one matrices, Michigan Math. J. 35 (1988), 261-267.
[2] L. Fejér, Über trigonometrische Polynome, J. reine angew. Math. 146 (1916), 58-82.
[3] U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), 371-379.
[4] W. Rudin, Fourier analysis on groups, Interscience, New York, London, 1962.
[5] T. Yoshino, Introduction to operator theory, Pitman Res. Notes in Math. Ser. 300, Longman, Harlow; John Wiley \& Sons, New York, 1993.

Takateru Okayasu and Yasunori Ueta
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Yamagata 980-8560, Japan

[^0]: 2000 Mathematics Subject Classification. Primary 47A12; Secondary 42A32, 15A60 .
 Key words and phrases. Positive trigonometric polynomial, numerical radius, shift matrix

