An estimation of Hadamard product by sequential product of operators

Masatoshi Fujii and Ritsuo Nakamoto

Received November 1,2022; revised January 7, 2023

Abstract. For operators A and B on a Hilbert space, the sequential product is defined by $A \backsim B=U|A|^{\frac{1}{2}} B|A|^{\frac{1}{2}}$, where $A=U|A|$ is the polar decomposition of A. In particular, $A \backsim B=A^{\frac{1}{2}} B A^{\frac{1}{2}}$ for positive operators A and B, which coincides with Gudder-Nagy's definition for positive contractions. In this note, as a complement of a recent result by Hiramatsu and Seo, we give an estimation of Hadamard product $A \circ B$ by sequential product $A \backsim B$: For positive invertible operators A and B with the condition numbers $h_{A}(=$ $\left.\|A\|\left\|A^{-1}\right\|\right)$ and h_{B} respectively,

$$
\frac{1}{h_{A} h_{B}} A \text { ■ } B \leq A \circ B \leq h_{A} h_{B} A \text { ■ } .
$$

More generally, it is considered for any quasi-mean. As an application, we have an estimation by weighted operator fidelity $A \hat{\#}_{t} B=(A \backsim B)^{t}$ as follows: If $m_{A} I \leq A \leq M_{A} I$ and $m_{B} I \leq B \leq M_{B} I$ for some $m_{A}, M_{A}, m_{B}, M_{B}>0$, then

$$
\frac{m_{A} m_{B}}{\left(M_{A} M_{B}\right)^{t}} A \hat{\#}_{t} B \leq A \circ B \leq \frac{M_{A} M_{B}}{\left(m_{A} m_{B}\right)^{t}} A \hat{\#}_{t} B .
$$

