ESTIMATES FOR MODULI OF COEFFICIENTS OF POSITIVE TRIGONOMETRIC POLYNOMIALS

Dedicated to Professor Tsuyoshi Ando on his seventieth birthday

TAKATERU OKAYASU AND YASUNORI UETA

Received April 20, 2001; revised December 17, 2001

ABSTRACT. Suppose that a trigonometric polynomial

$$\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} \alpha_k e^{ik\theta}, \quad \theta \in [0, 2\pi),$$

is positive, $\alpha_{N-1} \neq 0, N \geq 2$. Then a classical matter due to Fejér asserts that the estimate π

$$|\alpha_1| \le \alpha_0 \cos \frac{\pi}{N+1}$$

for the modulus $|\alpha_1|$ of α_1 holds and that the equality occurs only for the polynomial $\alpha_0 \tau_N(e^{i(\theta-\varphi)})$, where

$$\tau_N(e^{i\theta}) = \frac{2}{N+1} \left| \sum_{k=0}^{N-1} \left(\sin \frac{(k+1)\pi}{N+1} \right) e^{ik\theta} \right|^2, \quad \theta \in [0, 2\pi),$$

and $\varphi \in [0, 2\pi)$. In this paper, we will show that the corresponding estimate

$$|\alpha_n| \le \alpha_0 \cos \frac{\pi}{\lceil N/n \rceil + 1}$$

for the modulus $|\alpha_n|$ of α_n is true, $1 \leq n \leq N-1$, $\lceil N/n \rceil$ the minimum integer not smaller than N/n, and that the equality for $n = n_0$ occurs only for the polynomial τ of the form

$$\tau(e^{i\theta}) = \sigma(e^{i\theta}) \tau_{\lceil N/n_0 \rceil} (e^{in_0(\theta - \varphi)}), \quad \theta \in [0, 2\pi),$$

where σ is a positive trigonometric polynomial and $\varphi \in [0, 2\pi)$.

1. Introduction.

Let S_N , where $N \ge 2$, be the $N \times N$ shift matrix, i.e.,

$$S_N = \begin{pmatrix} 0 & & & \\ 1 & 0 & & \\ & 1 & \ddots & \\ & & \ddots & 0 \\ & & & 1 & 0 \end{pmatrix}.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A12; Secondary 42A32, 15A60.

Key words and phrases. Positive trigonometric polynomial, numerical radius, shift matrix .

Then it is known by Davidson and Holbrook [1], Corollary 2, that for n with $1 \le n \le N-1$, $\lfloor N/n \rfloor$ denoting the minimum integer not smaller than N/n (which in fact is $\lfloor (N-1)/n \rfloor + 1$), the numerical radius

$$w((S_N)^n) = \sup_{||\zeta||=1} |\langle (S_N)^n \zeta, \zeta \rangle|$$

of the power $(S_N)^n$ of S_N coincides with $\cos \frac{\pi}{\lceil N/n \rceil + 1}$. But, in the case when n = 1, Haagerup and de la Harpe [3], Proposition 1 (and T. Yoshino [5], Lemmas 6 and 7, p.134, also) proves that, given a unit vector $\zeta \in C^N$, the equality

$$\langle S_N\zeta,\zeta\rangle = \cos\frac{\pi}{N+1}$$

holds if and only if

$$\zeta = e^{i\varphi}\zeta_1$$
 for some $\varphi \in [0, 2\pi)$,

where ζ_1 is the vector in C^N of which *m*th coordinate is

$$\left(\frac{2}{N+1}\right)^{1/2}\sin\frac{m\pi}{N+1}, \quad 1 \le m \le N.$$

Haagerup and de la Harpe observed further that this serves to lead us to the classical matter due to Fejér ([2]; [4], 8.4) which asserts that if a trigonometric polynomial

$$\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} \alpha_k e^{ik\theta}, \quad \theta \in [0, 2\pi),$$

is positive, namely

$$\tau(e^{i\theta}) \geq 0$$
 for any $\theta \in [0,2\pi)$

and not identically zero (or equivalently $\alpha_0 > 0$) with $\alpha_{N-1} \neq 0$, then one has the estimate

$$|\alpha_1| \le \alpha_0 \cos \frac{\pi}{N+1}$$

for the modulus of α_1 , and the equality occurs only for the polynomial $\alpha_0 \tau_N(e^{i(\theta-\varphi)})$, where

$$\tau_N(e^{i\theta}) = \frac{2}{N+1} \left| \sum_{k=0}^{N-1} \left(\sin \frac{(k+1)\pi}{N+1} \right) e^{ik\theta} \right|^2, \quad \theta \in [0, 2\pi).$$

It is easy for us to give the corresponding estimates for the moduli $|\alpha_n|$ of the *n*th coefficients α_n of τ , $-N + 1 \le n \le N - 1$ (but for the case n = 0 we give an appropriate understanding). In fact, By the Fejér-Riesz theorem (See [2], [4]), there exists a polynomial

$$\sigma(e^{i\theta}) = \sum_{k=0}^{N-1} \gamma_k e^{ik\theta}$$

such that

$$\tau(e^{i\theta}) = |\sigma(e^{i\theta})|^2 = \sum_{k,l=0}^{N-1} \gamma_k \bar{\gamma}_l e^{i(k-l)\theta}$$

(So it is immediate that $\alpha_{-n} = \bar{\alpha}_n, -N+1 \le n \le N-1$). Let ζ be the vector in C^N of which kth coordinate are γ_{k-1} , $1 \leq k \leq N$. Then we have

$$\alpha_0 = ||\zeta||^2$$
 and $\alpha_n = \langle (S_N)^n \zeta, \zeta \rangle, \quad 1 \le n \le N-1.$

Therefore, by [1], Corollary 2, it actually follows that

$$|\alpha_n| = ||\zeta||^2 \left| \left\langle (S_N)^n \frac{\zeta}{||\zeta||}, \frac{\zeta}{||\zeta||} \right\rangle \right| \le \alpha_0 \cos \frac{\pi}{\lceil N/n \rceil + 1}.$$

We will devote ourselves in the following two sections to determining the polynomial τ for which the equality

$$|\alpha_n| = \alpha_0 \cos \frac{\pi}{\lceil N/n \rceil + 1}, \quad 1 \le n \le N - 1,$$

occurs. In the last section, an application will be given to positive "operator-valued" trigonometric polynomials.

2. Unit vectors which attain the numerical radius of $(S_N)^n$.

For the sake of convenience, we identify, through the canonical manner, the space C^N with a subspace of the space $C^{\lceil N/n\rceil} \otimes C^n$, and accordingly the power $(S_N)^n$ of S_N with the operator $P_n(S_{\lceil N/n\rceil} \otimes I_n) \Big|_{C^N}$ which restricts the operator $P_n(S_{\lceil N/n\rceil} \otimes I_n)$ on C^N , I_n the $n \times n$ unit matrix, P_n the orthogonal projection from $C^{\lceil N/n \rceil} \otimes C^n$ onto C^N . Let $\xi_k \in C^{\lceil N/n \rceil}$ be the unit vector of which *m*th coordinate is

$$\left(\sum_{\nu=1}^{\lceil N/n\rceil} \sin^2 \frac{k\nu\pi}{\lceil N/n\rceil + 1}\right)^{-1/2} \sin \frac{km\pi}{\lceil N/n\rceil + 1}, \quad 1 \le m \le \lceil N/n\rceil,$$

and $\iota_l \in C^n$ the unit vector of which *l*th coordinate is 1 and others 0. Then the vectors $\xi_k \otimes \iota_l, \ 1 \leq k \leq \lceil N/n \rceil, \ 1 \leq l \leq n$, make an orthonormal basis for $C^{\lceil N/n \rceil} \otimes C^n$.

Lemma 1 Let $1 \le n \le N-1$, and let $\zeta \in C^N$ be a unit vector. Then

$$\langle (S_N)^n \zeta, \zeta \rangle = \cos \frac{\pi}{\lceil N/n \rceil + 1}$$

occurs if and only if $\zeta \in C^N$ is of the form

$$\zeta = P_n(\xi_1 \otimes \eta),$$

where
$$\eta = \sum_{l=1}^{r} \beta_l \iota_l$$
 with $\sum_{l=1}^{r} |\beta_l|^2 = 1$, $r = N - (\lceil N/n \rceil - 1) n$.

Proof. First assume that n divides N, that $\zeta \in C^N$ is a unit vector and that

$$\langle (S_N)^n \zeta, \zeta \rangle = \cos \frac{\pi}{N/n+1}.$$

 Put

$$\zeta = \sum_{1 \le k \le N/n, \ 1 \le l \le n} \beta_{k,l} \xi_k \otimes \iota_l, \text{ with } \sum_{1 \le k \le N/n, \ 1 \le l \le n} |\beta_{k,l}|^2 = 1.$$

Then, since

$$\operatorname{Re}(S_{N/n})\xi_k = \left(\cos\frac{k\pi}{N/n+1}\right)\xi_k, \ 1 \le k \le N/n,$$

we have

$$\begin{aligned} \cos \frac{\pi}{N/n+1} &= \left\langle (S_{N/n} \otimes I_n)\zeta, \zeta \right\rangle \\ &= \left\langle \operatorname{Re}(S_{N/n} \otimes I_n) \sum_{k,l} \beta_{k,l} \xi_k \otimes \iota_l, \sum_{k',l'} \beta_{k',l'} \xi_{k'} \otimes \iota_{l'} \right\rangle \\ &= \sum_{k,k',l,l'} \beta_{k,l} \overline{\beta}_{k',l'} \left\langle \operatorname{Re}(S_{N/n})\xi_k, \xi_{k'} \right\rangle \left\langle \iota_l, \iota_{l'} \right\rangle \\ &= \sum_{k,k',l,l'} \beta_{k,l} \overline{\beta}_{k',l'} \left\langle \left(\cos \frac{k\pi}{N/n+1} \right) \xi_k, \xi_{k'} \right\rangle \left\langle \iota_l, \iota_{l'} \right\rangle \\ &= \sum_{k,l} |\beta_{k,l}|^2 \cos \frac{k\pi}{N/n+1}. \end{aligned}$$

This shows that $\beta_{k,l} = 0$ for $k \ge 2$. So, putting $\beta_l = \beta_{1,l}$, we have

$$\eta = \sum_{l=1}^{n} \beta_{l} \iota_{l}$$
 and $\sum_{l=1}^{n} |\beta_{l}|^{2} = 1.$

Next assume that n does not divide N, and that a unt vector $\boldsymbol{\zeta} \in \boldsymbol{C}^N$ satisfies

$$\langle (S_N)^n \zeta, \zeta \rangle = \cos \frac{\pi}{\lceil N/n \rceil + 1}$$

Then we have $\langle (S_{\lceil N/n \rceil} \otimes I_n)\zeta, \zeta \rangle = \cos \frac{\pi}{\lceil N/n \rceil + 1}$. It follows that ζ is of the form

$$\zeta = \xi_1 \otimes \sum_{l=1}^n \beta_l \iota_l$$

with
$$\sum_{l=1}^{n} |\beta_l|^2 = 1$$
. But one has $\beta_l = 0$ if $l > r$, since ζ is in C^N . QED

3. Positive polynomial for which the modulus of α_n attains the bound.

Now we will show the aimed theorem in this paper:

Theorem 2 Suppose that a trigonometric polynomial

$$\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} \alpha_k e^{ik\theta}, \quad \theta \in [0, 2\pi),$$

118

is positive and such that $\alpha_{N-1} \neq 0$, $N \geq 2$. If $1 \leq n_0 \leq N-1$, and the equality

$$|\alpha_{n_0}| = \alpha_0 \cos \frac{\pi}{\lceil N/n_0 \rceil + 1}$$

holds, then τ is of the form

$$\tau(e^{i\theta}) = \sigma(e^{i\theta})\tau_{\lceil N/n_0\rceil}(e^{in_0(\theta-\varphi)}), \quad \theta \in [0,2\pi),$$

where σ is a positive trigonometric polynomial of degree $r_0 - 1$, $r_0 = N - (\lceil N/n_0 \rceil - 1)n_0$, $\tau_{\lceil N/n_0 \rceil}$ the trigonometric polynomial already introduced and $\varphi \in [0, 2\pi)$. Moreover, for any $n \neq n_0$, $1 \leq n \leq N - 1$, one has

$$|\alpha_n| < \alpha_0 \cos \frac{\pi}{\lceil N/n \rceil + 1}.$$

Conversely, for the polynomial $\sigma(e^{i\theta})\tau_{\lceil N/n_0\rceil}(e^{in_0(\theta-\varphi)})$, the modulus $|\alpha_{n_0}|$ of α_{n_0} is equal to $\alpha_0 \cos \frac{\pi}{\lceil N/n_0\rceil + 1}$.

Proof. By the Fejér-Riesz theorem one has a polynomial

$$\sigma(e^{i\theta}) = \sum_{k=0}^{N-1} \gamma_k e^{ik\theta}$$

such that

$$\tau(e^{i\theta}) = |\sigma(e^{i\theta})|^2 = \sum_{k,l=0}^{N-1} \gamma_k \bar{\gamma}_l e^{i(k-l)\theta}.$$

Assume that the equality

$$|\alpha_{n_0}| = \alpha_0 \cos \frac{\pi}{\lceil N/n_0 \rceil + 1}$$

holds for $n_0, 1 \le n_0 \le N - 1$.

First we let $\alpha_0 = 1$ and $\alpha_{n_0} \ge 0$. The vector ζ of which kth coordinate is γ_{k-1} $(1 \le k \le N)$ achieves the numerical radius $w((S_N)^{n_0})$ of the matrix $(S_N)^{n_0}$, so, by Lemma 1, ζ is of the form

$$\zeta = P_{n_0} \left(\xi_1 \otimes \sum_{l=1}^{r_0} \beta_l \iota_l \right), \quad \sum_{l=1}^{r_0} |\beta_l|^2 = 1,$$

where P_{n_0} is the orthogonal projection from $C^{\lceil N/n_0 \rceil} \otimes C^{n_0}$ onto C^N , ξ_1 the unit vector in $C^{\lceil N/n_0 \rceil}$ of which kth coordinate is

$$\left(\frac{2}{\lceil N/n_0\rceil + 1}\right)^{1/2} \sin \frac{k\pi}{\lceil N/n_0\rceil + 1}, \quad 1 \le k \le \lceil N/n_0\rceil,$$

 ι_l the unit vector in C^{n_0} of which *l*th coordinate is 1 and others 0, $1 \leq l \leq r_0$. Then we have

$$\gamma_k = \beta_l \left(\frac{2}{\lceil N/n_0 \rceil + 1}\right)^{1/2} \sin \frac{(j+1)\pi}{\lceil N/n_0 \rceil + 1}$$

if $k = l + n_0 j - 1$, $1 \le l \le r_0$, $0 \le j \le \lceil N/n_0 \rceil - 1$, and $\gamma_k = 0$ otherwise. Therefore, we have

$$\begin{aligned} \tau(e^{i\theta}) &= \left| \sum_{k=0}^{N-1} \gamma_k e^{ik\theta} \right|^2 \\ &= \frac{2}{\lceil N/n_0 \rceil + 1} \left| \sum_{j=0}^{\lceil N/n_0 \rceil - 1} \sum_{l=1}^{r_0} \beta_l \sin \frac{(j+1)\pi}{\lceil N/n_0 \rceil + 1} e^{i(l-1+n_0j)\theta} \right|^2 \\ &= \left| \sum_{l=1}^{r_0} \beta_l e^{i(l-1)\theta} \right|^2 \left(\frac{2}{\lceil N/n_0 \rceil + 1} \left| \sum_{j=1}^{\lceil N/n_0 \rceil - 1} \sin \frac{(j+1)\pi}{\lceil N/n_0 \rceil + 1} e^{in_0j\theta} \right|^2 \right), \end{aligned}$$

and $\beta_{r_0} \neq 0$. Therefore, putting

$$\sigma(e^{i\theta}) = \left|\sum_{l=1}^{r_0} \beta_l e^{i(l-1)\theta}\right|^2, \quad \theta \in [0, 2\pi),$$

which in fact is positive, we have

$$\tau(e^{i\theta}) = \sigma(e^{i\theta})\tau_{\lceil N/n_0\rceil}(e^{in_0\theta}), \quad \theta \in [0, 2\pi).$$

Assume that

$$|\alpha_{n_1}| = \cos\frac{\pi}{\lceil N/n_1 \rceil + 1}$$

holds for n_1 , $1 \le n_1 \le N - 1$. Then ζ is of the form

$$\zeta = P'_{n_1}(\xi'_1 \otimes \sum_{l=1}^{r_1} \beta'_l \iota'_l),$$

where P'_{n_1} the projection from $C^{\lceil N/n_1\rceil} \otimes C^{n_1}$ onto C^N , ξ'_1 the vector in $C^{\lceil N/n_1\rceil}$ of which kth coordinate is

$$e^{i\psi_k} \left(\frac{2}{\lceil N/n_1\rceil + 1}\right)^{1/2} \sin \frac{k\pi}{\lceil N/n_1\rceil + 1}, \quad \psi_k \in [0, 2\pi), \quad 1 \le k \le \lceil N/n_1\rceil,$$

 ι'_l the vector in C^{n_1} of which *l*th coordinate is 1 and others 0 and $r_1 = N - (\lceil N/n_1 \rceil - 1) n_1$. Therefore, we have

$$P'_{n_1}(\xi'_1 \otimes \sum_{l=1}^{r_1} \beta'_l \iota'_l) = P_{n_0}(\xi_1 \otimes \sum_{l=1}^{r_0} \beta_l \iota_l).$$

But it occurs only when $r_1 = r_0$ and $n_1 = n_0$.

Now we turn to the general case. We apply the foregoing argument to the positive trigonometric polynomial

$$\tilde{\tau}(e^{i\theta}) = \tau(e^{i(\theta-\varphi)})/\alpha_0, \quad \theta \in [0, 2\pi),$$

 $\varphi = \operatorname{Arg} \alpha_{n_0} / n_0$. Then we have the desired conclusion. Conversely, let

$$\tau(e^{i\theta}) = \sigma(e^{i\theta})\tau_{\lceil N/n_0\rceil}(e^{in_0(\theta-\varphi)}), \quad \theta\in[0,2\pi),$$

where σ is a positive trigonometric polynomial, then we can easily have the equality

$$|\alpha_{n_0}| = \alpha_0 \cos \frac{\pi}{\lceil N/n_0 \rceil + 1}.$$
 QED

4. An application to operator-valued trigonometric polynomials.

Theorem 2 yields the estimates for numerical radii of operators which are coefficients of positive operator-valued trigonometric polynomials:

Corollary 3 Let A_k be bounded operators on a Hilbert space H, $-N+1 \le k \le N-1$, $N \ge 2$. Suppose that

$$\tau(e^{i\theta}) = \sum_{k=-N+1}^{N-1} A_k e^{ik\theta} \ge O$$

for any $\theta \in [0, 2\pi)$. Then, $A_0 \geq O$ and one has

$$w(A_n) \le ||A_0|| \cos \frac{\pi}{\lceil N/n \rceil + 1}, \quad 1 \le n \le N - 1.$$

Proof. Let $\zeta \in H$ and $||\zeta|| = 1$. Then

$$\tau_{\zeta}(e^{i\theta}) = \sum_{k=-N+1}^{N-1} \langle A_k \zeta, \zeta \rangle e^{ik\theta}, \quad \theta \in [0, 2\pi),$$

is a positive trigonometric polynomial. So it follows that $A_0 \ge O$. If $\langle A_0\zeta,\zeta \rangle > 0$, then we know that the inequality

$$|\langle A_n\zeta,\zeta\rangle| \le \langle A_0\zeta,\zeta
angle\cosrac{\pi}{\lceil N/n
ceil+1}$$

holds. If $\langle A_0\zeta,\zeta\rangle = 0$, then we have $\langle A_n\zeta,\zeta\rangle = 0$, $1 \le n \le N-1$, and so, we know that the above inequality turns out to be trivial. Hence we have

$$w(A_n) \le ||A_0|| \cos \frac{\pi}{\lceil N/n \rceil + 1}.$$

QED

References

- K. R. Davidson and A. R. Holbrook, Numerical radii of zero-one matrices, Michigan Math. J. 35(1988), 261-267.
- [2] L. Fejér, Über trigonometrische Polynome, J. reine angew. Math. 146 (1916), 58-82.
- [3] U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115(1992), 371–379.
- [4] W. Rudin, Fourier analysis on groups, Interscience, New York, London, 1962.
- [5] T. Yoshino, Introduction to operator theory, Pitman Res. Notes in Math. Ser. 300, Longman, Harlow; John Wiley & Sons, New York, 1993.

Takateru Okayasu and Yasunori Ueta Department of Mathematical Sciences Faculty of Science Yamagata University Yamagata 980-8560, Japan