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FOREWORD

The twenty-fifth annual international conference of the Forum for Interdisciplinary Mathematics
(FIM2017) and the seventeenth International Symposium of Management Engineering (ISME 2017) were
jointly organized at Kitakyushu International Conference Centre, Kokura Kitakyushu, Japan during
25-28 August 2017. The Forum for Interdisciplinary Mathematics, established in India to promote
interdisciplinary studies in mathematics, holds its annual international conference alternately in
India and abroad. In 2013, FIM 2013 was hosted in Kitakyushu International Conference Centre and it
proved to be a resounding success. Impressed by the warm hospitality and the meticulous organization by
the local organizing committee of FIM 2013 held in Kitakyushu in 2013, the Forum readily agreed to have
FIM 2017 again in Kitakyushu, Japan.

Among the hundred and odd papers submitted for FIM 2017 covering topics such as disease modelling,
elasticity, fuzzy systems, management engineering, pedagogy, pure mathematics and statistics, about fifty
papers were selected for presentation in the conference. Of the three keynote addresses, Prof. Kato's lecture
dealt with Geometry of Banach spaces while the lectures by Drs. Wan Fatima and Bo Wang were on
teaching methodologies in mathematics and joint application of stochastics and fuzzy set theory for certain
optimization problems respectively. The conference registration commenced in the evening of the 25th of
August 2017 and the keynote addresses by Drs. Kato and Wan Fatima constituted the morning session on
the 26th August. In the afternoon simultaneous paper reading sessions were held. In the morning of the 27th
August apart from the keynote address by Dr. Bo Wang, a technical session of talks on fuzzy sets,
information theory and Reliability analysis was held. The tour in and around Kokura that afternoon
provided the participants some glimpses of the rich Japanese culture and the modern technological
advances achieved in Japan. The 28th August, the final day of the conference, witnessed parallel paper
reading sessions.

The members of the advisory committee comprised eminent academicians from about twenty
countries, while the participants hailed mostly from China, India, Japan, Malaysia and Taiwan. The
conference was marked by camaraderie and lively academic discussions. The present volume comprises
refereed papers presented as well as invited articles. It is hoped that this publication will
promote further research in the respective topics discussed. The conference chairs and the editors of the
proceedings are beholden to the members of the local organizing committee, the international advisory
committee, the government of Kitakyushu City and its Visitors Association.

P.V. SUBRAHMANYAM
JUNZO WATADA

HIROSHI SAKAI
YOSHIYUKI YABUUCHI
YOSHIYUKI MATSUMOTO
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OCTAGONAL FUZZY CHOQUET INTEGRAL OPERATOR FOR
MULTI-ATTRIBUTE DECISION MAKING

FELBIN C KENNEDY!T AND DHANALAKSHMI V2

IRESEARCH GUIDE & ASSOCIATE PROFESSOR
2RESEARCH SCHOLAR & ASSISTANT PROFESSOR
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ABSTRACT. This paper introduces two types of aggregations, namely the octagonal fuzzy weighted
averaging(OFWA) operator for non-interactive aggregation and octagonal fuzzy Choquet integral(OFCI)
operator for interactive aggregation. The paper emphasis the use of octagonal fuzzy number as a
general case of some well known linear fuzzy numbers. Procedure for solving multi-attribute decision
making(MADM) problem using OFWA and OFCI operators are described and algorithms for the
same are presented to handle large data. Finally, an illustrative example is provided to demonstrate
the application of the OFCI operator in MADM problem.

Keyword: Octagonal fuzzy number, Choquet integral, aggregation, MADM, algorithm

1 Introduction Multi-attribute Decision Making (MADM) problems involve aggregating information
from various decision makers, aggregating the interactive criteria and then the final selection through
ranking the alternatives. In real situations, quantifying the quality of the alternative may not be
precise[2]. Zadeh[33] suggested employing the fuzzy set theory as a modeling tool that can help overcome
the situation. However, the presence of fuzziness in decision making increases the computational diffi-
culty in aggregating and ranking the alternatives, which has been handled by various authors including
us. To cite a few [1, 3, 4, 7, 8, 17, 20, 24].

The Choquet integral based aggregation finds its use in cases where individual criteria importance and
group importance are required. The Choquet integral is related to a fuzzy measure which considers
the interaction among the criteria to be aggregated [16, 21, 25]. For this reason, Choquet integral is
more suited to deal with fuzzy MCDM problems and in recent years, many scholars have done a lot
of good research in this field. Yang et. al. [31, 32] studied the real and fuzzy Choquet integrals for
fuzzy integrand. Tan [23], Xu [30], Wei et.al. [28], Wu et. al. [29] used Choquet integral to propose
some intuitionistic fuzzy aggregation operators. Tan [22], Qin et.al.[18], Meng et. al. [15] studied and
used Choquet integral to determine attribute weight and applied it in decision making problems under
interval intuitionistic environment. Rebille [19] used decision making over necessity measures through
Choquet integral.

In this paper, we introduce two types of aggregations on octagonal fuzzy numbers [14], namely octago-
nal fuzzy weighted averaging(OFWA) operator and octagonal fuzzy Choquet integral(OFCI) operator.
OFWA deals with non-interactive aggregation to aggregate the evaluations of different decision makers,
OFCI operator deals with interactive aggregation that aggregates the different criteria for the same al-
ternative.

The paper is organized as follows. Section 2 discusses some of the properties of octagonal fuzzy numbers
which are used to describe the linguistic terms for expert evaluations. In the Section 3, we recall the
concept of fuzzy measure, introduce octagonal fuzzy Choquet integral(OFCT) and then investigate the
aggregation properties of OFCI. In Section 4, we present the procedure for solving MADM problem
using OFCI operator, also algorithms are provided so as to apply it to the real life situations which
usually comes with large number of alternatives and criteria. The application of the proposed method
is given in Section 5 and conclusion is presented in Section 6.

2 Octagonal Fuzzy Numbers
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Definition 2.1 [14] A fuzzy number A is said to be an octagonal fuzzy number denoted by
A = (a1, a9, a3, a4, a5, ag, a7, as; k, w) with membership function

T — a1 .
—k if a1 <zx<as
a2 — aq

k(as — z) + w(r — a3)

aq — ag
w if a4 <z<as
pal) = k(z—a w(ag — (21)
( 5) + w(as — ) f as < < ag
ag — as
if ag <z <ar
—x
a8 =Ty if ar<z<ag
ag — ay

otherwise
where 0 < k < w,w = height(A),w > k.

Remark 2.1 The fuzzy number defined in [14] is piecewise and made up of 8 linear curves and therefore
named as ‘octagonal’. Note that it satisfies the properties of fuzzy number in accordance with the definition
by Klir in [13].

Remark 2.2 The above defined octagonal fuzzy number is a generalised form of some of the popular
linear fuzzy numbers like, crisp, rectangular, triangular and trapezoidal fuzzy numbers. As all these
numbers can be represented as an octagonal fuzzy number, the operations defined for octagonal fuzzy
numbers will hold good for them. The equivalent forms are as follows:

Fuzzy Numbers Equivalent Octagonal Fuzzy Numbers
Crisp ]Zumbers (a,0,0,a,a,a, a0, a; k, )
Interval Numbers )
[al GQ} (alaa17a17a17a27a27a27a27k7w)
Triangular Fuzzy Numbers kas — kay +wayr kas — kay + way
ai, 5 5, A2, 42,
(a1, az2,a3) w w
—kas + kas + waz —kasz + kas + wagz
w ) w , 435 k7 w
Trapezoidal Fuzzy Number kas — kay + way, kas — kay + way
ay, ) , (2,03
(a1, az, a3, aq) w w
—kayg + kas +way —kag + kaz + way )
) s Ga3 ki w
w w

Remark 2.3 The fuzzy numbers that are piece-wise linear and are made of less than 8 line segments can
be directly expressed as octagonal fuzzy number as pointed out in Remark 2.2. Fuzzy numbers which may
constitute more than 8 linear segments or those which are piece-wise non-linear are not exactly octagonal
fuzzy numbers but can be approximated to octagonal fuzzy numbers in a particular sense (Theorem 2.4.1

Definition 2.2 Let A = (a1, as,...,as; k,w) and B= (b1, ba, ..., bs, k,w) be two octagonal fuzzy numbers,
then

(i) A+ B = (a1 + b1, a2 + ba, ..., ag + bg; k, w)

(i) cA = (caq,cag,...,cas; k,w), for c>0

Remark 2.4 In [9], it is verified that the sum and scalar multiplication obtained from definition 2.2 is
as that using a— cut approach.

Remark 2.5 It is clear that A+ B and cA are also octagonal fuzzy numbers.

Proposition 2.1 Let A = (a1,a2,...,as; k,w), B = (b1, b2, ..., bs, k,w) be two octagonal fuzzy numbers
and let c1,co > 0, then we have

(i) A+ B=B+A

(ZZ) C1 (A + B) = (11141 + Clé

(7,7,7,) (Cl + Cz)/i = Clle + CQA
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Definition 2.3 An octagonal fuzzy weighted averaging operator on a collection of n octagonal fuzzy
numbers is defined as

OFVVILLM(.%L7 A, ..., An) = wor Ay + woa Ay + ... + won Ap (2.2)

where wv = (wu1, Wog, ..., wv,)T is the weight vector of A;(i = 1,2,...,n) with wv; € [0,1] and
S wy; = 1.

Definition 2.4 Ranking using Radius of Gyration:[6] Area between the radius of gyration point (Tf, rqf)
of the octagonal fuzzy number A and the origin (0,0) is given by

R(A) = rir

<

where rf = Aiteij(iii) Iy (4) 1

Area(A) 7 7T

an r~ = A , 1) are respectively the moment of inertia with
drg A), I,(A tively th t tia with

respect to the x-azis and y-azxis and Area(fl) the area of the octagonal fuzzy number A.

Remark 2.6 Ranking using radius of gyration is used in the procedure for defuzzification, whereas to
compare the octagonal fuzzy numbers, we use the ranking algorithm introduced by us in Section 3.5 of
the paper [6] . The ranking algorithm compares any two octagonal fuzzy numbers A and B in 10 steps
and we have proved that the algorithm returns either A< B, B=< A or the two octagonal fuzzy numbers
are equal(not just equivalent). Thus any two octagonal fuzzy numbers are comparable and the ordering
is anti-symmetric.

3 Fuzzy Measure and Choquet Integral For the sake of completion, we recall the concept of fuzzy
measure [12]. Using this, we define octagonal fuzzy Choquet integral operator which is then verified
for fundamental properties of aggregation operator, like idempotency, monotonicity, boundedness and
symmetry.

Definition 3.1 [13] A fuzzy measure on X is a set function m : P(X) — [0,1] such that
(i) m(¢) =0, m(X) =1
(it) A,B € P(X), AC B=m(A) <m(B).

Considering the MADM problems, the number m(A) can be interpreted as the importance of the subset
A, and the monotonicity condition (ii) in Definition 3.1 of the fuzzy measure means that the importance
of a subset of criteria cannot decrease when new criteria are added to it [26].

Let E; = {z;,2j41,...,2,}(1 < j < n) be a criteria set. The interaction among the criteria in E; can
be described by employing m(E;)to express the degree of importance of E;. That is, the degree of
importance of E; is evaluated by simultaneously considering x;, €41, ..., 2n. Hence, m can be called an
importance measure [27].

In order to determine such fuzzy measure, we generally need to find 2" — 2 values for n criteria, where
m(¢) = 0 and m(X) = 1 always. So the evaluation model obtained becomes quite complex, and the
structure is difficult to grasp. To avoid the problems with computational complexity and practical
estimations, A— fuzzy measure m, a special kind of fuzzy measure, was proposed by Sugeno, which
satisfies the following additional property:

m(AU B) = m(A) + m(B) + Am(A)m(B), (3.1)

for all A,B € P(X) and AN B = ¢ where A > —1.

Definition 3.2 [26] If X is a finite set, then U}_ {x;} = X. The A\— fuzzy measure m : P(X) — [0,1]
for every subset A € P(X), satisfies

% (H [+ Am({a:))] —1> it A £ 0

;€A

> m({zi}) if A=0

z;€EA

m(A) =

207
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Remark 3.1 [26] Based on the above definition of m(A) and using the fact that m(X) = 1, we can
uniquely solve \ which is equivalent to solving
n

A+1=]]a+ m({z:}) (3.2)
i=1
and -
Z m({z;}) | Range of X\ | Type of the \— fuzzy measure
i=1
=1 A=0 Additive
<1 A>0 Super-additive
>1 -1<A<0 Sub-additive

Definition 3.3 Let A; = (a’, ab, v abik,w)(i =1,2,...,n) be a collection of n octagonal fuzzy numbers
on X and m be a A\— fuzzy measure on X. The octagonal fuzzy Choquet integral of A; with respect to m
is defined by

OFCI(Ay, ..., Ay) =Y (m(Eg) — m(Eqs1)Ag) (3.3)

i=1
where () indicates a permutation on X such that fl(l) =< A~(2) <. = fl(n) and By = {zi, ..., 2n}, By =
¢.

Proposition 3.1 Let A; = (ai,ab, ..., ak; k,w)(i = 1,2, ...,n) be a collection of n octagonal fuzzy numbers
on X and m be a A\— fuzzy measure on X, then their aggregated value OFCI(Ay, ..., Ay) is also an
octagonal fuzzy number.

Proof: The result follows immediately from Definition 2.20J

Proposition 3.2 Let A; = (d},dl, ..., ak; k,w)(i = 1,2, ...,n) be a collection of n octagonal fuzzy numbers
n

on X, such that Zm({xq}) = 1. Then the octagonal fuzzy choquet integral coincides with the octagonal
i=1

fuzzy weighted average.

Proof: From Remark 3.1 we see that A = 0 here. According to Definition 3.2 the A—fuzzy measure is

given by m(E(;)) = Zm({x]}) Thus

j=i
OFCI(ANI, ...,An) = Z(’rTL(E(i)) - m(E(iJrl))A(i)
i=1
= D[ 2oma) - D m{ah | Ag
i=1 | j=i j=i+1

= Zm({-fi})A(i)
= OFWA(A, ..., Ap)

Here (m({z1}), m({z2}),...,m({z,}))T is the weight vector satisfying zn: m({z;}) =10

i=1

Proposition 3.3

OFCI(4,..,A) =A
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Proof: From equation 3.3, we have

n

OFCI(A,..,A) = > (m(Eg) —m(E(i11)A

=1

= A . (m(Eqy) — m(Eii1))

= A (WL(E(D — m(E<n+1 )
= A(m(X)—-m(¢))
= 40

Proposition 3.4 Let A; = (d},dl, ..., ak; k,w) and B; = (b}, bY, ..., b; k,w) (i = 1,2, ...,n) be a collection
of 2n_octagonal fuzzy numbers on X such that A; < B, (1 =1,2,...,n) but there exists no j and k such
that A; < A < By, < B; for any j,k(;é i) € {1,2,....,n} and m be a A\— fuzzy measure on X, then
OFC’I(Al,M A,) <OFCI(By, ..., B,).

Proof: Since E;y1) C E(;), we have m(Eq41y) < m(Eq). Thus m(E(i)) — m(Ei4yy) > 0 for all
i. Suppose after rearranging in ascending order, A; is moved to A(]) and B; is moved to B(k)7 then
A(J-) =< B< and no A or B. comes in between. Also, we have n such inequalities. Thus, j=k. ie.
A(7>—<B fori=1,2,...,n Now,

n

OFCI(/L, cesy An) = Z(TIL(E(,L)) - TIL(E(i+1))A(i)
i=1

< Y (m(Eq) = m(Eu4n) B
i=1

= OFCI(By,...B,) O

Proposition 3.5 Let A; = (a}, a5, ...,ak; k,w) (i =1,2,. )~ be a collection of n octagonal fuzzy num-
bers on X and m be a A— fuzzy measure on X, then OFCI(A Ay) is bounded.

Proof: From the definition of OFCI, n
OFCI(Ay, ... Ay) =Y (m(Eg) — m(Eqs1) A
i=1
where (-) indicates a permutation on X such that 4(1) = /~1<2> <. = fl(n). Thus
OFCI(Ay,....,Ay) = Y (m(Eu) —m(Eqy1)Ag)

i=1

= 1) Z m(E(1 - E(1+1))
= A (m( W) = M(Em+1))
= Apy (m(X) —m(9))
= Ay
Also ~ ~ n ~
OFCI(Ay, ... A,) = > (m(Ea) —m(Eui)An)
=1
= Ay Z m(Ew)) — m(Egiy1))
< Ay, O

From Definition 3.3, the following property can easily be obtained.

Proposition 3.6 Let A; = (at,db, ..., ak; K, w)(i = 1,2,...,n) be a collection of n octagonal fuzzy numbers
on X and m be a A\— fuzzy measure on X. If (A1, As, ..., A,) is any permutation of (A, Ag, ..., A,), then
OFCI(A1,As, ..., A,) = OFCI(A], AL, ..., AL).

Proof: The proof is obvious, as whatever the permutation the OFCT first orders the given collections
of octagonal fuzzy numbers and then aggregates. [

209
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4 Multi-Attribute Decision Making with OFCI Operator Consider the MADM problem han-
dled in [7] with &k decision makers Dy, Do, ..., Dy. evaluating the importance of n criteria ¢i, ¢g, ..., ¢, and
m alternatives Aj, Ao, ..., A;, based on each of the n criteria. The problem is considered in octagonal
fuzzy environment.

4.1 Abstract Algorithm for solving the MCDM problem using OFCI operator:

Step 1: Aggregate the evaluations of the decision makers:
Use OFW A operator for this step, so that the problem now has a vector C' of size n, which gives
the importance of the n criteria and an m x n matrix, which is the evaluations of the m alternatives
based on n criteria. All the entries in the vector and the matrix are octagonal fuzzy numbers

Step 2: Find the A—fuzzy measure of the power set of the criteria set:

(i) Compute the A— fuzzy measure for individual criteria as

R(C)

M) = S RC)

1=1,2,...n

where R is the radius of gyration as given in Definition 2.4

n

(ii) Solve the equation A+ 1 = ] (1 + Agx(C;)) for A and
i=1

A=0if Y gr(Ci) =1

=1

A<0if ) ga(Ci) > 1

i=1

A>0i0f ) ga(Ci) <1
i=1
(iii) g»(A) is obtained using Definition 3.2, where A € P({c1,c2,...,cn})

Step 3: Aggregate the criterias for the alternatives:
Use the octagonal fuzzy Choquet integral operator to aggregate the n evaluations for each alter-
native, to obtain an octagonal fuzzy number.

Step 4: Order the alternatives:
Sort the alternatives.

4.2 Algorithms for solving the MCDM problem using OFCI operator: In the above abstract
algorithm, Step 1 is direct as it is the weighted average which involves addition and scalar multiplication
only. The result of this Step is the matrix DM with m rows and n columns with each entry (4,5) the
aggregation of the decision makers’ evaluation of i alternative versus j** criteria. Also Step 2 (i) and
(ii) are direct calculations. Step 3 is tricky as we have to identify the subsets of the criteria set and then
the corresponding A—measure. Hence we present an algorithm to find gx(A), where A is the subset of the
criteria set. In this algorithm, we will obtain matrix M with two columns and 2" rows, the first column
gives the binary equivalent of the numbers 1,2, ..., 2" and the second column gives the g measure of the
subset of the criteria set, which is identified using the corresponding first column entry. For example,
the binary number ”10110” will represent the subset {ca,cs,c5} i.e from right to left the entries denote
c1,Ca, ..., ¢, With each binary digit acting like a characteristic function of the subset.

Algorithm 4.1 Subset of the Criteria set and its Measure

Require: ¢)(C;), (i =1,2,...n), n - number of criteria
for r + 1 to 2" do
M, ="
for i < 1 ton do
t; + floor(mod(%=%,2))
M, 1 = Concatenate(M,1,t;)
> First column of M identifies the subsets of the criteria set
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end for
for i < 1 ton do 1

R floor(mod(%ﬂ)) * (14 Aga(Cy))
end for
prod < 1
for j « 1 ton do

if s; # 0 then

prod < prod * s;
end if

end for i1
M, = proa — %

> Second column gives the measure of the set identified in the corresponding first column
end for

Algorithm 4.2 Octagonal Fuzzy Choquet Integral to aggregate the criteria

Require: the order of the decision matrix
for i < 1,m do > Identifying the set E;
for [+ 1,n do
OBi,l o
ti,l —1
end for
for p < n,1 step —1 do
OB;, <concatenate(OB; ;,t; )
end for
end for
for j < 2,n do
for i + 1,m do
for [+ 1,n do
if Sij—1 = [ then
ti,,l —0
end if
end for
for p < n,1 step —1 do
OB; ; <—concatenate(OB,; i, t; ,) > OB; ; denote the set E;
end for > for the alternative ¢
end for
end for
for u < 1,m do
for r + 1,2" do
for j < 1,n do
if ]\/[7«71 = OBuyj then

aj < M2 > a; is the measure of the set Eg)
end if
end for
end for
Apy1 0
CL, < Y DMy, *(as— as1)
s=1
> C1 is a vector of size n with C1I, is the aggregated evaluation for alternative u
end for

To end the procedure, the vector C'I is sorted using the ranking method, radius of gyration and the
alternative with maximum R(C1I,) is the best alternative.

5 Illustration Consider an hypothetical problem of selecting a supplier among four suppliers. They
determine five attributes, namely capacity, quality, cost, distance and delivery time. By the help of
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three experts, they evaluate all the suppliers, also the experts determine the fuzzy weights of the criteria.

Assume that the experts are equally important. The evaluations are as follows:
Importance of criteria matrix

Evaluation matrix of Expert 1

VE H H VH M VG VG VG VG VG
DC = VH H MH H DM1 =

MH G VG VG VG MG
VG MG G G G
VH H MH VH M I M M G MG
Evaluation matrix of Expert 2 Evaluation matrix of Expert 3
G MG G G VG MG MG G VG VG
G VG VG VG MG MG MG G MG G
bMz=|"¢ ¢ MG vé G bM3=|"va va ve v MG
VG M MG M G

MG VG MG VG M
where the corresponding octagonal fuzzy numbers for the above used linguistic term set are as given
in the following table:

Linguistic Linguistic Corresponding
term set for | term set for octagonal fuzzy number
attributes Weights
VP VL (0,10, 20, 30, 40, 50, 60, 70; %, 1)
P L (10, 20, 30, 40, 50, 60, 70, 80; 1, 1)
MP ML (20, 30, 40, 50, 60, 70, 80, 90; 17 1)
M M (30, 40, 50, 60, 70, 80, 90, 100; 1, 1)
MG MH (40, 50, 60, 70, 80, 90, 100, 100; 1, 1)
G H (50, 60, 70,80, 90, 100, 100, 100; 1, 1)
VG VH (60, 70, 80, 90, 100, 100, 100, 100; 1, 1)

111
As the experts are considered equal, their weight vector will be 3733 )"
The first step to the problem is to aggregate the evaluations of the three experts and then to obtain
the A- fuzzy measure of the singleton sets {C;}, (i = 1,2, ...,5) which is as 0.5,0.467,0.43,0.489,0.378
respectively.
Solving the equation

(14 0.5X\)(1 + 0.467A)(1 + 0.43X)(1 + 0.489A) (1 + 0.378)) —A — 1 =0

we get the A\- values to be 0, —0.93772, —5.19866, —2.51050 + 2.76915¢, —2.51050 — 2.76915¢ and consid-
ering the cases in Remark 3.1, we let A = —0.938

Following the algorithms, we aggregate all the information and obtain a octagonal fuzzy number for each
alternative follows: )

Alternative 1 (56.206, 66.204, 76.202, 86.201, 96.199, 99.291, 99.983,99.983; -, 1)

Alternative 2 (53.788,63.786, 73.785, 83.783,93.781,97.962, 99.983,99.983; —, 1)

Alternative 3 (54.933,64.932,74.93,84.928,94.927,99.182,99.983,99.983; —, 1)
1

Alternative 4 (46.574,56.572,66.571, 76.569, 86.567, 93.745, 98.028,99.983; —, 1)

The order of the alternatives is Ay = A3z = Ay = Ay.

Remark 5.1 The method proposed seems to be helpful in many cases provided the situation in any
practical example can be described in terms of ideas in fuzzy sets on which the method is based.

6 Conclusion In this paper, we introduced two aggregation operators, which are used to aggregate
two types of information, namely, interactive and non-interactive. The aggregation for non-interactive
information is verified to be a particular case of OFC1T operator. The fundamental aggregation properties
are verified for OFCT operator and a procedure for solving MADM problem involving the two types of
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aggregation is considered. An illustrative example is given to demonstrate the same. We note that
algorithms are presented for complicated steps in the procedure, so that computer programs can be
written to handle the real life problems which comes with large number of alternatives and criterias’(as
pointed out with a concrete example in the second authors’ thesis [5]). Also from Remark 2.1, we see
that the problem with any other linear fuzzy numbers, like crisp, interval, triangular or trapezoidal fuzzy
numbers, can be used, by considering their equivalent octagonal fuzzy numbers.

Acknowledgement The authors wish to thank Professor M.S.Rangachari, Former Director and Head,
Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai for his valuable
suggestions in the preparation of this paper.

(1

2

3

[4

5

6

7

8

[9

(10]
(1]
(12]

13]
(14]

(15]

[16]
7]
18]
[19]
[20]

21]

REFERENCES

Baas, S.M., Kwakernaak, H.: Rating and ranking of multiple aspect alternatives using fuzzy sets. Automatica
13, 47-58 (1977)

Bellman, R., Zadeh, L.A.: Decision making in a fuzzy environment. Management Sciences 17B, 141-164
(1970)

Chen C.T.: Extension of the TOPSIS for group decision making under fuzzy environment. Fuzzy Sets and
Systems 114, 1-9 (2000)

Chen, S.J., Hwang, C.L.: Fuzzy Multiple Attribute decision making, Methods and Applications. Lecture
Notes in Economics and Mathematical Systems 375, (1992)

Dhanalakshmi V: A Study of the Structure of the Class of Octagonal Fuzzy Numbers and their Applications
to Multi-Criteria Decision Making, Thesis submitted to the University of Madras, (2017)

Dhanalakshmi V, Felbin C. Kennedy: Some ranking methods for Octagonal fuzzy numbers. International
Journal of Mathematical Archive 5, 177-188 (2014)

Dhanalakshmi V, Felbin C. Kennedy: Some Aggregation Operations on Octagonal Fuzzy Numbers and its
Application to Decision Making. International Journal of Mathematics and Scientific Computing 5, 52-56
(2015)

Deng H, Yeh CH, Willis R.J.: Inter-company comparison using modified TOPSIS with objective weights.
Computers and Operations Research 27, 963-973 (2000)

Felbin C. Kennedy, Dhanalakshmi V: Cone Properties of Linear Fuzzy Numbers. Global and Stochastic
Analysis 4, 95-105 (2017)

Grabisch, M., Roubens, M.: Application of the Choquet Integral in Multicriteria Decision Making. Fuzzy
Measures and Integrals - Theory and Applications, Physica Verlag, Gottingen, 348-374, (2000)

C.L. Hwang, K. Yoon: Multiple Attributes Decision Making Methods and Applications. Springer, Berlin
Heidelberg, (1981)

Guo C., Zhang D., Wu C.: Fuzzy-valued fuzzy measures and generalised fuzzy integrals. Fuzzy Sets and
Systems 97, 255-260 (1998)

Klir George J, Bo Yuan: Fuzzy sets and Fuzzy logic-Theoryand Applications. Prentice Hall of India, (1997)

Malini S. U., Felbin C.Kennedy: An Approach for Solving Fuzzy Transportation Problem Using Octagonal
Fuzzy Numbers. Applied Mathematical Sciences 7, 2661-2673 (2013)

Meng, F., Chen, W., Zhang Qjang: Some interval-valued intuitionistic uncertain linguistic Choquet operators
and their application to multi-attribute group decision making. Applied Mathematical Modeling 38, 2543 -
2557 (2014)

Murofushi, T., Sugeno, M.: A Theory of Fuzzy Measure: Representations, the Choquet Integral and null
Sets. Journal of Mathematical Analysis and Applications 159, 532 - 549 (1991)

Opricovic S, Tzeng GH: Fuzzy multicriteria model for post-earthquake landuse planning. Natural Hazards
Review 4, 59-64 (2003)

Qin J., Liu X.: Study on interval intuitionistic fuzzy multi-attribute group decision making method based
on Choquet integral. Procedia Computer Science 17, 465-472 (2013)

Rebille Yann: Decision making over necessity measures through the Choquet integral criterion. Fuzzy Sets
and Systems 157, 3025 - 3039 (2006)

Riberio, R.A.: Fuzzy multiple attribute decision making-a review and new preference elicitation techniques.
Fuzzy Sets and Systems 78, 155-181 (1996)

Sugeno M., Narukawa Y., Murofushi T.: Choquet integral and fuzzy measures on locally compact space.
Fuzzy Sets and Systems 99, 205-211 (1998)

213



214

[22]
23]
[24]
[25]

[26]
[27]

(28]

[20]
30]
31)
[32)

(33]
(34]

FELBIN C KENNEDY!T AND DHANALAKSHMI V2

Tan C: A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-
based TOPSIS. Expert Systems with Applications 38(4), 3023-3033 (2011)

Tan C., Chen X: Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making. Expert
Systems with Applications 37, 149-157 (2010)

Triantaphyllou E, Sanchez: A sensitivity analysis approach for some deterministic multi-criteria decision-
making methods. Decision Sciences 28, 151-194 (1997)

Wang, Z., Klir, G., Wang W: Monotone set functions defined by Choquet Integral. Fuzzy Sets and Systems
81, 241-250 (1996)

Wang, Z., Klir G.J.: Fuzzy Measure Theory. Plenum Publishing Corporation, New York (1992)

Wang, W., Wang, Z., Klir, G.J.: Genetic Algorithm for determining fuzzy measures from data. Journal of
Intelligent and Fuzzy Systems 6, 171-183 (1998)

Wei G., Lin R., Zhoa X., Wang H.: Some Aggregation Operators based on the Choquet integral with fuzzy
number intuitionistic fuzzy information and thier applications to multiple attribute decision making. Control
and Cybernetics 41, 463-480 (2012)

Wu J., Chen F., Nie C., Zhang Q.: Intuitionistic fuzzy-valued Choquet integral and its application in
multicriteria decision making. Information Sciences 222, 509-527 (2013)

Xu Z.S.: Choquet integrals of weighted intuitionistic fuzzy information. Information Sciences 180(5), 726-
736 (2010)

Yang R., Wang Z., Heng P., Leung K.: Fuzzy numbers and fuzzification of the Choquet integral. Fuzzy Sets
and Systems 153, 95-113 (2005)

Yang R., Wang Z., Heng P., Leung K.: Real-valued Choquet integrals with fuzzy-valued integrand. Fuzzy
Sets and Systems 157, 256-269 (2006)

Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338-353 (1965)
Zimmermann, H.J.: Fuzzy set Theory and its Applications. Kluwer, Nijhoff Publishing, Boston (1985)



OCTAGONAL FUZZY CHOQUET INTEGRAL OPERATOR FOR

MULTI-ATTRIBUTE DECISION MAKING 215

Figure 1: MathCAD 14 programs for Algorithm 2.1
Order (M) := | for p € 1..rows(M)

AP
B« G\/I )
for ie 1..cols(M)
for jei..cols(M)
if Rank(Bl,i’Bl,j)= 0

m« B, .
1,j

>

BB

B, .<m
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5
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D « G\/I )
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it (0, =B, ;)

np’i(—J

sc_ .« sc_ .+ 1
p.1 p.1

for ie 1..cols(M)

if sc_.>1
p.1

j<1
for k € 1..cols(M)

o, =0k

s..« k
J]

e+l

j« 1
for k € 1..cols(M)
it B =Dy

r.<k
J

je—j+1

for jel.sc_ .
p,1

np ’ (Sj) <« rj

SCP, (Sj) <« 1
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Figure 2: MathCAD 14 programs for Algorithm 4.1
M_ _:=|for iel.n
r,2
r—1
tie floor] mod| ——,2
i-1

2

- 1
t < concat| num2str| floor] mod| r‘ 1,2 t pro <
21—1 for iel.n

pro < pro-t, if t.# 0

pro — 1
A

Figure 3: MathCAD 14 programs for Algorithm 4.2
Order Binary(M) := | Order <~ OrderManyRows (M)

for ie 1..rows(M)
for 1€ 1..cols(M)

ti,l(_l

for xel..5
s. . <« concat (num2str(t. S.
i1 iLx/ 1,1

for je2..cols(M)
for ie 1..rows(M)
for 1€ 1..cols(M)

t. <0 if Order. . . =1
i,j-1

i,1

S H nmn
1]

for xel1..5
S. . < concat numZStr(t. )s. )
1,] 1,X 1,]

Choquet Integral Value for the Alternatives:

CI. AM) = | for u e l..rows(M)

for rel.. ZCOIS(M)

for ie 1..cols(M)

a, < Mear’3 if Mear 2=Order7B1nary(M)u’i

s

A oisM)+1 < 0

cols(M)
fu < Z DMu, OrderManyRows (M) u’s.(as Ay 1]
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Figure 4: Illustration

Linguistic Term Set For Attributes and Weights:

0 10 20 30 40 50 60
10 20 30 40 50 60 70
20 30 40 50 60 70 80
VP:= ig P 40 MP i 50 Mo 60 | MG:= ;g G:= 22 VG:= 19(;)0
50 60 70
50 60 70 30 90 100 100
60 70 30 90 100 100 100
70 20 90 100 100 100 100
VL=VP L=P ML :=MP MH := MG H:=G VH:=VG
Number of Decision Makers: ¢:=3
Number of Alternatives: mi=4 i=1.m ket wi=1
Number of Attributes: n:=5 j:=1l.n ?
Importance of Attributes Matrix: Evaluation matrix of Decision Maker 1:
VHH H VH M VG VG VG VG VG
D C:=|VHH MH H MH G VG VG VG MG
VH H MH VH M DME=l 6 MG 6 6 6
G M M G MG
Evaluation matrix of Decision Maker 2: Evaluation matrix of Decision Maker 3:
G MG G G VG MG MG G VG VG
DM2 := G VG VG VG MG MG MG G MG G
G G MGVG G PM3= 06 v v V6 MG
VG M MG M G MG VG MG VG M
0.5
0.467
The A\— fuzzy measure for individual criteria is g»(C;) = | 0.43
0.489
0.378
Solving the equation A +1 = (1 + 0.5A)(1 + 0.467X)(1 + 0.43X)(1 + 0.489X)(1 4 0.378)), we get A =
—5.2986

—2.5105 — 2.7691¢ | The A\— fuzzy measure of the power set of the criteria set:
—2.5105 + 2.76914
—0.9377

217



218

FELBIN C KENNEDY!T AND DHANALAKSHMI V2

M=
"00000" 0
"00001" 0.5
"00010" 0.467
"00011" 0.748
"00100" 0.43
"00101" 0.728
"00110" 0.709
"00111" 0.876
"01000" 0.489
"01001" 0.76
"01010" 0.742
"01011" 0.894
"01100" 0.722
"01101" 0.883
"01110" 0.873
"01111" 0.963
21345
Order(DM) = > 124
52314
32541
"I "11101"
OB(DM) - "I "01111"
"I "01111"
"I "11011"
[(56.206) (53.788
66.204 | | 63.786
76.202 | | 73.785
T 86.201 | | 83.783
CI(DM) =
96.199 | | 93.781
99.291 | | 97.962
99.983 | | 99.983
1199.983) | 99.983

order (crom™)=4 2 3 1

"10000"
"10001"
"10010"
"10011"
"10100"
"10101"
"10110"
"10111"
"11000"
"11001"
"11010"
"11011"
"11100"
"11101"
"11110"
"11111"

"11100"
"01110"
"01101"
"11001"

74.93

54.933
64.932

84.928
94.927
99.182
99.983
99.983

0.378
0.701
0.68

0.861
0.656
0.848
0.836
0.944
0.694
0.868
0.857
0.955
0.844
0.948
0.941

"11000"
"01100"
"01001"
"01001"

46.574) ]
56.572
66.571
76.569
86.567
93.745
98.028
99.983

"10000" )
"00100"
"01000"
"00001" )
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RULE BASED DECISION SUPPORT IN TABLE DATA SETS WITH
UNCERTAINTY AND ITS EXECUTION ENVIRONMENT

H. Sakail, K.Y. SHEN, G.H. TZENG, M. NAKATA

ABSTRACT. A framework of decision support in table data sets with uncertainty is
considered, and the prototype of its software tool is implemented in SQL. We follow the
framework of the possible world semantics for table data sets with uncertainty, and two
kinds of rules, i.e., the certain rules and the possible rules, are defined. This definition
is simple and natural, but we are faced with the fact that the number of the possible
worlds may exceed 10'°, Even in such huge number of possible worlds, the NIS-
Apriori algorithm generates two kinds of rules, because this algorithm is independent
from the number of the possible worlds due to the proved properties. The prototype
system takes three phases for decision support, i.e.,

(i) the rule generation phase for knowing the general tendency of data sets,

(ii) the aggregation phase for decision support from the obtained rules,

(iii) the aggregation phase for decision support from data sets.

Tt is possible to employ (ii), if user’s condition matches the condition in the obtained
rules. Otherwise, it is necessary to employ (iii). The prototype system is applied to the
Car Evaluation data set (a table data set without uncertainty) and the Congressional
Voting data set (a table data set with uncertainty) in UCI machine learning repository.
Since this prototype is implemented in SQL procedure, it will easily be applicable to
any table data set on PC with SQL.

1 Introduction The data mining techniques afford to survey the instances in table data
sets, and we can know the tendency and the property of data sets. Rule based decision
support connected with such data mining techniques seems to be a very active research
area now. Actually, we obtain more than 7700 papers for the keywords ‘rule based decision
support’ in Scopus, whose composition ratio is 35% for computer science, 24% for engineer-
ing, 13% for medicine, 11% for mathematics, 5% for decision science, 5% for social science,
4% for business and management, 3% for biological science, etc. In these papers, fuzzy sets
and rough sets seem very important. Some fuzzy frameworks are proposed in [6, 18], and
the rough sets based framework named Dominance based Rough Set Approach (DRSA) is
proposed in [4]. The authors in this paper also employ the rough sets and fuzzy sets based
frameworks. The first and the fourth authors cope with rule generation, which they name
Rough Non-deterministic Information Analysis (RNIA) [11, 12]. The second and the third
authors cope with fuzzy sets and DRSA [15, 16]. This paper focuses on rule based decision
support and its execution environment in SQL.

Even though there are a lot of frameworks on rule based decision support, our framework
of RNTA preserves the logical aspect. Namely, the core rule generation algorithm named
NIS-Apriori [12] is sound and complete for the rules based on the possible world semantics
[13]. Therefore, the NIS-Apriori algorithm does not miss any rule for decision support.
Generally, the number of the possible worlds becomes very huge, for example there are

2000 Mathematics Subject Classification. Primary 68137, 03BXX; Secondary 68115, 68P15.
Key words and phrases. decision support, association rules, NIS-Apriori algorithm, prototype in SQL,
Uncertainty.
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! Unmatched
Table i condition |
(iii) L _for the rules _!

Decision Support

Possible Rules Decision by all of

C1=>B3 information on
A3C2=>B2 implications
Certain Rules Decision by

Al=>B1
A2&C3=>B2

the stored rules

(i)

Figure 1: A chart of three phases for decision support environment in table data sets with
uncertainty.

more than 10'%° possible tables in the Mammographic data set in UCI machine learning

repository [2]. Even though the definition of certain rules and possible rules is natural,
it. seemed hard to realize a rule generator for them. However, the NIS-Apriori algorithm
affords a solution to this problem, namely this algorithm is independent from the number of
the possible worlds [11, 12]. Without such property, it will be hard to address rules defined
by the possible world semantics.

The main issue in this paper is to propose three phases (i), (ii), and (iii) in Figure 1.
(i) The rule generation phase: For two threshold values a and 3, the prototype system
generates rules. We will know the tendency and the character of data sets. This phase
handling certain rules and possible rules based on the possible world semantics is first
realized by the NIS-Apriori algorithm.
(ii) The search phase for the obtained rules: For the users’ specified condition part A;Con;,
the obtained rules 7, : A;Con; = Decy ({Con;} C {Con;}) are examined, and triplets
(Decy, support(ty), accuracy(ry)) are generated. Users decide one decision Decy, from the
generated triplets by using support(r) and accuracy(ty) (support(r) and accuracy(rg)
are given in the subsequent section).
(iii) The search phase for the data set: If there is no rule with the same condition part, all
implications with the specified condition part are searched in the data set. The prototype
system similarly generates triplets (Decy, support(y), accuracy(ty)), and users decide one
decision Dec;.

Remark 1 In decision support, we see that the validity of the implication T is measured
by two walues support(ry) and accuracy(ry). So, our environment tries to afford all of
information about implications 1, : N\;Con; = Decy, i.e., support(ty) and accuracy(ty).
We do not strongly touch about what is the final decision, which should be fized by users.

Remark 2 If the phases (ii) is applicable to the specified condition part, the execution is
much faster than the execution in the phase (iii). So, the application of the phase (i) will
be useful, however there may not be any rule matching the specified condition part. Thus, it
is necessary to prepare the phase (iii). Even though the phase (iii) may take much execution
time, this phase responds all implications with the specified condition part.
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Remark 3 Let us consider the following three cases in Figure 1.

(1) Let us suppose we need to have one decision under the condition Al. Then, we employ
the implication T : A1 = B1 (certain rule, reliable), and have the decision Bl. The validity
of Bl depends upon the validity of 7. This is an example of the phase (ii).

(2) Let us suppose we need to have one decision under the condition A1&C3. Then, there
is no rule with the condition A1&C3. However, we have the following equation,

(A1 AC3 = Dec) = (m(A1ANC3)V Dec) = (mALV ~C3V Dec) =
((mA1V Dec) V (=C3V Dec)) = ((Al = Dec) V (C3 = Dec)).

Since we can conclude A1 N C3 = Bl from Al = Bl, we will have the decision Bl. We
usually say that A1 N C3 = B1 is a redundant implication for A1 = B1l. This is also an
example of the phase (ii).

(3) Since the phase (i) takes much execution time, we should not employ the phase (i) fre-
quently. For the Chess data set (3196 instances, 36 attributes) in UCI machine learning
repository [2], we obtained 6 rules for support > 0.25 and accuracy > 0.6 by the imple-
mented procedure apri, but it took more than 1 hour. So, in the phase (i), we preliminary
employ the weak condition for rule generation, i.e., we employ the lower values of a and (.
Even though we may have a large number of rules, the phase (i) is effectively applied.

This paper is organized as follows: Section 2 describes rule based decision support in
table data sets without uncertainty and that in table data sets with uncertainty. Section 3
investigates some procedures in SQL, and Section 4 concludes this paper.

2 Rule Based Decision Support in Table Data Sets This section focuses on decision
support in table data sets without uncertainty and decision support in table data sets with
uncertainty.

2.1 Rules from the Table Data Sets without Uncertainty In order to consider
rules from table data sets without uncertainty, we employ the Car Evaluation data set in
UCI machine learning repository [2].

mvsal> select * from “table 17 where object<5;

o o Fmmmm Fmmmm R e Fmmm e oo +
| obiect | buving | maint | doors | persons | lugboot | safety | acceptability |
o o Fmmmm Fmmmm R fmmmm - Fmmm e oo +
| 1| vhigh | vhigh | 2 | 2 | small | low | unacc

| 2 | vhigh | vhigh | 2 | 2 | small | med | unacc

| 3 | vhigh | vhigh | 2 | 2 | small | high | unacc |
| 4 | vhigh | vhigh | 2 | 2 | med [ low | unacc

Fommmmm o Fommm e B B e el it Fmmmmmm oo +
4 rows in set (0.02 sec)

mysal> select * from “table 17 where object<240 and acceptability="acc’;

Fommmmm o Fommm e B B fommmmm oo R el et Fmmmmmm e +
| obiect | buving | maint | doors | persons | lugboot | safety | acceptability |
o o Fmmmm o o fmmmm - Fmmm e e +
| 228 | vhigh | med | 2 | 4 | small | high | acc

| 231 | vhigh | med | 2 | 4 | med | high | acc

| 233 | vhigh | med | 2 | 4 | big | med | acc

| 234 | vhigh | med |2 | 4 | big | high | acc

o o Fmmmm R o e Fmmm e oo +
4 rows in set (0.00 sec)

Figure 2: Some parts of the Car Evaluation data set.
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= 1:[lugboot,small] ==> [acceptability,unacc]: rule

t 2:[persons,4] A[safety,high]
==> [acceptability,acc]: no rule

accuracy axis

1
@ < 1(support=0.26,accuracy=0.78)

B=0.75 [~~~

@ © 2(support=0.06,accuracy=0.56)
1

a=0.25 1 support axis

Figure 3: Rules plotted in the plane by the condition support >0.25 and accuracy>0.75.

This table data set consists of 1728 objects (instances), 6 attributes: buying, maint(enance),
doors, persons, lugboot, safety, 3 or 4 attribute values for each attribute, one decision at-
tribute acceptability with 4 attribute values, unace, acc, good, vgood in Figure 2. Each
attribute value can be seen as a categorized value, and it may be hard to consider means
nor variance in statistics. In such table data sets, we consider rule based decision support.

A pair [A,vals] of an attribute A and its attribute value val, is called a descriptor.
For a decision attribute Dec and a set CON of the attributes, we see an implication 7 :
Naeccon[A,vals] = [Dec,val] is (a candidate of) a rule, if T satisfies the next two criterion
values [10].

For two threshold values 0 < «, 8 < 1.0,
support(T)(= N(Aaccon[A,vala] A [Dec,val])/|OB|) > a,

(1) accuracy(T)(= N(Aaeccon[4,vala] A [Dec,val])/N(Aaccon|A,valal)) > B,
Here, N(*) means the number of the objects satisfying the formula *, and
OB means a set of all objects. We define support(r) = accuracy(r) = 0,
if N(/\AGCON[Av valA]) =0.

For an implication 7 : [lugboot, small] = [acceptability, unacc] in Figure 3,

@) N(11) = 450, N([lugboot,small]) = 576,
support(r1) = 450/1728 = 0.26, accuracy(r;) = 450/576 = 0.78.

Similarly, for an implication 72 : [persons, 4] A [safety, high] = [acceptability, acc]

(3) N(72) =108, N([persons,4] A [safety, high]) = 192,
support(re) = 108/1728 = 0.06, accuracy(r) = 108/192 = 0.56.

The support(r) value means the occurrence ratio of the implication 7. If 7 occurs much
more time, this 7 is much more reliable. On the other hand, the accuracy(r) value means
the consistency ratio of the implication 7. If the accuracy(r) value is higher, this 7 is more
reliable.

In Figure 3, we see 71 and 75 are located in the points (support(r),accuracy(r)) by the
support and the accuracy axises. We usually fix two threshold values « and 3 for defining
rules in each table data set. In Figure 3, we give a—0.25 and $—0.75, and we see 71 is a
rule, and 75 is not a rule.
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2.2 Decision Support in Table Data Sets without Uncertainty If we need to have
a decision for the condition [lugboot, small] in the Car Evaluation data set, we make use
of the rule 71 and have a triplet ([acceptability, unacc], support = 0.26, accuracy = 0.78).
Thus, we will conclude this car is unacceptable. This inference takes the phases (i) and (ii)
in Figure 1.

On the other hand, we consider the condition [lugboot, medium]. In this case, we do
not have any rule matching this condition and take the phase (iii) in Figure 1. Actually, we
have Figure 4 for the condition [lugboot, medium]. Probably, we will conclude that this car
is also unacc(eptable) due to the third implication in Figure 4. In Figure 4, the implemented
command srdf conl searches the Car Evaluation data set, and it took 0.33 (sec).

mvsal> call srdf_conl (" acceptability’, 1728, lughoot ™, "med’ J;
Query OK, 0 rows affected (0.33 sec)

mvsal? select ¥ from srdf_conl;

mmm e o fommmm e fmmm e fmmm e fmmm e +
| attl | vall | deci | deci_value | support | accuracy |
fmmm e o o mmm e mmm e fmmmmmmm +
| lughoot | med | acceptability | acc | 0,078 | 0.234 |
| Tugboot | med | acceptability | good | 0.014 | 0.042 |
| lughoot | med | acceptability | unacc | 0,227 | 0.681 |
| lughoot | med | acceptability | wveood | 0.014 | 0.043 |
mmm e o omm e mmm e o fmmm e +

4 rows in set (0.00 =zec)

Figure 4: All possible implications with the condition [lugboot, med).

Like this, the prototype system responds all of information w.r.t. 7 : Asccon[A,vala] =
[Dec, valy).

2.3 Rules from the Table Data Sets with Uncertainty In order to consider rules
from table data sets with uncertainty, we employ the Congressional Voting data set in UCI
machine learning repository [2].

myaqly select al.a?,ad,ad,ab.af,a?,a1?,a16,a17 from “table 17 where ohiect < 6:
tommm - tmmmm - tmmmm - tommm - tmmmm o tommm - tommm - 4mmmmm- tomm- - tmmmmm- +

| al | a2 | ad | a4 | ab | af | a7 | a1z | al6 | a17 |
P NERET g (e e e e (i SR TPk +
[ree In Ty Imn v v v |32 [ v
ree |ln |y Imn vy v |v In |In |7 |
[dem |2 |w v |7 |¥ |wv |l¥ In |n |
[den |n v |» |n |* Jw |¥ |In |w¥ |
[dem |w Tw lw In T v Twv |» v |
I I pommmee I oo I I . I S +

5 rows in set (0.00 zec)

Figure 5: Some parts of the Congressional Voting data set.

This table data set consists of 435 objects (instances), 16 attributes: ao, as, -+ -, ai7,
two attribute values y(es) or n(o) for each attribute, one decision attribute a; with two
attribute values, rep(ublic) or dem(octat) in Figure 5. In the Congressional Voting data set,
there are 329 missing values expressed by the 7 symbol. Of course, rules depend upon the
missing values, and it is necessary for handling rules in such table data sets [7, 8, 9]. We
have dealt with this problem in RNIA.
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We briefly review RNTA. In a table with missing values, we usually apply the discretiza-
tion procedure, and we handle a finite number of the possible values. By replacing each 7
symbol with a possible value, we have a table data set without uncertainty, which we name
a derived DIS (DIS: Deterministic Information System). Let DD(®) denote the set of all
derived DISs from ® with missing values, and we may say ® is a NIS: Non-deterministic
Information System. In rule generation, we employ the usual definition of a rule in DIS
[10], and extend it to a certain rule and a possible rule in NIS below [11, 12]:

(A certain rule in NIS) An implication 7 is a certain rule, if 7 is a rule in each derived DIS
for given o and 3.

(A possible rule in NIS) An implication 7 is a possible rule, if 7 is a rule in at least one
derived DIS for given « and (.

If 7 is a certain rule, we can conclude 7 is also a rule in the unknown actual DIS gpactual,
(We see there is one derived DIS y%¢*“a! ¢ DD(®) which contains the actual values.) This
property is also described in Lipski’s incomplete information databases [5]. In DIS, the same
set of rules are obtained by two definitions, so two definitions will be a natural extension
from rules in DIS. However, the number of DD(®) increases exponentially, and there are
more than 10'%° derived DISs for the Congressional Voting data set. It will be hard to
examine the certain rules and the possible rules by checking each derived DIS sequentially.
For this problem, we afford a solution by showing some properties on rules [11, 12].

(Property 1) For NIS ® and any implication 7, there is a derived DIS

Ymin € DD(®) such that

minsupp(7)(defined by support(r) in ¢Ymin) = minge pp@){support(r) in ¢},
minacc(7)(defined by accuracy(r) in Ymin) = minge pp@){accuracy(r) in }.

() (Property 2) For NIS ® and any implication 7, there is a derived DIS
Ymaz € DD(®) such that
mazxsupp(T)(defined by support(7) in Ymasz) = maxye ppa){support(r) in ¢},
mazxacc()(defined by accuracy(r) in Yrmqez) = maxye pp(e){accuracy(r) in ¥}.

(Property 3) There is a calculation method of support(r) and accuracy(r), and
this method is independent from the number of DD(®). The details are in [12].

(support,accuracy) in Wpax

E L] i For any implication <
@ o . each point
e @ ® | (support,accuracy)
" ® I iny (EDD(P))
------------------ 777777 islocated in

the rectangle area.

Figure 6: Each point for an implication 7 is located in the rectangle area.
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mysql> select # from cl_rule where att1>"a2” and att1<"a?";
O tomm o o Hmmmm e Hommmm o Hommm oo +
| attl | wall | deci | deci_walue | minsupp | minace |
et Homm - o Hommm e Hommmmmmem Hommmm e +
[ad |n a1l | ree | 0.%26 | 0.79% |
[ a4 | w | a1l | den | 0.531 | 0.999 |
[a5 | n a1l | dem | 0.56% | n0.930 |
| ah | v | al | rep I (T O 1 3
[ a6 | n | al | dem | 0.480 | 0.948 |
[ag  [w [al | ree [ o881 | 0701 |
oo Homm - o Fommmm e Hommmmmmem Homm oo +

B orows in =et (0,00 sec)

Figure 7: A part of the obtained certain rules satisfying support(r) > 0.3 and accuracy(t) >
0.6 in the Congressional Voting data set.

Based on the above properties, we have the chart in Figure 6. In Figure 3, the point
(support(r),accuracy(T)) in DIS is unique, but each point in ¢ € DD(®) is located in
the rectangle area in Figure 6. There are more than 10'%° points in the rectangle area,
however we can have two points by Ymin and Y.;,q. independently from the number of
DD(®). Furthermore, we have the next properties for the certain rules and the possible
rules [11, 12].

(Property 4) For NIS ® and any implication 7, 7 is a certain rule if and only if
minsupp(T) > « and minacc(t) > .

(3)
(Property 5) For NIS ® and any implication 7, 7 is a possible rule if and only if
mazsuppt(r) > a and mazxace(r) > .

We added the above two properties to the Apriori algorithm [1], which is the represen-
tative algorithm in data mining, and proposed the NIS-Apriori algorithm [11, 12]. We refer
to the prototype system in SQL powered by the NIS-Apriori algorithm in the next section.

2.4 Decision Support in Table Data Sets with Uncertainty In the Congressional
Voting data set, we had 22 certain rules (with one descriptor in the condition part) for
a=0.3 and $=0.6 in Figure 7. They satisfy support(r) > 0.3 and accuracy(t) > 0.6 in each
of more than 1019 derived DISs. Especially, two certain rules [a5,n] = [al,dem(ocrat)]
and [ab,y] = [al, rep(ublic)] are very strong. If we have a person’s answer to the attribute
ab, we will easily conclude his supporting party. This inference takes the phases (i) and (ii)
in Figure 1. We also had 26 possible rules (with one descriptor in the condition part) and
one possible rule (with two descriptors in the condition part) in Figure 8. If the condition
does not match any certain rule, we may apply possible rules. Furthermore, if the condition
does not much any rule, we have the phase (iii) in Figure 1.

For the implications 7 : Aaccon[A,vala] = [Dec,val] and 7" : Aaccon[4,vala] =
[Dec,val’], if mazsupp(t) < minsupp(t’) and mazace(t) < minsupp(r') hold, we have
support(t) < support(r’) and accuracy(t) < accuracy(r') for any DIS ¢ € DD(®) (Figure
9). So, we will certainly have the decision [Dec,val’] under the table data set with uncer-
tainty. The concept in Figure 9 will be the extension from the concepts in Figure 3 and
Figure 6.

3 Rule Based Decision Support System in SQL This section describes each phase
in the prototype system. Each program is implemented in the SQL procedure.

225



226

H. Sakail, K.Y. SHEN, G.H. TzENG, M. NAKATA

=gl select ® from p?_rule:

Fommmmmmmoe oo oo oo oo oo Fommmmmmmoo oo Hommmmmmem Fommmmmme +
| attl | wall | att? | wal? | deci | deci_walue | maxsupp | maxacc |
 RGEEEEEEE tmmmmm- tmmmmm- tmmmme- tmmmmm-  RGEEEEEEE tmmmmmmme- tmmmmmmme +
| atz | n | a7 | w | al | rep | o.a01 | 0.753 |
| end_attrib | WULL | WULL | WULL | WULL | WULL [ WL | oL |
Hommmmmmm oo fommmmo oo oo Hommme Fommmmmm oo oo Hommmmmeo +

2 rows in set (0.00 sec)

Figure & One possible rule with two descriptors in the condition part.

We will have the decision by t 4 instead of ¢ 3

accuracy axis

1 The locations of 7 4

Hamwa®
o M

The locationsof 73 | ® :. i

e ="

: @ b

‘e @ :

! e *

' _______________

1 support axis

Figure 9: The locations of the implications plotted in the plane.

mysal> call car_rdf;

Query 0K, 0 rows affected (1.58 sec)

mysal> select * from rdf where object=2;

fommmmm oo mmmm s Fommmmmm +
| obiect | attrib | value |
e oo Fommmmmm +
| 2 | acceptability | umacc |
| 2 | buvirg | vhigh |
| 2 | doors | 2 |
| 2 | lughaot | small |
| 2| maint | whigh |
| 2 | persons | 2 |
| 7 | safetw | med |
Fzsesoelc G=fft cfonoonoen F=liidoss +

7 rows in set (0,00 sec)

Figure 10: The execution of car rdf command and the generated rdf file from the Car
Evaluation data set.

3.1 The Rule Generation Phase (i) in Figure 1: The Case of DISs In table
data sets without uncertainty, we at first translate each csv file to the rdf format [17], and
employ the Apriori algorithm for rule generation. In DISs, we implemented the following
procedures in SQL.

(1) The procedure File_name_rdf: It translates a csv file to the rdf format file. (In Figure
10, car_rdf is executed.)
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(2) The procedure apri: It generates tables rulel (rules with one condition), rule2 (rules
with two conditions), rule3 (rules with three conditions). (For the constraint support > 0.25
and accuracy > 0.7, the procedure apri generated three tables in 9.99 (sec) for the Car
Evaluation data set, whose execution logs are in [14].)

In the rdf format, each table data is translated to a table of descriptors. In each table
data set, the number of attributes and its attribute values are different, but we can uniformly
handle any data set if the data set is in the rdf format. Without this property, we need to

make a set of the SQL procedures for each table data set.

3.2 The Search Phase (ii) and (iii) in Figure 1: The Case of DISs Let us consider
the case that we need to have a decision for a given condition. The procedures srule_coni,
srule_con2, and srule_con3 are implemented for searching lots of rules stored in tables.
They are the commands for the phase (ii) in Figure 1. Figure 11 shows the execution of

srule_conl.

mvsal> call srule_conl( acceptability’, ‘persons™, 27 );

fuery 0K, 1 row affected (0.14 sec)

mysal> select * from srule_conl:

o o o o o Fommm e +
| attl | vall | deci | wal | support | accuracy |
o Fmmm B TR o Fomm e e -
| persors | 2 | acceptability | - | 999.000 | 999.000 |
| persons | 2 | acceptability | umacc | 0.333 | 1.000 |
o o o o Fmmm e Fommm e +

2 rows in set (0.00 sec)

Figure 11: The all searched rules from obtained rules for the condition [persons,2]. The
first line means the query and the number 999 is meaningless value. The second line is
picked up from the obtained rules.

Based on Figure 11, we know all kind of information for the condition [persons,2]. This
search is restricted to the obtained table data, so it takes less execution time. However, if
the condition does not match the obtained rules, we have no information for the condition.
In order to handle such case, we consider the phase (iii) in Figure 1. Figure 4 shows the
execution about the condition [lugboot, medium]. Even though this condition is not in the
obtained rules, we will have a decision unacc(eptable) from Figure 4. This will be useful for
decision support.

3.3 The Rule Generation Phase (i) in Figure 1: The Case of NISs In table data
sets with uncertainty, we at first translate each csv file to the nrdf format [17], and employ
the NIS-Apriori algorithm for rule generation. In NISs, we implemented the following pro-
cedures in SQL.

(1) The procedure File_name_nrdf: It translates the csv file with ? symbol and non-
deterministic values to the nrdf format file.

(2) The procedure stepl: It generates tables ¢c1 rule (certain rules with one condition) and
pl_rule (possible rules with one condition).

(3) The procedures step2, step3: They generate tables ¢2_rule (certain rules with two
conditions), p2 rule (possible rules with two conditions), ¢3_rule (certain rules with three
conditions), and p3_rule (possible rules with three conditions).

The execution logs of the Congressional Voting data set are in [14].
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3.4 The Search Phase (ii) in Figure 1 for the Obtained Rules: The Case of
NISs Let us consider the case that we need to have a decision for a given condition. The
procedures srule_conl, srule_con2, and srule_con3 are implemented for searching lots of
rules stored in tables. Figure 12 shows the execution of srule_con2.

mysal> call snrule_con2(’al’,’ab”, "y’ a%",'n"J;
Ouery 0K, 0 rows affected (0.25 sec)

mysal> select * from snrule_conZ;

oo Fommmmmmm Fommm oo Fommm oo Fommmmmmem +
| tyvpe | attl | vall | att2 | val2 | deci | val | mirsupe | minacc | maxsupp | maxacc

B e oo Fommm e Fommmem Fommm e oo Fommm e B Fommm e Fommm e Fommm e +
| Condition | a5 | v |29 |n | al | - | 999.000 | 999.000 | 999.000 | 999.000 |
| Certain | a5 | v [ WULL | WULL | a1 | rep | 0.375 | 0.881 | 999.000 | 999.000 |
| Certain | a9 | n [ WULL | WULL | a1 | rep | 0.306 | 0.731 | 999.000 | 999.000 |
| Possible | a5 | v [ WULL | MULL | a1l | rep | 999.000 | 999.000 | 0.382 | 0.922 |
| Possible | a9 [ n [ WULL | WULL | al | rep | 999.000 | 999.000 | 0.331 | 0.762 |
B Fommm o Fommm o oo Fommm o Fommm o Fommm o R Fommm oo Fommm oo Fommmmmm o +

b orows in set (0,00 sec)

Figure 12: The all searched rules from obtained rules for the condition [a5,y] A [a9,n]. The
number 999 is meaningless value.

Based on Figure 12, we know all of information for the condition [a5,y] A [a9,n]. The
implication [a5,y] A [a9,n] = [al, rep] is redundant for two certain rules [ab,y] = [al, rep]
and [a9,n] = [al,rep]. In both cases, [a5,y] and [a9, n] conclude [al, rep]. We will probably
have the decision value rep(ublic) in Figure 12. This search is restricted to the obtained
table data, so it takes less execution time. However, if the condition does not match the
obtained rules, we have no information for the condition.

3.5 The Search Phase (iii) in Figure 1 for Data Sets: The Case of NISs Let
us consider the case that we need to have a decision for a given condition. The procedures
snrdf_conl, snrdf_con2, and snrdf_con3 are implemented for searching tables with uncer-

tainty. In this case, we employ the same condition [a5,y] A [a9,n] in Figure 12. Figure 13
shows the execution of snrdf_con2.

mvsal> cal | snrdf_conZ(’al’,435,7a5", v, a9, 'n" );
Query OK, 0 rows affected (4.94 sec)

mysal> select * from snrdf_conZ;

fommm oo Fommmm- fommmo- Fommm-- fommm - fommm-- fommmo- Fommmmmmo- Fommmmmmo - R et Fommmmmo- +
| pkey | attl | vall | att? | val? | deci | val | minsuee | maxsuep | minacc | maxacc |
Fommm e Fommm e Fomm e Fomm e Fommm o Fommm e Fommm e Fommmmmm e Fommm e Fommm e Fommm e +
| Tlas | | a9 |n | al | dem | 0.025 | 0.032 | 0.071 ] 0.0% |
| 21as | a3 |n [al | reo | 0.303 ] 0.3291 0.904 | 0.929 |
Fommm e Fommm e Fommmmm Fommmem Fommm e Fommm e Fommm e Fomm e Fommm e Fommm e Fommm e +

? rows in set (0.00 sec)

Figure 13: The all searched rules with the condition part [a5, y]A[a9, n] for the Congressional
Voting data set.

Based on Figure 13, we know all of information for the condition [a5,y] A [a9,7n]. In
this case, the procedure snrdf_con2 searches the table nrdf, and it took 4.94 (sec). The
execution time is about 20 times longer than that of snrule_con2. For two implications 7 :
[a5, y] A [a9,n] = [al,dem] and 7' : [ab,y] A [a9,n] = [al, rep], mazsupp(T) < minsupp(T’)
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and mazace(T) < minace(r’) hold. This is corresponding to the case in Figure 9, and we
will easily have the decision value rep(ublic).

3.6 The Validity of the Implementation We have previously implemented the NIS-
Apriori algorithm in C and Prolog. This time, we employed SQL, because it will be difficult
to use Prolog for the large size data sets. So, we had two independent systems, and we had
the same results by the two systems. The execution logs are in [14].

4 Concluding Remarks and Discussion This paper clarified rule based decision sup-
port on RNTA, and reported its prototype system. The definition of the certain rules and
the possible rules seems natural, however there is less software tool for handling them, be-
cause the rules are defined by all derived DISs whose number may exceed 10'°°. Without
effective property, it will be hard to obtain rules. The NIS-Apriori algorithm affords a
solution to this problem, and we implemented the prototype by NIS-Apriori in SQL. This
algorithm takes the core part for handling the uncertainty, and we applied it to decision
support environment.

Now, let us consider each phase of (i), (ii), and (iii). The phase (i) generates all certain
rules and possible rules, which have the characteristic properties. However, it is time-
consuming, so the frequent usage of the phase (i) will not be appropriate, and we need to
employ the lower values of o and . In this situation, we need the phase (ii) much more.
If we have the large number of rules, the method to find the rules matching the condition
may not be easy, and we realized some procedures in the phase (ii). The phase (iii) will
be necessary to cope with the case that any rule does not match the condition. In table
data sets, the implications are located in the plane like Figure 3. On the other hand in the
tables with uncertainty, the implications are located in the plane like Figure 6 and Figure
9. The extension from Figure 3 to Figure 6 and Figure 9 is the key concept for considering
decision support for the tables with uncertainty.

However, there may be the cases like Figure 14 and Figure 15, where it is difficult to have
a decision even by using the phase (iii). In such cases, we will need other criteria like the
type I error and the type II error in the statistical hypothesis tests instead of the support
and accuracy values. Furthermore, it is important to have the theoretical property of the
distribution of points (implications) with the same conditions and the different decision.
Even though we consider that Figure 14 and Figure 15 express the rare cases, the next new
challenges are open for them.
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ABSTRACT. In many practical situations, intervals or fuzzy numbers are used to
model imprecise observations derived from uncertain measurements or linguistic
assessments. When using fuzzy numbers the shape of the membership function
is important in modelling. In this paper, we consider the fuzzy numbers whose
membership function is symmetric with respect to a vertical axis. For a € (0, 1]
the a— cuts of such fuzzy numbers will have a constant mid-point and the
upper end of the interval will be a non-increasing function of «, the lower
end will be the image of this function. Hence these symmetric fuzzy numbers
can be fully described by a constant and a non-increasing function. Based on
this description, we define the arithmetic operations and a ranking technique
to order the symmetric fuzzy numbers. We also discuss various properties of
interest. Using Radstorm embedding theorem[5], we conduct a structure study
on symmetric fuzzy numbers.

1 Introduction The operations on the set of fuzzy numbers are usually obtained
by the Zadeh extension principle [7], [8], [6]. These definitions can have some
disadvantages for the applications, both by an algebraic point of view and by logical
and practical aspects. In particular, the shape of fuzzy numbers is not preserved by
multiplication, the indeterminateness of the sum and product is often too increasing.

Dong Qiu et.al. [1] studied the algebraic properties of fuzzy numbers using
equivalence classes on fuzzy numbers and identified the group structure for addition.
In this paper, we are studying a special class of fuzzy numbers, namely the symmetric
fuzzy numbers, whose membership function is symmetric with respect to a vertical
axis, define various arithmetic operations anew to suit our need. Also applying
Radstorm embedding theorem[5] we are identifying the vector space structure. We
define the arithmetic operations, such as addition, subtraction, scalar multiplication,
product, inverse on symmetric fuzzy numbers in a way that the resultants are also
symmetric fuzzy numbers.

Section 2 introduces symmetric fuzzy numbers, the arithmetic operations and
the ranking technique on them. We also verify various properties of the arithmetic
operations in this section. Based on the properties verified, section 3 gives an
embedding of the class of symmetric fuzzy numbers into a collection of equivalence
classes of symmetric fuzzy numbers which forms a group and a vector space.

2 Symmetric Fuzzy Numbers

Definition 2.1 The characteristic function x4 of a crisp set A C X assigns a value
either 0 or 1 to each member in X. This function can be generalized to a function
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1z such that the value assigned to the element of the universal set X fall within a
specified range i.e. pz: X — [0,1]. The assigned value indicates the membership
grade of the element in the set A. The function i ; is called the membership function
and the set A = {(x,pz(x)) : z € X} is called a fuzzy set.

Definition 2.2 A fuzzy set fl, defined on the universal set of real numbers R, is said
to be a fuzzy number if its membership function has the following characteristics:

i. A is convex ie. pi(Azy + (1 — N)zo) > min(ui(z1), pi(z2)) V 21,20 €
R, VA€ [0,1]

ii. A is normal i.e. 3z € R such that p;(z0) = 1

iil. 5 1s piecewise continuous

The height of a fuzzy set A € F(X), is the value hgt(A) = sup,cx pa(z). From
the definition of a fuzzy set it is immediate that hgt(A) < 1. If there exists g € X
such that hgt(A) = pa(ze) = 1, then the fuzzy set A is called normal.

The core of a fuzzy set A € F(X) is denoted with core(A) and it is given by
core(A) = {x € X | pa(xz) = 1}. The support of a fuzzy set A € F(X) is denoted
with supp(A) and represents the set of all elements of X with a nonzero degree of
membership, that is supp(A) = {x € X | pa(z) > 0}

For o € [0, 1], the a-cut of a fuzzy set A € F(X) denoted by [A], and is given by
[Alo = {z € X | pa(z) > a}. Tt is clear that [A]p = X and [A]; = core(A).

Remark 2.1. For a fuzzy number, the a—cut will be a closed interval.

Definition 2.3 Let [A], = [a$, 3] be the a—cut of the fuzzy number A, then A is
said to be symmetric if the mid-point mq(A) = % is constant Vo € [0, 1].

«

as —af . . . .
is non-negative and a non-increasing

Remark 2.2. The spread S,(A) =

function of a. Tt is the factor that determines the fuzziness of the quantity measured.
As a particular case, when the spread is zero, the quantity reduces to a crisp quantity.

Remark 2.3. The a—cut [A], = [a¢,aS] of the symmetric fuzzy numbers A can
also be represented as [A], = 4 _g% + 2 ; 4 [—1,1].

2.1 Ranking Technique For two symmetric fuzzy numbers A and B with a—cuts
af + ag bs + 0%

[A]l, = [a¢,a8] and [B], = [b9,05], define A < B if either 5 <=5 or
af + a3 by + b ay —af by — bs aff + a§ b + bg ay — af
I o My 2 2 p M Ty

2 g L then A=B

2.2 Arithmetic Operations

Definition 2.4 Let A and B be two symmetric fuzzy numbers with a—cuts [A], =
[af,as], [Bla = [bf,b5] and A € R, then the a—cut of the arithmetic operations are
defined as follows:

Sum

[A+ Bl, = “1;% +b1262 + <a22a1 % le) [—1,1] (2.1)
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Difference

= af +a§ by + 0§ a§ —ay b —bY
A_p. -4 2 01 70 2 1 2 70\ 1y 9.9
A= g, =l MR (B2 HE Ly ey

Scalar Multiplication

_ STRUgtqugpSTU OfaSYMMETRIC FUZZY NUMBERS
[A\], = UM 3[ 1,1] (2.3)
Product
-~ « « bOZ ba
[A.B]. ap T+ ay by 0y (2.4)
2 2
ay —af | b + bg af + ay bg—b‘f‘_}_@—dﬁbg—b‘f —1,1]
2 2 2 2 2 2
Inverse _
{1 S +1<1 1)[11] (2.5)
Al, af+ag 2 ag )t ‘

here either a9 > 0 or aJ < 0

Proposition 2.1. Let A be a symmteric fuzzy number with a—cut [A], = [a, a3],
then for o < 8, [a$, a$] 2 [af,ag}.

Proof. A'is a symmetric fuzzy number = the mid-point m,(A) is constant and
the spread S,(A) is a non-increasing function of a.
«a « B B a _ o B _ B
ay a3 _ a3 +ay and %2 a12a2 ay
2 2 2
= [af,a5] 2 (0], a5 0

Thus a < f =

Remark 2.4. Proposition 2.1 proves that the symmetric fuzzy number is convex.

Proposition 2.2. If A and B are symmetric fuzzy numbers, then so are A+ B, A —

1
B,MA(A €R),A.B, =
A

Proof. Let the a—cuts of A and B be [A], = [a$, a$] and [B], = [b$, b3] respectively,
then we know that for o < o,
the mid-points

af +ag af’ +ag’
= 2.6
by + by by’ + b8
= 2.7
the spreads
as — af ag‘/ — af{/
> == 2.8
2 - 2 (28)
by —bi > u (2.9)
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2 2
Adding equations 2.6 and 2.7, we get the mid-point of A+ B to be constant
and adding 2.8 and 2.9 we see the spread of A+ B to be non-increasing. Thus
A+ B is symmetric.

ag + ag w+@+<@—@+@;w>P1”

~ N a « be e a L« e — p
smnm+Bh—%+%+1+2+<%2%+221)FLH

Difference [A— B], = 5 T 5

Subtracting equations 2.6 and 2.7, we get the mid-point of A — B to be constant
and adding 2.8 and 2.9 we see the spread of A — B to be non- increasing. Thus
A — B is symmetric.

Scalar Multiplication [A\A], = )\% + <)\|a2 ;a1> [—1,1]
By the definition, it is clear that AA is a symmetric fuzzy number.

a1+a2 b7 + b3

Product [A.B], = 5
ay —af | by + bg af +a§ | b§ — by n ag —a$ by — by —1,1]
2 2 2 2 2 2

Product of two constants is also a constant = the mid-point of A.B =
a +a§ by + b§

is constant.

2 2
For o < o,
<~ a§ — af |b + 0§ af +a§ | 0§ —b¢  af —af by —b¢
S.(AB) = & 1|01 2 1 2 | 92 1 2 10 1
( ) 2 2 2 2 2 2
_ag—af |0 b | [ tag b5 b7 a5 —apbg— b
2 2 2 2 2 2
using 2.6 and 2.7
- ag/ - a?/ b{f/ + bg/ a?/ + ag/ bg/ _ b{f/ ag/ o a?/ bg/ _ b?l
- 2 2 2 2 2 2

o o ba’ o bo/
using 2.8 and 2.9 and the fact that 2 5 %1 e 5 !

are non-negative

= S.(A.B)
Thus A.B is symmetric.

1 2 1/1 1
Inverse {J = + = < — > [—1,1]
Al, af+ay 2\af af

1 1
It is clear that m,, ([1) is constant. To prove S, <A> is non-increasing.

Let o < o, then
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_ Sald) (2.10)

(e
ayag

’
We have af < a’ < ag < a§. Since A is symmetric, a’ —a§ = ay—a$’ = k(say),

let af —a’ = ¢, ie

al’ = af+k
af = aS+k+c
a; = af+k+c+k
Thus afa$ —a%'ad = aS(a +k+c+k)— (af +k)(a$ +k+c)
= —k*—kc
< 0ask>0,c>0
al - > a,l — (2.11)
ayaz ay a
A is symmetric = S,(4) > Sy (A) (2.12)

From the definition of the inverse all the terms appearing in equations 2.11 and
2.12 are positive, hence multiplying equations 2.11 and 2.12 and applying it in

1 1
equation 2.10, we get S, <~> > Sy <~>
A A

1
Thus 3 is symmetric.

O

Theorem 2.1. [Properties of Arithmetic Operators| Let A, B,C be symmetric fuzzy
numbers, then the following properties hold:

1. A+ B= B+ A (commutative)
A (commutative)
+C = A+ (B+ () (associative)

( )
(A.B).C = A.(B.C) (associative)

A+0=0+ A=A (identity)
Al1=1.A= A (identity)
A+ B=A+4C = B=C (cancellation)

AB=AC = B=C (cancellation)

L NS

Scalar multiplication by non-negative real scalars satisfies:
(a) N(A+ B) =AA+ \B
(b)) AN+ p)A = A+ pA
(¢) (An)A = ApA)

10. A." (B 4+ C") = A" B +A." C" (sub-distributive)

237
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11. (A+B)—C=A+(B-0C)

12. (A+B)-B+#A

13. A < C and B <
monotonicity)

D — A+B=<C+DandA—-B=<C—-D (inclusion

Proof. Let the a—cut of the given symmetric fuzzy numbers be [Al, = [a2,a3],
[Blo = [b3,05], [Cla = [}, ¢5] and [0], = [0,0], [1]o = [1, 1] and thus in the mid-point

and spread notation
af +ay a5 —aj

Al, = ~1,1
[A] 5 5 —L1]
- DY by bg — b
[Bla = 5=+ 25— [-L1
~ cf gy g —cf
[Cla = ==+ =5—[-1.1]

1. Toprove/lJrB:BJrfl

A+ Bl = af + as Jrb1+b2 Jr<612—CL1 erZ;bl)[L”

2 2 2
by +b3  af +ay by —b¢  af —af
_ 1,1
2 + 2 + 2 + 2 [ 7}
= [B+ 4],

2. To prove AB=B.A

a + a§ by + 0§
2 2
ay —af | by + bg af + ay

< 2 2 2
by + b3 af + a$

(AR, -

1,1]

by — b0y ag —ag by — 0§
3 2 7 )l

2 2
bg — b [ag +ag|  [bY 40| ag —ag  bg — b3 ag — a
~1,1
< 2 2 |72 5 T3 AR
_ [BAL

3. To prove (A+ B)+C = A+ (B+C)

- - - « [e3 bO( ba (o3 (o3
(A+B)+Cla = <a1;a2+ 1; 2>+61;CQ

a§ —ay  b§ — by g — cf
-1,1
A )
_ a?+ag+<b%+bg+c?+c§>

2 2 2

a§ —af by —b¢ g —cf
-1,1
A

= [A+(B+0)
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4. To prove (A.B).C = A.(B.C)
[(A.B).Cla

|

[e% «
ay — a1
2

aff +ay by +bg
2 2
b + b5

« «
aj + ag

by — b

« [e 3y Ne}
ag — af by

2

2

2

« (o QLo

(

af + a§ b?+b§”> <c?+c§”>

2 gb%) [71’1]}

2 T2 2
n ay —af | by + bg af +ag | b§ —b¢ af —af by — by | +
2 2 2 2 2 2 2
af +ay bY +b5 | 5 —cf
2 2 2
n ag — a§ | by + b§ af +a§ | b — b¢
2 2 2 2
a_ gapa _pa a L«
ag —ag 0y 1\% 4G [~1,1]
2 2 2
_ af +a§ [ bf + b5 cf + ¢S
2 2 2
N ag —af |bf + b5 ||t + ¢§ af +a§ | b§ — b§ ¢ + ¢§
2 2 2 2 2 2
ag —af by —bf |cf +c5| | |af +ay||b] +b5| 5 —cf
2 2 2 2 2 2
a§ —af |bY + 05| c§ —cf af +ag | b§ — b% c§ — cf
2 2 2 2 2 2
R R L A
2 2 2
_ af +a§ [ bf + b5 cf + 5
2 2 2
et et
2 2 2
af +a§ | (b5 —bf [cf + c§ b + 05| c§ —cf  b§ —bf c§ —cf
2 2 2 2 2 2 2
+a§fa? bg — 0§ | cf + 5 b + b9 cgfcf‘_’_bg‘fb‘fcg‘fcf‘
2 2 2 2 2 2 2
[_1,1]
= [A(B.C)]a
5. ToprovefH—():fH—A:fl
- at+ay 0+0 ad—ad 0-—0
A+0, = =3 + 2=+ -1,1
A+ L S22 ) L
B af +ay ay —af —1.1]
2 2 ’

[Ala
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Similarly, 0+ A = A
6. To prove Al=1A4A=A4

[A]a
2 2
n as —af |1+1 af +a5|1—1 af—afl—-1 -
2 2 2 2 2 2
af +ay ay —af [_1 1}
2 2 ’
= [Ala
Similarly, 1.4 = A.

7. A+ B=A+C = B =C (cancellation)

[A+ B, =[A+Cla

al +a§ = by + 0§ ay —af by —b¢
2 + 2 + 2 + 2 [=1.1]
ay +ay | f+c§ ag —ay | g —cf
= —1,1
2 + 2 Jr< 2 + 2 )[ Al
af +ag b‘f‘+b§_a?+a§“ cf +cy
= T3 tT g T 2
F—ad Y —bY a¥y—al & —c¥
d 1 2 1 _ Gy 1 2 1
an 5 5 5
by +05  cf + ¢
— e
2 2
by — po ¥ — &
q 2 1 2 1
an % 5
- [~B}a:~[0]a
= B=C
8. AB=AC = B=Cif A#0 (cancellation)
AB=AC
s [ABl. = [AB].
ai +ay b +05  af +ay cf +cy
2 2 2 2
and ag —af |b + b§ ad + a5 | b§ — by af —af by —bY
2 2 2 2 2 2
ay —ay |cf + ¢y af +ay| g —cf ay —afcy—cf
2 2 2 2 2 2
by +05  cf +c§
—— —
2 2
ad + a5 | by — by  a§ — afr by — b¥
q |4 2 | 92 1 2 1 99 1
a 2 2 2 2
B af +ay|cy —cf ay —afcy —cf
N 2 2 2 2
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af +ag

ag —af by — by g —cf
_ =0
() ) (B - 450

by — by g —cf
2 2

«

«
as

—
2

af + ag
~2
— A=0

« «
al + ay

as = 0 would mean

S
R

9. Scalar multiplication by non-negative real scalars satisfies:

(a) MA+ B)=AA+ABfor A >0

o4 g2 b + b2 a_ L« b — pe
A+ B, = )\{a12ag+ 1 2+<a2 a1+ 22 1>[_171]}

2 2
a +ay bY + bY
— \Ja 2 1 2
{ 2 + 2

(5 )

_ {)\a?+a2 ba+ba}
2

+(|A|a2 L )[ L1
= AT <|A|“2 _‘“) [~1,1]

by + b§ -0
P (W) )

= [Mla+ [ABla
(b) AN+ p)A=A A+ pAfor \,u>0

Ol = O {5 (U2

ay + a¥ ay — a¥
e e = E
af + a3 af + a3
2 =

(S ) s Ao
af + a3 as — af

= ~1,1
AR (W) g
af +ag ag —af'\
= +<Iul 5 )[1,1]

= Mo+ [pA]a

() (M)A = A(pA) for A\,p =0

Ol = oL ()

= A
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2 2
A1A)a
B+ C A.C (sub-distributive)

+
AB+ ), = {a?;ag +“3;“?[—1,1]}.{b?;b5 + a1

b§ — by § —cf
1,1
(AL 25

o af 4a§ <b?+bg+_q*+cg>

- A{MW+ <|u|a2 _‘“) [—1,1}} as A >0

2 2 2
ag —af |by +05  cf + 5
+{ 2 2 + 2
af + a3

by —b¢  c§ —cf
2 < 2 i 2

as—af (t5—b G-
-1,1
A (A A5 )

ay a3 by +05 | af +ay et +c

- 2 2 2 2
ag —af | b + bg ag —af |cf +c§
2 2 2 2
af +ay| by — by  |af +af| g —cf
2 2 2 2
ag —af by — oY  aj —af g —cf
—1,1
2 2 2 2 }[ 1]
_ap+ay by + by ag —af [bY + b3 a + ag | b§ — by
N 2 2 2 2 2 2
ay — af by — by —1,1]
2 2 ’
af +agcf +c5 ay —af | +c§ af +ag|c§ —cf
2 2 2 2 2 2
ay —af c§ — cf
—-1,1
A En A oy
— [ABl.+ [ACT.

1. (A+B)—C=A+(B-C)

[(A-}—B)—é}a _ {a1+a2+bl+b2+<(l2_a1+b2_b1>[_171]}

2 2 2 2

cf +c5 c§ —cf
— -1,1
U (557 g

a‘f‘+a§+b§*+b§‘ gt a
2 2 2

ajy —af by — b g —cf
—1,1
AR ) A
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12. (A+B) - B #

13. A<C and B

a‘f+a§+ b‘f+b§_c‘f+c§“
2 2 2

a§ — af b§ — by  § —cf
-1,1
A ()

[A + (B - C)]a

A
af +a§ by + 0§ a§ —ay by — by
L= 1,1
] { > T +( ;7 T )L
by + b3 by — bs
— —1,1
{55 (55
B a?+a§‘+b’f‘+b§‘ _b?f‘erg‘
N 2 2 2
ag —ad b —b\  bg —be
—-1,1
+{( 5t >+ 5 [—1,1]
al + ay as — af o o
— 12 2+{ 22 1+b2—b1}[_1,1]
# [l
B3 <D — A+ B =<C + D (inclusion monotonicity)

A‘<C EESS ma(A

Similarly,

) < ma(C) or [ma( ) = ma(C) and Sn(A) < sa(é)}

B=<D = mu(B) <ma(D) or [ma(B) = ma(D) and So(B) < SQ(D)}

Case it m,(A) < mu(C) and magé) < ma~(l~)) . o
ma(A:l- B) = ma(A) + ma(B) < ma(C) +mu(D) = ma(C + D)
= A+B=XC+D

Case ii: mq(A) < mu(C) and [ma(é) = mq(D) and S,(B) < SQ(D)}
Ma(A+ B) = ma(A) + ma(B) < ma(C) + ma(D) = ma(C + D)
= A+BC+D

Case iii: [ma(A) = mqa(C) and S,(A) < Sa(é')} and mq(B) < ma(D)

Similar to Case 1i

Case iv: [ma(

A) = ma(C) and So(A) < sa(é)} and [ma(é) = ma(D) and

Sa(B) < 5a(D)]

ma(~A~ + E) = ma<~~) + magé) = moi( ~) + mg(D) = n}a( ~~+ D)
Sa(A + B)~: SQ(A)NJr Sa(B) < 8,(C) 4 Sa(D) = So(C + D)
= A+BC+D
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3 Embedding To extend the concepts of coherent prevision and probability in
a fuzzy ambit, it is necessary to obtain a structure of vector space based on fuzzy
numbers. But, whatever definition of sum is utilized, the sum of two fuzzy numbers
has left and right spreads greater than the spreads of the individual fuzzy numbers.
Then we cannot have the additive inverse of a non degenerate fuzzy number and fuzzy
numbers are neither a group nor a vector space.

In this section we prove that we can overcome this obstacle by introducing a
suitable equivalence relation ~ on the set SF of fuzzy numbers and by considering
the quotient set SF/ ~ and the induced structures. In fact, in this case we obtain a
vector space.

Theorem 3.1. [5]

A. Let M be a commutative semigroup in which the law of cancellation holds. That
is, For A,B,C' € M, if
1. A+ B)+C=A+(B+0C)
2. A+ B=B+A
3 A+C=B+C = A=1B
then M can be embedded in a group N. Furthermore N can be chosen so as to be

minimal in the following sense: If G is any group in which M is embedded, then
N is isomorphic to a subgroup of G containing M.

B. If a multiplication by non-negative real scalars satisfying:

4. MA+B) = MA+\B
5. (M + A2)A = MA + MA
6. M(M2)A = MM A

7. 1A= A

is defined on M, then a multiplication be real scalars can be defined on N so as to
make N a vector space and so that for A > 0 and A € M the product AA coincides
with the one given on M.

Theorem 2.1 shows that the collection of symmetric fuzzy numbers SF satisfy
conditions 1 to 7 of theorem 3.1. Hence SF can be embedded into SFN which will
be a group and a vector space. According to the proof of theorem 3.1 in [5], the
class SFN consists of equivalence classes of pairs_ (A, B) of elements of SF. The
equivalence relation, ~ is defined by (A,B) ~ (C,D) ifand only if A+ D =B+ C
i.e. mo(A+ D)= ma(B + () and Sy(A+ D) = S,(B + C). The equivalence class
containing the pair (A, B) is denoted by [A, B].

Define addition on SFN as

[A,B|+[C,D]=[A+C,B+ D]
and scalar multiplication as

Poa [CA,CB] ifCGRJ,_
oA, B] = { [—cB, —cA] otherwise
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and the order relation may be defined on SFAN as [A, B] < [C,D]if A+ D < B+C
holds.

The zero element in SFAN will be [0,0] and the inverse o
The element A € SF will be identified with the class [A
zero element in SF.

f [A, B] will be [B, AJ.
,0] € SFN, where 0 is the

4 Conclusion In this paper, a special class of fuzzy numbers is considered, the

symmetric fuzzy numbers whose shape is symmetric with respect to a vertical line.

We introduced the necessary arithmetic operations on these numbers and also verified
that they belong to the same class. When studying the structure of the class, we
see that it forms a commutative semi-group with the cancellation property. Also
it satisfies certain other properties that are required in the Radstorm embedding
theorem. Hence using Radstorm embedding theorem, the class of symmetric fuzzy
numbers are embedded into a class of equivalent pairs of symmetric fuzzy numbers
which form a group and a vector space.
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A VANISHING THEOREM OF ADDITIVE HIGHER CHOW GROUPS

TOSHIRO HIRANOUCHI

ABSTRACT. We show that the additive higher Chow group of the form TCH™(X)+a (X,q;m)
becomes 0 for some scheme X over a perfect field of positive characteristic and for ¢ > 2.

This is an analogy of Akhtar’s theorem on the higher Chow groups: CHYmO+a(x ¢) =

0 for ¢ > 2.

1 Introduction As a continuation® of [5], we study an analogy between
CH*(X,b) «— TCH*(X,b;m).

Here, CH?(X,b) is the higher Chow group of an appropriate scheme X over a field k£ and
TCH®(X, b;m) is the additive higher Chow group of X (see Sect. 2 for the definitions). An
objective of this note is to show the following theorem:

Theorem 1.1 (Thm. 3.5). Let X be a projective smooth variety over a perfect field k with
positive characteristic. Then, for q = 2,

TCH* (X, q;m) = 0,
where d = dim(X) is the dimension of X.
This is an additive version of Akhtar’s theorem ([1], Cor. 7.1) on the higher Chow group:
For q = 2,
CH™™ (X, q) =0,

when X is a smooth quasi-projective variety of d = dim(X) over a finite field.

Our motivation is to define an additive variant of Somekawa type K-groups. Recall that
a Mackey functor over a field & is a contravariant functor from the category of étale schemes
over k to that of abelian groups equipped with a covariant structure for finite morphisms

satisfying some conditions (for the precise definition, see Def. 3.1). The higher Chow group
CH*(X,b) defines a Mackey functor

CH(X,b) : k' /k — CH* (X}, b),
where k' is a finite field extension of k and X = X ®;, k’. For some schemes X, X’ over k
with d = dim(X) and d’ = dim(X"), the Milnor type K-group
K (k; €H™ (X, a), ?HY 9 (X', a'))

introduced by Raskind and Spiess ([12], Def. 2.1.1, see also Rem. 2.4.2) is defined by the
quotient

1) ( D CHWUX,0)K) 02 %Hd’ﬂkxca')(k’)) / (PF) & (Rec),
k' /k: finite
where “(PF) & (Rec)” stands for the subgroup generated by elements of the following
form: Put .4 := €H""(X,a) and 4" := %Hd/J”a/(X',a’).
2010 Mathematics Subject Classification. 19D45, 14C25.

Key words and phrases. additive higher Chow groups, Milnor K-groups.
I This short note is taken from the preprint [4], Sect. 5 which has been deleted before publication ([5]).
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(PF) Let k < ki < ks be finite field extensions and j = jy, /x, : Spec(kz) — Spec(ky) the
canonical map. The elements are of the form
J¥(@) @2 — 2 ®jy(2)) for z e #(ky) and 2’ € 4" (ky), and
r®j*(2)) — js(x) @2’ for x € A (k1) and 2’ € A" (ko).

(Rec) Let F be a function field in one variable over k and f € F* ge #(F),g € .#4'(F).
The required elements are of the form

D (feg®d),

where the sum is taken over all places v of F'/k, and
0t F* @ M(F) @ M'(F) — M (k(v)) @7 M (k(v))
is the local symbol. This is given by using the connecting map in the localization sequence
of higher Chow groups?.
Using this, it is known the following expressions:
o K(k;€H (k,1),€H' (k,1)) ~ K(k; Gy, Gy,), where the right side is Somekawa’s K-group
associated to the multiplicative groups G, [14], and
o K(k;¢H™(X,a), HY* (X' a’)) ~ CH* Y949 (X » X' a + a') (cf. Thm. 3.3).
In our previous work [4], we introduced an additive variant of Somekawa’s K-group of

the form

K (ks Wi, G),
where W,,, is the Witt group scheme of lenth m € Z~,. We expect to define the group of
the form

K (k; ZCH™ (X, a;m), ¢HY ¥ (X', a'))
which gives
o K(k; ZCH'(k,1;m),¢H" (k,1)) ~ K(k;W,,,Gp), and
o K(k; ZCH™%(X,a;m), ¢HY *% (X', a/) ~ TCH* ¥ +9+ (X x X' a + a';m).
However, the localization property to define the condition corresponding to (Rec) above

is not known on the additive higher Chow groups (due to lack of homotopy invariance).
Instead of Somekawa type K-group, we consider the Mackey product

M ’ ’
(90Hd+“(X, a;m)®EH T (X, a’)) (k)
which is defined using the “projection formula” only as follows:
(@ FCHY (X, a;m)(K) @z %Hd'ﬂ’(x/,a’)(k/)) / (PF),
K [k

where (PF) is the subgroup defined similarly as in (1) (for the precise definition, see
Def. 3.2). In this note, we present the following surjective homomorphism on 0-cycles
(Thm. 3.4):

M ! ! !’ !
(QCH““(X, a;m)QEHL T (X’,a’)) (k) » TCH*+a+a (X « X' a+d';m).

It is easy to show that the Mackey product on the left hand side becomes trivial when k
has positive characteristic so that we obtain the main theorem noted above (Thm. 3.5).

2 Although the precise definition of (Rec) is not given in [12], but we do not mention about the local
symbol more on this. About this topic, see [6] and [1].
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Notation In this note, a variety over a field k we mean an integral and separated scheme
of finite type over Spec(k). For a field k, we use

e char(k): the characteristic of k.

For varieties X and Y over a field k, we denote by

e dim(X): the dimension of X,

o Xp = X ® k' := X Xgpee(r) Spec(k’): the base change of X for an extension field &'/,
and

e X xVY :=X Xgpee(r) Y-

Acknowledgments This work was supported by KAKENHI 17K05174.

2 (Additive) higher Chow groups of schemes In this section, we recall the definitions
of (additive) higher Chow groups following [2],[10], and [3]. Throughout this section, we
use the following notation:

e k: a field as a base field,
e [17:= (P! \ {1})? and we use the coordinates (y1,...,y,) on 19, and

e X : a scheme of finite type over k.

Higher Chow groups The subscheme of [1¢ defined by equations y;, = €1,...,y;, = €5 for
g;€{0,00} is called a face of [17. Fore € {0, }andi=1,...,q—1,let ¢y, : (19! — [
be the inclusion defined by (y1,...,¥g—1) = Y1, Yim1:E Yiy - - - Yg—1)-

Definition 2.1. Let pe Z and q € Z~.

() We denote by z,(X, g) the free abelian group on integral closed subschemes Z of X x [
of dimension p + ¢ that intersect all faces of []? properly.

(ii) For each 1 < i < g and € € {0,00}, let d; := Idx xu}, _, where Idx : X — X is
the identity morphism. The abelian groups z,(X,e) = {z,(X, q) }q>0 form a complex with
boundary map

Z(il)l(afo - (}?) : Zp(‘X: q) - Zp(Xa q— 1)
=1

The higher Chow complex 7,(X, ) is z,(X, e) modulo the complex consists of the de-

generate cycles, that is, the cycles on X x []7 pulled back from cycles on X x (197! by a
projection X x (19 — X x [J97! of the form (z,y1,...,Yq) = (T, Y15+ Yj—1,Yj+1s-- -+ Yq)
for some index j. The homology group

CH, (X, q) = Hy(zy(X, )
is called the higher Chow group of X.
If the scheme X is equidimensional of d = dim(X) over k, we write
(X, q) =74 p(X,q), and  CHI(X,q) i= Hy(z"(X,#)) = CHy_p(X, )

The higher Chow groups have functorial properties induced from the proper push-forward,
and the flat pull-back of cycles. In particular, for a finite field extension k’/k, the projection
J=Jwm: Xp = X ® k' — X induces

(2) Nk)’/k = Jx CHP(Xk’vq) - CHP(Xv q)
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These functorial properties enable us to give the structure of CH? (X, q) a Mackey functor
as follows:

(3) %HP(X, q) (K> CHp(Xk?'a Q)7

where X = X @ k/, for a finite field extension &’ of k. For two schemes X,Y of finite
type over k, one can construct

1 2p( X, 0) @z 2, (Y, 0) > 2, (X X Y, 0).
On integral cycles, it is defined by ZXKIW := 74(Z x W), where 7 : X x [P x Y x " —

X xY x [P is the exchange of factors (cf. [§], Sect. 1.3). On homology groups, [ induces
the external product

(4) . CH, (X, q) ®z CH, (Y, 5) — CH, 4, (X x Y, q + 5).

If X is smooth over k, then pulling back of [x] along the diagonal A : X — X x X, we have
the intersection product

(5) n: CHP(X,q) ®z CH"(X,s) — CHP*"(X,q + s).

We list some relevant calculations of higher Chow groups: There is a natural isomor-
phism CHP(X,0) ~ CHP(X), where the latter is the ordinary Chow group. In the case of
p = ¢, we have the following theorem:

Theorem 2.2 ([11], [15]). There is a canonical isomorphism
¢ : CH(k,q) — K} (k),
where the latter group is the Milnor K-group of the field k.
In particular, in the case of ¢ = 1, we have
CH'(k,1) ~ k* = Gu(k),
where Gy, is the multiplicative group scheme. This extends to an isomorphism
(6) CH (k1) ~ Gy

of Mackey functors. Here, we refer the construction of the map ¢ in Thm. 2.2. By the
very definition, CHY(k, q) is generated by classes [P] represented by a closed point P :
Spec k(P) — [1¢. It is determined by the maps y;(P) : Spec k(P) — 19 & Ofori=1,...,q
and they give y;(P) € k(P)* for each i. The map ¢ is defined by

A([P]) :== Nipy {y1(P), -, yq(P) },

where Nypy © KM(k(P)) — KM(k) is the norm map of the Milnor K-groups and
{y1(P),...,yq(P)} is the element in KM (k(P)) represented by y1(P) ® -+ ® y4(P) €
E(P) ®z - ®zk(P)*.
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Additive higher Chow groups The additive higher Chow groups are defined similarly
to the higher Chow groups using B, below instead of cubes []?. Let

e B,:=A'x[9! and

e B,:=A'x (P')?"! 5 B,. We use the coordinates (t,y1,...,yq—1) on By.

The subscheme of B, defined by equations y;, = €1,...,y;, = €5 for ¢; € {0,00} is called
a face of B;. For e € {0,0} and i =1,...,¢— 1, let 1y, . : B4_1 — B, be the inclusion
defined by (¢,y1,...,Yq—2) — (&, Y1, s Yim1,E Yi, - - -, Yg—2). On By, let Fql7i be the Cartier
divisor defined by y; = 1 and Fj ¢ the Cartier divisor defined by ¢t = 0.

Definition 2.3. Let pe Z, and q,m € Z~g.

(i) Define QP(X7 1;m) to be the free abelian group on integral closed subschemes Z of
X x A! of dimension p satisfying Z n (X x {0}) = & and the modulus condition defined
below. For the integer ¢ > 1, Tz,(X,q;m) is the free abelian group on integral closed
subschemes Z of X x B, of dimension p + ¢ — 1 satisfying the following two conditions:

(Good position) For each face F' of By, Z intersects X x F properly.

(Modulus condition) Let 7 : ZN L Zc X x B, be the normalization of the closure Z
of Zin X x B,;. Then

(m+1)7*(X x Fyo) < 7°(X x Fql)

as Weil divisors, where F := S,
(Here, we adapt the modulus condition Mg,y in Def. 2.1 in [9]. For the other similar
conditions on modulus and their relations, see [9], Sect. 2).

(ii) For each 1 < i < ¢—1and € € {0,00}, let ; := Idx xu}, .. The boundary map of
Tz,(X,e;m) is given by

q—1

DUDH0F =) : Tz, (X, ¢im) — Tz, (X, q — 1;m).

i=1

The additive cycle complex Tz,(X,e;m) is the nondegenerate complex associated to
Tz,(X,e;m). Its homology group

TCH, (X, g;m) := Hy(Tzp(X, 0;m))
is called the additive higher Chow group of X with modulus m.
If the scheme X is equidimensional of d = dim(X) over k, we write
TP (X, ¢;m) := Tzgi1-p(X,¢;m), and TCHP(X,q;m) = Hy(TP (X, e;m)).

The additive higher Chow groups have also functorial properties as projective push-forward,
and the flat pull-back. For a finite field extension &’/k with the projection j = ji /i : Xp 1=
X @ k' — X, we have

(7 Try = js : TCH? (X3, ¢;m) — TCHP (X, ¢;m).
The assignment
(8) JCHP(X,q;m) : k' — TCHP(X ® k', q;m)

gives a structure of Mackey functors.

251
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For two equidimensional schemes X,Y of finite type over k, one can construct the
product

1 2p(X, 0) ®z Tz, (Y, 0;m) — Tz, (X X Y, 0;m).

On integral cycles it is defined by ZXIW := 7.(Z x W) where 7 : X x [P x Y x B, —
X xY x B4, is the exchange of factors (cf. [§], Sect. 4.1). On homology groups, [ induces
the external product

: CHp (X, q) ®2z TCH, (Y, s;m) —» TCHy 1 (X x Y, g+ s;m).

If we assume that X is a smooth and projective variety over k, we obtain the intersection
product

9) n: CHp(X, q) ®z TCH, (X, s;m) — TCHp4r (X, g + s;m).

Essentially, this product is defined by the pullback of [X] along the diagonal map A : X —
X x X (see [8], Thm. 4.10 for the precise construction). The intersection product is natural
with flat pull-back, and satisfying the projection formula:

(10) fe(f* () ny) =20 foly)

for a morphism f : X — Y of smooth projective varieties over k. If f is flat, we also have

(11) fe(x n f*(y) = fe(2) Ny
Putting TCH? (k, ¢; m) := TCHP(Spec(k), g; m) we also have the following theorem:

Theorem 2.4 ([13], Thm. 3.20). For a field k with characteristic # 2, there is a canonical
isomorphism

¢ : TCH (k, ¢;m) — W,,Qf ",
where the latter group is the generalized de Rham-Witt group.
In particular, in the case of ¢ = 1, we have
(12) TCH'(k,1;m) ~ W,,,(k), and hence ZCH'(k,1;m)~W,y,,

where W,,, is the Witt group scheme. Recall the construction of the map ¢ in Thm. 2.4.
The additive higher Chow group TCHY(k, g;m) is generated by classes [P] represented by

a closed point P : Spec k(P) — B,. It is determined by the maps ¢(P) : Spec k(P) — B, R
A" and y;(P) : Speck(P) — 17 % 0. They give t(P) € k(P), y;(P) € k(P)*. The map ¢
is defined by

O([P]) = Trypym ([L(P) "] dlog[y1 (P)] - - - dlog[ye—1(P)])

where [—] is the Teichmiiller lift. Note that the modulus condition assures ¢(P) # 0.

3 Mackey product and additive higher Chow groups In this section, we assume
e k: a perfect field.
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Mackey product We recall the definition of the Mackey functor.

Definition 3.1 (cf. [12], Sect. 3). A Mackey functor </ (over k) is a contravariant functor
from the category of étale schemes over k to the category of abelian groups equipped with
a covariant structure for finite morphisms such that o/ (X7 u X5) = & (X;) ® & (X>2) and if

g/

X — X
f’l lf
g
Y — Y

is a Cartesian diagram, then the induced diagram

A (X') — 5 F(X)
S
AV ——— F(Y)

commutes.

For a Mackey functor &7, we denote by o (k') its value &/ (Spec(k’)) for a field extension
k' of k.

M
Definition 3.2 (cf. [7]). For Mackey functors <4, ..., 7, their Mackey product &4 ®

M
-+ -®9, is defined as follows: For any finite field extension £'/k,
M M
(13) <~<271®"'®%> (k') = ( @ HA*")®z---®z %(k”)> /R,
k" /k’: finite

where R is the subgroup generated by elements of the following form:

(PF) For finite field extensions k' < kj < k), and if x;, € o, (k}) and z; € o (k) for all
1 # 1, then

FH ) @ @iy ® -+ @ (1g) =21 @+ ® Ju(wig) ® -+ ®

where j = jy; s : Spec(k3) — Spec(k]) is the canonical map.

M M
For the Mackey product & ® -+ ® o7, we write {z1,...,2, }k,/k for the image of
M M
1R Qg e HAK)® - ® (k') in the product | A ®-- ®szq> (k). For any field
extension k'/k, the canonical map j = ji/ ), : Spec(k’) — Spec(k) induces the pull-back

. M M M M )
Resprp =77 : <J271®"~®427q) (k) — <J271®~~~®£Z1> (k).
If the extension k'/k is finite, then the push-forward
. MM , M M
(14) Ny =ju: | A® Q4 | (k) — | A® --® | (k)

is given by Ny p({z1,...,24 }k,,/k,) ={z,...,24 }k,,/k.
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Main theorem In the rest of this section, we use
e X, X': smooth projective varieties over k, and
e d=dim(X),d = dim(X").
Theorem 3.3 ([12], Thm. 2.2, (2.4.4)). For a,a’ € Zsq, we have
¥ K (ki €H (X, a), €HY Y (X!, /) => CHYP P04 (X 5 X' a + d).
Recall the definition of ¢. We denote by {z, 2"}, the image of 2®z’ € CH" (X}, 0)®z
CHY*" (X, a) in K (k; H™( Xy, a), HY *% (X1, a)) (cf. (1)). Define
$({ 2,5 b p) = Ny () 0 () @),

where N is the intersection product (5), Ny, = j is the push-forward along X3 — X
(¢f. (2)),and p: (X x X')pw — Xp and p’ : (X x X')pw — (X')p are the projections.

As we explained in Introduction, for a,m € Zsqg,a’ € Zsq, we consider the Mackey
product (cf. Def. 3.2)

M .
(ﬂCH‘“’a(X7 a;m)QEH T (X!, d; m)) (k).
Define a homomorphism
M ! !’ / ’
P (ﬂCH‘”a(X,a;m)CA)%Hd ta (X',a’;m)) (k) » TCH+ ot (X » X' a+a';m)

by the intersection product (9) (cf. [12], Proof of Thm. 2.2) as
v({ @2’ by ) = T () * () 0 p* (@),

for any finite extension field &'/k, where Tty = jy is the push-forward along j : Spec(k’) —
Spec(k) and p: (X x X')p — X and p’ : (X x X')pr — (X)) are the projections. From
the projection formula of the intersection product ((10) and (11)), the map # is well-defined.

Theorem 3.4. For a,m € Z~g,a’ € Zsq, the map
M !’ ’ !’ !
W <¢7CHd+a(X7 a;m)@EHT T (X’,a’)) (k) » TCHYT+ata (X » X' a +a';m)

s surjective.

Proof. Put

o X=X xX',

o a=a+ad,and

ocd=d+d.

By the very definition (Def. 2.3), the group TCH‘H“(%, a;m) consists of O-cycles on 2~ x
B, . Take a closed point P : Spec(k(P)) — 2 x B, as a generator and it is enough to show
the cycle [P] associated to P is in the image of . By the definition of v, the trace map on
the additive Chow groups and the norm map on the Mackey products are compatible as in
the following commutative diagram:

M e P
(9CHd+G(Xk(P),a;m)®<5Hd i (X/k(P)va/)> (k(P)) — TCH’**(Zy(p), s m)

Nk-(P)/k\L lTrk(P)/k

’ ! w
(90Hd+a(x,a;m)%<€ﬂd +a (X’,a’)> (k) —— TCH™* (2, cm).
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Thus, to show the assertion that [P] is in the image of ) we may assume that P is a k-
rational point, that is, k(P) = k. The point P is determined by the maps Px : Spec(k) —
X x B, and Py : Spec(k) — X’ x (0% satisfying 74(Px x Px/) = P, where 7 : (X x By) x
(X' x[0") — 2 x By is the exchange of factors. This gives cycles [Px] on TCH* (X, a; m)
and [Px/] on CH? "% (X’ a’). Therefore, denoting by p: 2 — X and p/ : 2 — X’ the
projection maps, we have

P [Px], [Px] ) = )" ([Px]) 0 p* ([Px]) = [P],

where the last equality follows from the very definition of the intersection product. The
assertion follows from this. O

Theorem 3.5. Let X be a projective smooth variety of dimension d over a perfect field k
with char(k) > 0. Then,

TCHd+q(X, gm) =0, forq=2.

Proof. There are isomorphisms €H*(k,1) ~ G, (from (6)) and JCH'(k,1;m) ~ W,,
(from (12)) as Mackey functors. By Theorem 3.3 and Theorem 3.4, we have surjective
homomorphisms

q—1
——N

M M M M d 1 M d+q—1
(Wm®Gm®---®Gm®<€H (X))(k)—» FCH (k, 1;m) @ CH" (X, g — 1) ) (k)

% TCH' (X, g;m)
for ¢ = 2. The far left vanishes from the lemma below and the assertion follows. m|

Lemma 3.6 ([5], Lem. 2.2). Let G be a unipotent smooth and commutative algebraic group
over a field F and A a semi-abelian variety over F. If F is a perfect field of char(F) > 0,

M
we have GRA = 0.
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CONSTRUCTION OF A POSSIBILISTIC REGRESSION MODEL BASED
ON POSSIBILITY GRADES WITH VAGUENESS AND RELATIONSHIP
WITH PARAMETERS

Y OSHIYUKI YABUUCHI

ABSTRACT. A possibilistic regression model is an interval-type model. An interval-
type model intuitively helps us to understand the possibilities of the target system.
The data distribution defines the possibility interval of the system, which may hinder
our understanding of the analysis results. Improved models have reported using out-
lier problem approaches. We propose models to deal with the vagueness included in a
possibility grade derived from a possibilistic regression model and samples. Unfortu-
nately, the results obtained by the proposed models were not as expected. Then, the
improved model was proposed to handle the vagueness included in possibility grades.
The numerical example confirmed that the proposed model could eliminate the influ-
ence of unusual samples and describe the possibilities of a focal system. The paper
reports the improved model and the results by using a numerical example.

1 Introduction The interval-type possibilistic regression model proposed by Tanaka
and Watada [16], as used in this paper, includes all samples. An interval output illus-
trates the possibility distribution of a focal system. This interval type is rewritten in
linear programming (LP), and can be obtained easily. Furthermore, there are various
models [1, 4, 7, 12] using possibilistic regression in addition to the least-squares model
proposed by Diamond [2, 3]. Fuzzy least squares based on a fuzzy random variable
[9, 10] provides a lot of information. However, we use an interval type from the view-
point of soft computing, because an interval model helps us to understand the analysis
object intuitively.

An interval type illustrates the possibilities of an analyzed system by including all
samples. The shape of a model is defined by that of the data distribution. For this
reason, an interval type is susceptible to the shape of the data distribution. Therefore,
processing of outliers for an interval type [14, 15], in which a model coincides with
a focal system [5, 8, 11, 18, 19, 20, 21, 22, 23|, a linguistic regression model [17],
and so forth, are reported. We have proposed a model to deal with the vagueness
included in a possibility grade derived from a possibilistic regression model and samples
[24, 25]. The objectives of the proposed model are to remove the influence of unusual
samples and describe the possibilities of a focal system so that it can be understood
subjectively. Unfortunately, the results obtained by the proposed method were not as
expected. That model is sometimes unable to remove the influence of unusual samples
and distortion of the model. Therefore, a model dealing with the vagueness included
in the possibility grade has been built [24, 25]. The proposed model made it possible
to eliminate the influence of unusual samples and describe the possibilities of a focal
system [26].

This paper is organized as follows. Section 2 briefly explains the interval type of the
possibility regression model dealt with in this paper. Section 3 explains the proposed
model to process vagueness included in possibility grades. In Section 4, we confirm
the usefulness of the proposed model using a simple numerical example. Section 5
concludes this paper.

Key words and phrases. Fuzzy Regression Model, Fuzzy Number, Possibility Grade, Vagueness, Error.



258

Y OSHIYUKI YABUUCHI

2 Possibilistic Regression Model Consider a possibilistic regression equation us-
ing triangular fuzzy regression coefficients:

(1) Y; = (a0, co) + (a1, c1)min + - + (ap, ¢p)Tip = (@i, clxs]).

The independent and dependent variables are @; = (1, i1, ..., Tip) and y; in sam-
ples (@i,y:)(i = 1,2,...,n). The center and width of the coefficient shown in equation
(1) are @ = (a1, a2,...,ap) and ¢ = (c1,c¢2,...,¢p), respectively. An output of equa-
tion (1) contains this dependent variable. In addition, the vagueness of this model,
that is the widths, should be small. Therefore, a possibilistic regression model can be
rewritten in the following LP:

min. F

(2)

st.  ax; — x| <y <ami+cle|, i =1,2,...,n.

In equation (2), F employs various functions such as widths of coefficients, F' = Z? Cj,
and widths of forecasted values, F' = 37 c|a].

The regression coefficients are a symmetrical triangular fuzzy number, and the
model describes the possibility distribution of the target system. The predicted value
Y- (Yic, YZ-W) in the independent variable z; is the interval value with the center ;¢ =
ax; and the width YW = cla;|. The possibility grade p(y:, ;) is written as follows:

|y —Yic\>
YW '

(3) p(ys, ;) = max (0, 1-
As shown by equation (3), the range of possibility grades is [0,1]. When the regres-
sion coefficients are symmetric triangular fuzzy regression coefficients, their outputs
are also symmetric triangles. The possibility grade is the maximum value 1 at the
center of the distribution, and becomes the minimum value 0 when leaving the center.
The conventional possibility regression model does not consider the possibility grade
because it is a model with the least vagueness. On the other hand, the models we
propose maximize the possibility grade. The model proposed in this paper deals with
vagueness included in the possibility grade. For this reason, the proposed model can
eliminate the influence of unusual samples and illustrate the possibility of the focal
system. The next section describes the proposed model.

3 Possibilistic Regression Model with Vagueness in Possibility Grades Ob-
served variables include various errors. Errors included in sample attribute values are
discussed in statistics and probability, and many research results have been reported.
For a possibility grade [6], research results dealing with grade fluctuations are reported
using Type-2 fuzzy sets. However, the method using Type-2 fuzzy sets is more compli-
cated than handling using Type-1 fuzzy sets. Therefore, we do not use Type-2 fuzzy
sets in this work, and consider a method to easily handle the vagueness included in
possibility grades.

Here, because attribute values contain an error, it is natural to think that possibil-
ity grades obtained from attribute values also contain an error. Therefore, although
possibility grades can be obtained depending on a relationship between membership
functions and samples, we assume that a grade has flexibility [24, 25].

In this paper, the proposed regression model handles samples with vagueness in
the possibility grade to illustrate the possibility of the focal system. For that purpose,
this section explains handling with samples and LP problems to obtain the proposed
model.



CONSTRUCTION OF A POSSIBILISTIC REGRESSION MODEL BASED
ON POSSIBILITY GRADES WITH VAGUENESS AND RELATIONSHIP
WITH PARAMETERS

Y A

yit

Yi ~——

Figure 1: Vagueness included in a possibility grade

3.1 Dealing with Vagueness Including Possibility Grades The possibility
grade of attribute value y; is assumed as u;. That is, let us consider that possibil-
ity grades, p;, contain an error, e;. At this time, as shown in Fig. 1, let the true
possibility grade be u;. Then, the attribute value corresponding to the true possibility
grade pf will be the value corresponding to vy} in Fig. 1. Let Y be the center of the

membership function and YV be the width, then we can obtain the following:
(4) vi =y +ey".

Then we replace y; and y; to find a possibility regression model.

A possibilistic regression model as shown by equation (2) explains the proposed
method. A possibility grade p; of the ith sample contains an error e;, and the following

relationship holds with the true possibility grade p; that contains none of error:
(5) pi = i + e

Here, because a possibility grade takes values of [0, 1], e; also takes values of [—1, 1].

3.2 Formulation of Model Handling Vagueness Included in Possibility
Grades From the above, the inclusion relation between y; and a model output Y; =

(axi, c|z;|) are as follows:
(6) ax; — clx;| < y; +eiclzi| < ax; + clz|,i=1,2,...,n.
As a result, equation (2) can be rewritten as follows:

min. F
(7) s.t. ax; — clz;| <y + eic|xi| < ax; + c|x;),

les] <e,i=1,2,...,n.

Here, € is a parameter that specifies the range of vagueness included in the possibility
grade. As possibility grades are real numbers, ¢ is also a real number. Furthermore,
the objective function F' uses an appropriate function according to the data, similar

to the conventional possibilistic regression model.

Using only this, the influence of unusual samples can be removed. We confirm this

concretely using a numerical example.

259



260

Y OSHIYUKI YABUUCHI

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30

(c) Model 3 denoted by Eq.(11) (d) Model 4 denoted by Eq.(12)
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(e) Model 5 denoted by Eq.(13)

Figure 2: Obtained models in the numerical example

4 Numerical Example In this section, the same numerical example as in [25] is
used. The numerical example adds errors with probability to the two variables, x and
y, in the relationship of y = x. In addition, samples contain one unusual sample, and
the model parameter constraint is set to |e;| < e = 1. In the numerical example, the
following possibilistic regression equation will be found:

(®) Y = (ao,co) + (a1, c1)z.

We obtain model 1 with F = Zf ¢;j as the objective function of the interval-type
possibilistic regression model shown by equation (2), and model 2 with the objective
function F' = }"7 ¢|x;|. In addition to models 3 and 4, which add the vagueness of
grades to models 1 and 2, we also obtain model 5 that considers the vagueness of
possibility grades to the model proposed by Yabuuchi [24].

The outputs of models 1 to 5 are denoted as Y7 to Y5, respectively. The five models
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Table 1: Features of obtained models in the numerical examples

Model 1 Model 2 Model 3 Model 4 Model 5

Sum of widths of regression 0.685 6.733 0.435 1.513 0.857
coefficients
Sum of widths of forecasted 344.521 432.172 437.480 348.199 254.751
values
Sum of possibility grades de- 21.473 15.927 16.420 17.003 14.018
rived from the model and

samples

Sum of possibility grades for 2.542 2.287 3.077 3.569 4.244
widths of forecasted values

Outside samples of intervals 3 3 7

are as follows:

( = (4.232,0) + (0.908,0.685),
(10) Yz = (8.627,6.717) 4 (0.634,0.016)z,
(11) Y = (4.495,0) + (0.701,0.435),

(12) Y4 = (4.039, 1.244) 4 (0.859,0.270)z,
(13) = (2.944,0.643) + (0.973,0.214)z.

The least squares is as follows:
(14) Ys =4.316 4+ 0.827x.

In Fig. 2, the original sample is rounded, and the values converted by equation (4) are
indicated by a rhombus. Fig. 2 shows that the models handling vagueness included
in possibility grades are not distorted. However, the value of the constant term seems
to be large owing to the influence of a specific sample. For this reason, the center
of model 3 has a small inclination. The center of model 3 is similar to model 1, the
constant term is slightly larger, and the inclination seems to be smaller. On the other
hand, in model 5, the centers of the model and the data distribution almost coincide,
the width of the forecasted value becomes small, and the possibility of the system can
be understood intuitively.

The information obtained from these models is listed in Table 1. The possibility
grade is large when the sample is close to the center, so the model with the small width
of the interval has the small sum of possibility grade. For this reason, the sum of the
possibility grades of model (9) has the maximum value, and that of model (13) has the
minimum value. However, in Table 1, the sum of the possibility grade for the width of
the forecasted value is opposite to the sum of the possibility grades. This is, the sum
of the possibility grade for the width of the forecasted value of the model (9) has the
second smallest value, and that of the model (13) is the maximum value.

From the above, we can summarize the features of the proposed model that consider
the vagueness included in the possibility grade. First, it was subjectively perceptible
that the model describes the data distribution. Second, the influence of the outlier
was eliminated, and a mode without distortion in shape was obtained.

In addition, its effect was improved by using the model in conjunction with the
model proposed by Yabuuchi [24] that maximizes the sum of the possibility grade for
the width of the forecasted value.

In the above, the parameter € of models 3-5 has been set to 1 because the range of
possibility grades is [0, 1]. On the other hand, because models 1 and 2 are conventional
models, this parameter was not used. Here, the models are obtained by using 0.5, 1.0,
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Table 2: The coefficients of the three models using ¢ = {0.5,1.0, 1.5,2.0}

e=0.5 e=1.0 e=1.5 e=2.0
Model 3 Ay |(4.232,0 ) (4.495, 0 ) (4.232, 0 ) (4.363, 0 )
A; [(0.908, 0.457) (0.701, 0.435) (0.908, 0.274) (0.891, 0.230)
Model 4 Ap [(3.697, 1.137) (4.039, 1.244) (3.990, 2.169) (4.132, 1.495)
A; [(0.956, 0.359) (0.859, 0.270) (0.808, 0.138) (0.786, 0.191)
Model 5 Aj | (2.866, 0.709) (2.944, 0.643) (2.944, 0.643) (2.944, 0.643)
A; [(1.056, 0.475) (0.973, 0.214) (0.973, 0.214) (0.973, 0.214)

Table 3: Features of the three models using £ = {0.5,1.0,1.5,2.0}
e=05 e=10 =15 =20
Index 1 | 459.361 437.480 275.617 231.563
Model 3 | Index 2 18.403 16.420 13.721 12.253
Index 3 3.151 3.077 3.731 3.912
Index 1 | 431.065 348.199 273.368 284.759
Model 4 | Index 2 18.044 17.003 13.359 13.483
Index 3 3.175 3.569 3.326 3.393
Index 1 | 521.995 254.751 254.751 254.751
Model 5 | Index 2 18.663 14.018 14.018 14.018
Index 3 2.928 4.244 4.244 4.244

Index 1: Sum of widths of forecasted values

Index 2: Sum of possibility grades derived from the model and samples

Index 3: Sum of possibility grades to widths of forecasted values

1.5, and 2.0 as the parameter €, and the characteristics are confirmed. Table 2 lists the
coefficients obtained by the models. Even if the parameter is changed, the center of the
models does not change significantly. In addition, the width of the model decreased
by increasing the value of the parameter. Furthermore, in model 5, the same model
was obtained when € > 1.0.

Table 3 lists the features of the model obtained by changing the parameter e. When
e was changed from 1.5 to 2.0, the possibility grade of models 3 and 4 did not change
significantly. In particular, when ¢ was increased, the width of the predicted value and
the value of the possibility grade became smaller. However, index 3, which divided the
possibility grade by the width of the predicted value, increased. In general, if the width
of the predicted value is small, the sum of the possibility grade is also small. Then, the
relationship between indices 1 and 2 can understand. Index 3 has a large value when
the samples are near the center of the possibility interval. Therefore, increasing the
value of the parameter € gathers samples near the center of the possibility interval.

As described above, the width of the solution search space is increased by increasing
the value of the parameter, and an unexpected solution is obtained from LP. Although
the upper limit of the number of samples processed with fuzziness possibility grade
was limited, index 1 of model 4 is larger for ¢ = 2.0 than for ee = 1.5. In addition,
model 5 uses possibility grades for the objective function. For this reason, model 5
might not be influenced by the parameter € more than necessary.

To confirm these results, the models are shown in Figs. 3-5. In Figs. 3-5, the
boundaries of the model when ¢ is changed to 0.5, 1.0, 1.5, and 2.0 are shown by a
dashed-dotted line, dashed-two dotted line, dashed line, and dotted line, respectively.
The features listed in Tables 2 and 3 are confirmed by the results in Figs. 3-5.

The statistical model emphasizes samples away from the center of gravity of the
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data distribution. On the other hand, samples away from the center of the interval
model distort the model. We also found that the parameter of the proposed model
adjusts the influence of samples away from the center of this model.

5 Conclusion In this paper, we have proposed a possibility regression model con-
sidering the vagueness included in possibility grades. Then, the usefulness of the
proposed model was confirmed by using the numerical example with outliers. The
proposed technique improved the forecast accuracy of models and eliminated the in-
fluence of unusual samples. In addition, by adjusting the parameter ¢, it is possible to
adjust the influence of samples away from the center of the model.

Furthermore, it has been improved by using it in conjunction with the model pro-
posed by Yabuuchi to maximize the sum of the possibility grade for the width of the
forecasted value. Finally, the proposed model only arranges the constraints as shown
in equation (6), and sufficient results have been obtained.
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ABSTRACT. Road safety and traffic efficiency are two important applications of a
Vehicular Ad-hoc Network (VANET). In VANET, safety and emergency messages are
broadcasted to all vehicles in a risk zone before the validity of the message expires.
Emergency and safety-related communications have a very strict real-time requirement
of 100ms latency from an originating host’s application layer to destination host’s
application layer and a Packet Delivery Ratio (PDR) of 90% and above. Due to
one-to-many nature of these emergency messages, public-key encryptions may not be
employed. Furthermore, vehicles on the road have no constant access to the Roadside
infrastructure. Thus, access to a Public-key Infrastructure or a Certificate Authority is
not always guaranteed. Exploiting this weakness, any attacker with malicious intention
can broadcast falsified emergency messages with spoofed identity to disrupt the normal
operation. They may also do in order to launch a terror-like attack. Since the identity
of the originating malicious vehicle cannot be established, it is not possible to take any
legal action against the owner of these vehicles.

In this paper, we propose a smart digital certificate mechanism using a modified
threshold cryptography scheme, that we call it as a pseudo-identity based encryption
to identify the origin of every emergency message. Since the keys are not forgeable,
any such malicious activities are immediately known to the receiving host vehicles
and vehicle registration authorities, thus facilitating legal action. The main advantage
of our proposed scheme is that it can work without constant access to a Public-key
Infrastructure or a Certificate Authority. Our scheme satisfies the identical security
requirements as that of the underlying public-key cryptography and incurs the same
memory and run-time complexity.

The proposed scheme can also be implemented in a Mobile Ad hoc environment
or a distributed environment, where source authentication is an important factor, and
there is no constant access to the backbone of the network.

1 Introduction In this paper, we demonstrate a class of attack on the emergency and
safety message transmission in a Vehicular Ad hoc network (VANET), by exploiting the
integrity and the authentication of the message transmission. Due to real-time requirements,
the current state-of-art in a vehicular network does not offer any solution to this problem.
In this paper, we introduce a mathematical framework that we call as a Pseudo-identity
based encryption that can potentially offer an efficient solution to the demonstrated attack
without incurring many overheads.

An ad hoc network is a new paradigm of wireless communication for mobile nodes. It
has two special characteristics, which make it different from the conventional wired network.
First, there is no fixed infrastructure like a wired or a cellular phone network. There are
no base stations, switching centers or routers to route packets to destinations. Secondly,
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in an ad hoc network, the network topology is not fixed due to the mobility of nodes.
In ad hoc networks, nodes that are in the same radio range of each other communicates
directly in a peer-to-peer fashion. However, nodes that are not in the same radio range
may still communicate through the help of intermediate nodes. In this case, intermediate
nodes act as routers to establish a multihop communication. Thus in a mobile ad hoc
network (MANET), a node may act as a router as well as an end-node. Depending on the
application environment a mobile node may have more than one role to play apart from
acting as a router and an end node. Even though these networks were originally developed
for military tactical applications, due to the reduction in the cost of wireless transceivers,
hardware and the increase in the popularity of ubiquitous applications, ad hoc networks are
deployed everywhere from a small home, video games to a battle field.

Vehicular Ad hoc Network (VANET) is a special type of a Mobile Ad Hoc Network
(MANET), where the mobile hosts are the vehicles on the road. They communicate with
each other wirelessly to establish a network. Although, passenger (and driver) safety tech-
nologies such as airbags, seat belts and anti-skid brakes are available, the deaths due to road
accidents have not come down. At this moment, road traffic fatalities are the 8th leading
cause of death globally, and the leading cause of death for young people aged between 15
and 29 [1]. If no action is taken to address the current crisis, global road traflic fatalities are
forecasted to rise to more than 2.4 million deaths per annum by 2030 [7]. In order to reduce
the number of fatalities and serious injuries, expensive sensors, radars, cameras and other
state-of-art technologies are currently integrated into vehicles. These devices communicate
with neighbouring vehicles in an ad hoc fashion when it detects an abnormal situation like
an accident, slippery road conditions or any other noticeable hazard.

Dedicated Short-Range Communication (DSRC) refers to the use of Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communication that was designed to improve
road safety and transportation efficiency. DSRC supports several applications. Among
them, Cooperative Collision Avoidance (CCA) is the most important one. In DSRC, V2V
communications are established through the use of VANET. VANETS use on-road vehicles
as nodes to create an ad hoc network. DSRC supported applications can be classified into
three major classes. They are: Safety-related applications, Non-safety-related applications
and Infotainment. Speed management and Cooperative navigation are two examples of
non-safety applications. Tourist and Traveller Information Support, Streaming music are
two examples of Infotainment. These two classes of applications require communication
infrastructure such as Roadside Unit (RSU). The motivation for allowing non-safety ap-
plications over DSRC is to create commercial opportunities, thereby, making the DSRC
technology more cost-effective.

Road safety is not the only road issue. Traffic efficiency is another major issue, especially
in metropolitan areas all around the world. The cost of the time spent sitting in traffic has
been estimated at $11.1 billion, annually [6]. This figure does not include the cost of the
fuel burned waiting for traffic to move, the cost to the environment or the flow-on costs
to the nation’s health system. Particularly in Australia, statistics show that the cost of
congestion was $9.4 billion in 2005, and the social costs of congestion are forecasted to
reach $20.4 billion by 2020 [3]. These figures and statistics indicate that the need for a
significant reduction in both traffic congestion and vehicle crashes is a serious challenge
throughout the world.

In VANET, safety messages are broadcasted to all vehicles in a risk zone before the
validity of the message expires. A risk zone is the area in which the content of a specific
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safety message is relevant to all vehicles. The size of the risk zones varies depending upon
the requirements of different safety applications. The risk zone of a particular application
might be much larger than the one-hop transmission range of the source node. As a result,
multi b7 op broadcasting is required for vehicles in the risk zone which are not in the one-hop
transmission range of the source node. Thus a vehicle receiving a multi-hop safety message
needs to rebroadcast before the expiry of its lifetime. The Time-to-live (TTL) value is the
number of hops the emergency message is valid before it is discarded. The source or the
originating vehicle of an emergency message sets the TTL value. Every vehicle that receives
an emergency message reduces this value by one before the message is rebroadcasted. A
vehicle that receives an emergency message with a TTL-value 1 will not rebroadcast the
message.

Vehicle-to-Vehicle (V2V) safety communication has a very strict real-time requirement
of 100ms latency from source host’s application-layer to a destination host’s application-
layer, and a Packet Delivery Ratio (PDR) of at least 90% [12]. Most of the safety messages
in a vehicular network are applicable to a region (or a smaller neighbourhood like accident
zone), rather than to another individual vehicle. Thus, broadcasting is the most efficient
way of disseminating emergency messages. Due to this real-time requirement, heavy cryp-
tography mechanisms are not employed. Furthermore, due to one-to-many nature of the
safety messages, the use of any encryption is not preferred. Whenever a vehicle received
a safety message from another vehicle, it is impossible to identify the source and the au-
thenticity of the message. To verify the identity of the source vehicle, digital signature may
be used. However, without access to a Public-Key Infrastructure (PKI) or a local trusted
Certificate Authority (CA); it is impossible to verify a digital signature. In a vehicular com-
munication, we cannot always assume that a vehicle has access to a Roadside Unit (RSU) to
obtain the public-key information. We exploit this weakness in this paper to demonstrate
a message falsification attack. This is presented in Section 2. In Section 3, we define a
pseudo-identity based encryption scheme based on Shamir’s threshold cryptography [10].
Based on the proposed scheme, the identity of the transmitting vehicle can immediately
be identified even if there is no access to a RSU or CA or PKI. In Section 4, we present
our solution architecture to solve the message falsification attack presented in Section 2. In
Section 5, we present the concluding remarks and future direction.

The readers are referred to Hartenstein and Laberteaux [5] for more fundamental details
on VANET.

2 Message Falsification attack In this section, we explain how a malicious vehicle
can exploit the absence of a safety message authentication to launch a message falsification
attack. Traditional security threats in wireless communication, such as eavesdropping,
forgery, and modification, could be easily taken advantage of in VANETSs [13]. In order for
the CCA to work effectively, all vehicles in the road network must trust each other and are
able to trust the alerts and warnings issued by V2V devices working with messages from
other V2V devices. This is a major assumption and can be exploited to launch an attack.

Any vehicle that detects a road-safety concern will immediately broadcast an emergency
message. The message will contain information about the specific condition. All vehicles
that receive this safety message must process them and take appropriate action. If the
message is applicable to a multi-hop environment, the receiving vehicle must rebroadcast
the safety message.

Let T be a vehicle with a modified DSRC protocol stack. It is capable of sending forged
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Figure 1: [12]

emergency messages using falsified vehicle identification. Since DSRC use the traditional
802.11 wireless spectrum, the vehicle may also be equipped with one or more mobile wireless
devices capable of sending forged emergency messages. Even though the DSRC standard
dictate the amount of transmission power to be used in broadcasting emergency messages,
T may violate this standard and transmit these forged messages at a much higher power
level to reach a larger region. 7" may transmit a variety of safety-critical messages such as
accident, road closure, severe congestion-ahead etc. to divert the vehicles behind through an
alternative congested route. Even though 7" may not gain any financial advantage through
this attack, he may disrupt the legitimate DSRC services to launch a Denial of Service
(DoS) attack. In a worst case scenario, the aides of T' may launch a terror like attack on
the congested road.

In the following subsection, we simulate an emergency communication in a vehicular
network and demonstrate how important is the central region surrounding an emergency
zone (like an accident, or the eye of a congestion).

2.1 Communication overhead in a Central region In our simulation, we follow the
DSRC standard that every vehicle’s transmitter has the same transmission range as that
of other vehicles in the network (typically 300m). In the literature, vehicles on the roads
are modeled as an Interval graph [5]. However, we note that this modeling is valid only
for single lane traffic. In typical multilane freeway traffic, vehicles are located in an n x m
rectangle. Since each vehicle has the same transmission distance, without loss of generality,
we assume that all the vehicles have the unit transmission distance. If the distance between
two vehicles is less than one, we join them by an edge. Thus, it is easy to see that the
network topology in this case is a unit-disc graph. For each vehicle T', we define r(T') as
the number of emergency messages the vehicle T' has rebroadcasted. A realistic vehicular
scenario is presented in Figure 1.

We use the Simulation of Urban Mobility (SUMO) traffic simulator to place k number
of vehicles (k range from 5 to 100 in step of 5) in a 1km x 8-lane road grid (4 lanes on either
direction). We create a random emergency zone within the first 50m of this grid, as in Figure
1. Any vehicle that approaches this emergency zone will trigger an emergency broadcast
message. We set a Time-to-live (TTL) value of 3 for each triggered message. Thus every
vehicle that receives an emergency message with a TTL value of 2 or 3 will rebroadcast the
emergency message after reducing the TTL value by one. For a given experiment, we find
the maximum, minimum, mean and median number of emergency messages rebroadcasted
by a vehicle. For each k, we generate 50 different topologies. We take the average across
all the 50 different topologies to remove any random simulation artifacts. We present our
findings in Figure 2. As we can see min {r(7")} is almost zero for the all the topology we
generated. This is because that, there are always vehicles in the edge of the emergency zone
that do not rebroadcast any message. On the otherhand, the max {r(T)} grows rapidly
with respect to the number of vehicles in the topology. On a topology with 100 vehicless,
the max {r(7T")} is 1500. At all the stages the mean and median are close-by (this property
also proves that our simulation results are unbiased and the traffic generation is symmetric).
We have the mean and median values close to 33% of the maximum {r(T)}.
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Figure 2: Communication overload

Based on the above experiment, a vehicle (or a group of vehicles) with malicious intention
will transmit as many as thousands of falsified emergency messages using different forged
vehicle identifications to launch a DoS attack. They may also use the TTL-value other
than 3 to pretent that they are not the originating source of an emergency message. In the
absence of any digital certificate, it is hard for a law enforcing agencies to take legal action
against these vehicles.

3 Smart message authentication scheme for safety and emergency messages
in a Vehicular network In this section, we propose a smart message authentication
scheme to protect vehicular communication from the message falsification attack mentioned
in Section 2. Even though, there are a number of proposals available in the literature, our
proposed scheme will work in the absence of any PKI or CA. Thus, our proposal is more
suitable for a VANET and MANET environments, where there is no guarantee to have
access to a central infrastructure.

In VANET, message falsification attack is possible due to the lack of a message au-
thentication feature. However, traditionally, digital certificate is used to solve the message
authentication problem. In order for the message authentication system to work effectively,
the public key of the transmitting vehicle must be available with all the receiving vehicles.
This can be done in two ways; the local registration authority may load securely the public
key of all registered vehicles to every vehicle in the country. A list of revoked keys is trans-
mitted to vehicles whenever, they have access to RSU. Thus every vehicle #i public-key
database is up to date to a certain degree. However, the database will be large due to the
number of registered vehicles in every city (or state or country). This not only requires
more storage, but increases the latency due to database search. In the worst case scenario,
database search consumes O(n)-time complexity for a linear search or O(log(n)) time, in
case the data is organized in a binary tree. Thus, the real-time requirement of 100ms for
emergency and safety messages in a vehicular network may not be achievable. An alterna-
tive to the offline storage of public key is to have a constant access to a trusted certificate
authority to obtain the public key of the transmitting vehicle. This requirement may be
achievable in a wired network; however, in a VANET or in a MANET environment, there
is no guarantee to have a constant access to a trusted CA.

These requirements force us to look for a new paradigm to provide solution to the
message falisification attack.

In our earlier paper [9], we introduced the notion of pseudo-identity based encryption.
In this paper, we extend our original idea and provide a solution to the message falsification
attack in a vehicular network.

In a vehicular network, more than one vehicle may detect the same road emergency
condition. If the condition is severe like road accident, road closure or severe congestion,
several vehicles may detect it simultaneously. Thus, if the same emergency condition is
transmitted by several vehicles as the originating source (with the maximum TTL value),
then the transmitted message may be trustable. We also incorporate this observation in
our framework. For this purpose, we use the threshold cryptography introduced by Shamir
[10].
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In a (k, n)-threshold cryptographic scheme, the secret key d is divided among n-
shareholders such that

e The knowledge of k or more shares make it possible to compute the global secret key

d.

e The knowledge of k-1 or fewer share make it impossible to compute the global secret
key d.

In threshold cryptographic systems, k is chosen in such a way that any adversary can
break (k-1) or less shareholders. Thus the system may have less than k& malicious share-
holders.

Since our proposed algorithm is based on threshold cryptographic scheme, we describe
briefly here for completeness.

The threshold cryptography is based on polynomial interpolation.  Given k distinct
points in the two dimensional plane (z1,v1), (2, y2), ... (Tk, yx), (With distinct z}s), there
is one and only polynomial P(z) of degree k-1 passing through all the k-points.

Let Ppub, Ppri be the public and the private key for an underlying public key cryp-
tography (like RSA). k-threshold cryptography is used to share the private key P,,; to all
legitimate nodes (called shareholders), through a random polynomial f(z) of degree k-1.

Even though, polynomial interpolations are defined over IR or over any general ring,
threshold crypto systems use polynomial interpolation over Z,. The choice of n will be
decided by the underlying public key crypto system.

Let f(x) = ap+a1x+azx®+. .. ar_12"~! be a polynomial of degree k-1 such that f(0) =
Pyrimodn and a;,as,...,a—1 belong to some arbitrary ring Q. For each legitimate node
with node identity v;, its secret share is SK; = (f(v;)mod n). For any coalition of k-nodes
v1,2,. ..U, Lagrange interpolation states that f(0) = P,;= Z?zl SKj * ly,(0) mod(n),

_ (z=v))(z—v2)...(x—vj_1)(x—v41)...(x—Vk)
where ZVJ (:E) - (vj—vl)l('uj—1122)...(111—11]',11)(1)]-—v:il)...(vj ka)

= SKj 1y, (0). The knowledge of Py, can expose SK;. Thus, they cannot be revealed to
any one.

is the Lagrange coefficient. Let Py,

Let X be any arbitrary message for which we wish to compute the digital signature
XPrri Since, none of the shareholders have the knowledge of P,,;, we have to contact k
shareholders, say, (v1, va, ---, v3) to obtain their partial digital signatures X%, Since
the discrete log problem is computationally hard, from the partial signature, no adversary
can compute SK;. We can then compute the digital signature of X using the formula:

k
[T (XS5 O = (X) 2= St O) = Py,

Thus by the coalition of k-shareholders, any message can be digitally signed by the
global secret key without the presence of an CA. Therefore, there is no need for the CA
after the bootstrap process.

The threshold cryptography in its original form has the following disadvantages:

1. From partial digital signatures X°%i it is impossible to obtain the identity of the
signed shareholder.
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2. It is not possible to verify whether a shareholder whose identity is v; has signed
properly or not.

Since the above two properties are important for providing solution to message falsification
attack, we cannot use the threshold cryptography.

Shamir [11], proposed the concept of identity based cryptography. In this scheme, a user’s
public identity like the email address is used as his public key. As a result identity-based
cryptography eliminate the need for a PKI or a CA. Although Shamir proposed the concept,
he was unable to construct any identity-based cryptographic scheme and conjectured the
existence of such a scheme. His conjecture was independently solved by Boneh and Franklin
[2] and Cocks [4].

Boneh and Franklin’s solution is based on the Weil Paring. Their algorithm is called as
Basicldent. Elliptical curve variant of the bilinear Diffie-Hellman (BDH) problem is consid-
ered as the underlying hard problem in their scheme. It has been proved that in a random-
oracle model, the protocol is semantically secure under the BDH assumption. Though their
algorithm is computationally secure, it is hard to implement on a MANET/VANET environ-
ment due to its processor and memory requirements. In a VANET environment, Basicldent
may not satisfy the real-time requirement due to its run-time complexity.Basicldent is not
chosen ciphertext secure. However, Fujisaki-Okamoto transformation allows for conversion
to a scheme having this property called Fullldent.

Cocks model uses quadratic residues modulo over a large composite integer as their
underlying hard-problem. Though his solution is much simpler compared with [2], it is not
practical as it uses bit-by-bit encryption, which is not economical.This scheme also does not
preserve key-privacy, i.e. a passive adversary can recover meaningful information about the
identity of the recipient observing the ciphertext.

3.1 Pseudo-Identity based threshold cryptography It is important to note that in
a threshold cryptographic scheme, the private share of each shareholder may not have a
public key component. Even, if some private share has a public key component, the public
key may not reflect the identity of the node.

In this section, we modify the threshold cryptographic scheme in such a way that every
secret share has a corresponding public key component and the public key component
will be related to the identity of the node. We call it as pseudo-identity based threshold
cryptography. We outline the importance of the threshold parameter and its releveance to
our work in the following subsection. In vehicular communication, the CA may be the local
registration authority or someone designated by the local registration authority.

As like the Shamir’s threshold cryptography, the CA must construct the global private
and public key pair for any underlying public key cryptography (We assume it to be RSA
here). We outline the process as follows:

Let P, @ be two safe-primes. That is P = 2P; + 1 and Q = 2Q1 + 1, where P; and
Q1 are prime numbers. Let N = P x Q. N is used as the modulus for both the public and
private keys. The RSA, being a block cipher, both the plain text and the cipher text are
integers between 0 and N-1. Then the Euler’s tortient function ¢(N) = (P —1)(Q — 1) =
4P;Q1. The CA then choose a non-trivial number d as its global secret key in such a way
that d has no common factor with N and ¢(N). Since ¢(N) is an even number, it follows
that d must be an odd number. The CA then choose the global public key e in such a way
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that d x e = 1(mod ¢(N)). It is easy to see that d and e will have the following properties:

1. They are odd numbers

2. e and d are not equal to P, Py, @, (1 and their multiples.

We now outline the modification that leads to our proposed design:

Let k # 1 be the threshold system parameter. Let f(x) = d + R(x); where R(z) =
a1z + asx® + ...+ ap_12F 1 and a;s belong to some ring of integers Q be the threshold
system polynomial. Except k, all the other system parameter are kept secret and not known
to anyone except the CA.

Let X; be the identity of the i-th node in the network. Then according to the traditional
threshold cryptography, its secret share is SK; = f(X;) = d + R(X;) (mod N), where N
is the integer modulo defined above. In order for SK; to have a public key component, it
must satisfy the above two properties.

We first derive a condition to ensure that SK; is odd for every integer 4. Since d is an
odd number, SK; is an odd number if and only if R(X;) is an even number.

Theorem 1. Let R(z) = a17 + agz? + ... + ap_12%~1, where a's belong to some ring of
integers Q. R(i) is an even number for every integer i if and only if the number of odd als
are even.

Let R(x) be an even integer for every integer ¢ € Q. In particular, R(x) is an even
integer for x = 1. That is R(1) = a1 + ag + ...+ agx_1 is an even integer. By grouping odd
and even als, we have R(1) = (sum of odd a}s) + (sum of even als). This implies that
(sum of odd a}s) is an even number; and hence the number of odd ajs are even.

Conversely, let the number of odd a}s are even. Let  be an even integer. Then a;z° is
always an even integer. Since R(x) is a sum of even integers, it is an even integer. Now let
y be an odd integer. Then a;y* is an even number whenever a; is an even number and odd
number if a; is an odd number. Since the number of odd als are even, it follows that in
this case also R(y) is an even integer.

We now present an algorithm in which the keys are computed in such a way that every
secret share has a corresponding public key component.

Step 1: Let X be the i-th shareholder whose non-forgeable identity (similar to the MAC
address; in case of VANET, it is the vehicle’s registration number (REGO)) is X;. Let f(z)
= d + R(x) be the secret polynomial, where R(z) is an even number for every integer z.
Choose the smallest integer r; such that SK; = f(X; +r;) = d + R(X; + r;)(modN) has
a public key component and SK; is not distributed to any shareholder before. Since the
modulo N is large, such r; will always exist.

Now SK; is the secret share for the node X with the non-forgeable ID X; and PK; is
its public key component for this corresponding SK;. < SK;, PK;, N > is loaded on to
X;’s secure module during the registration or bootstrap process.

Step 2: After computing the public key for n-shareholders whose non-forgeable IDs are
X1, Xa,...,X,, the CA then computes the public key polynomial P(z) = bo+ bz + bax? +
cooFby_12"7 1 of degree n — 1 as whose bs are given as follows:
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1 X, X ... oxpt bo PK,
1 X, X7 ... Xyt by PK,
1 X3 X2 ... X! by | - | PK;
1 X, X2 ... xpt bn—1 PK, 4
Since X1, Xo,---, X,_1 are different, the above matrix equation has a unique solution.

Thus there is a unique polynomial P(x) of degree n — 1 such that P(X;) = PK;. We call
this polynomial as a hash polynomial for our threshold crypto system. The CA will load
this hash-polynomial in the tamper-resistant available in every vehicle. This polynomial is
used to generate the public key of any shareholder, provide a vehicle know the REGO of a
shareholder. If, all the coefficient of this hash-polynomial is known to an adversary, he will
not able to compromise the system. The main advantage in distributing this polynomial is
that if a node knows the identity of any other node, it can easily compute its public key
without the presence of an CA.

After this step, there is no need for the existence of an CA.

4 The Solution Architecture In this section, we provide an elegant solution to the
message falsification attack in a vehicular network. We make the following natural assump-
tions about the system.

1. Each vehicle on the road has a unique registration number provided by the registration
authority. This registration number is used as a public identity of the vehicle.

2. We assume that vehicles are equipped with an on-board camera that can recognize
the registration number of vehicles in front and behind. Even, some of the current
budget model cars are equipped with an onboard camera that can recognize street
signs, speed limits and traffic signals.

3. Vehicles are equipped with tamper-resistant storage and processor modules like (Trusted
Platform Module (TPM) [8]), where the hash function and crypto schemes are securely
stored by the registration authority. Since the current and the future generation cars
are controlled by real-time onboard computers, their kernel needs to be protected from
malware. Thus, a tamper-resistant module is necessary.

For every vehicle with REGO X; its shared private key component SK;, the hash-
polynomial are securely loaded to the tamper-resistant module by the certificate au-
thority.

4. Whenever a vehicle has access to the roadside infrastructure (RSU), vehicles will sync
their key revocation information with the certificate authority.

The threshold value k is chosen by the CA in such a way that some severe road conditions
(like major accident, road closure, etc.) can be detected by k vehicles independently within
a reasonable amount of time.

We now present the black box model of our proposed crypto scheme. We call it as a
black box model the entire architecture is implemented in a tamper-resistant hardware like
Trusted Platform Module [8].
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Figure 3: Singature generation module

4.1 Emergency and Safety Message Transmission Whenever a vehicle’s hardware
detects a safety and emergency condition, it will pass on the message to the secure module
for digitally signing the message. For our discussion, we assume that the underlying crypto
system is RSA. This may be replaced with any public-key cryptography. The RSA engine
will securely retrieve the private key SK; from the secure storage space. Then <Plain text
emergency message, signed emergency message, REGO >is broadcasted to every vehicle
with the appropriate TTL value.

The block diagram is presented in Figure 3

4.2 Signature verification Let a vehicle T receive an emergency message. The following
steps are taken for verifying the signature:

1. The onboard camera reads the REGO of vehicles around to see if the REGO in the
message can be recognized. If the REGO is recognized, then the onboard_camera_check
flag is set to 1; otherwise, it is set to 0. In several cases, due to obstructions, it may
not be possible to verify the REGO by the onboard camera. This flag is not going to
influence the action to be taken for this emergency message. It will only serve as an
extra layer of security.

If the same emergency message from the same REGO is seen before either with a
same TTL value or lower, the message is discarded.

2. The REGO is passed on to the hash polynomial module as an input. The hash
polynomial will output PK;, the public-key component for this REGO.

3. PK; along with the signed message is passed on to the RSA module. The RSA module
will decrypt the signed message using PK,; and outputs the plain text.

4. The received plain text message along with the decrypted plain text message is passed
on to the comparison module. If both the messages are the same, the signature is
verified; else the signature verification failed. The received message is discarded if the
signature verification failed.

Once the signature is verified, the following actions are taken:

a. Appropriate response to this emergency message is taken.

b. If the message is applicable to a multi hop region, and the TTL value is greater than
one, T will rebroadcast the message after reducing the TTL value by one and append
its REGO along with the originally received REGO.

c. If the message is critical and needs to obtain the global signature the threshold cryp-
tography, the message is passed on to the temporary storage area, until k similar
messages from different originating vehicles are obtained.

The process block diagram for this module is given in Figure 4
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Figure 4: Singature Verification module

Figure 5: Global Singature generation module

4.3 Global signature generation If a critical safety-related message independently
originates from k or more vehicles, any vehicle can combine all the partial signatures to
a globally signed message. Once k similar messages from different originating vehicles are
available in the temporary storage area, it is then passed on to the threshold signature gen-
eration module. This module will combine all partial signatures and generate the globally
signed message as per the threshold cryptographic algorithm outlined in Section 2.

The process block diagram for this module is given in Figure 5

5 Conclusion and Future direction In this paper, we proposed an elegant source
authentication scheme based on the modified threshold cryptography. The proposed scheme
can be modified effectively to identify vehicles that transmit false safety and emergency
messages with fictitious vehicle identity. Our proposed scheme is also used by the law
enforcing agencies to precisely to identify the owner of the malicious vehicles. They may also
able to revoke their registration dynamically. The key revocation information is transmitted
to every vehicle whenever they have access to RSU.

We present below the security analysis of our proposed scheme.

5.1 Security Analysis of the proposed solution

1. Since SK; and the hash polynomial are loaded onto a tamper-resistant module securely
by the registration authority, no user has access to them.

2. The secure module will not sign any non-standard emergency messages. This is to en-
sure that no user (including the owner of the vehicle) launch a chosen plaintext attack
to guess the secret key. The crypt-analysis of our proposed scheme is equivalent to the
crypt-analysis of the underlying RSA and the threshold system. Since the underlying
RSA and the threshold cryptography are secure, it follows that our proposed model
is secure.

3. Since the private key share and the hash polynomial are not disclosed to the owner
of a vehicle, even change of ownership of a vehicle does not affect the security of the
key.

4. In the event that a key is revoked (incase the associated vehicle registration is sus-
pended), the CA will communicate with every vehicle, whenever they have access
to a RSU. During this time, vehicles will sync their key revocation database. This
database is stored in the secure storage area.

Our proposed architecture can also be implemented in a MANET or in a distributed
environment where the source authentication is an important factor, and there is no constant
access to the backbone network. Our future work involves implementing the proposed
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scheme in VANET hardware to obtain the real-time performance measures, especially, to
evaluate the introduced latency of our scheme in a sparse, average and dense vehicular
network.
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SOME RESULTS ON DIRECT SUMS OF BANACH SPACES — A SURVEY

Mikio KATO* Takuya SOBUKAWAT AND Takayukt TAMURA?

ABSTRACT. We shall discuss three notions of direct sums of Banach spaces, Z-, -,
and A-direct sums, which are in fact all isometric. Weak nearly uniform smoothness,
uniform non-squareness and uniform non-£7-ness etc. will be discussed, especially in
the general A-direct sum setting. As applications some examples of Banach spaces will
be presented concerning FPP as well as super-reflexivity.

1 Introduction Direct sums of Banach spaces have been often treated in the context of
geometry of Banach spaces and the fixed point property (e.g. [2, 3, 6, 7, 8, 9, 10, 11, 14,
15, 16, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 36, 40, 41, 42, 43]). We shall discuss three
notions of direct sums of Banach spaces.

It is known that every absolute normalized norm || - || 45 on RY corresponds to a unique
convex function 1 on the standard simplex in RV ! (we shall mention it precisely in Section

2). So we shall write || - || for || - ||an and refer to as a ¢-norm. Let || - ||z and || - || 4 be an
absolute and an arbitrary norm on RY respectively, which we shall call a Z-norm and an
A-norm.

A Z-direct sum (X1 @ --- @ Xn)z of Banach spaces X7,..., Xy is their direct sum
equipped with the norm

[z, an)llz = (el llanDllz, (21,0 280) € X1 @ @ X,
where the norm || - ||z in the right side is an absolute norm on RY. A i-direct sum
(X1®---® Xn)y and an A-direct sum (X7 @ --- @ Xy)4 are defined in the same way by
means of a ¢-norm || - || and an A-norm || - || 4.

In Section 2 the correspondence will be mentioned between the set ANy of all absolute
normalized norms on RY and the collection ¥ of all convex functions satisfying certain
conditions on the standard simplex Ay in RN~ A couple of subclasses \Ilg\l,) and \Ilgf;o) of
U will be discussed, which were introduced in Kato and Tamura [29, 30] to discuss weak
nearly uniform smoothness and uniform non-squareness for direct sums. These classes can
be described in terms of Properties 77" and T, which Dowling and Saejung [10] introduced
to discuss uniform non-squareness for Z-direct sums.

In Section 3 it will be seen that any A-direct sum is isometrically isomorphic to a 1-direct
sum with some ¢ € Uy ([8]); therefore the direct sums stated above are all isometrically
isomorphic and v-direct sums are general enough. In Sections 4, 5, and 6 we shall obtain
A-direct sum versions of previous results.

Section 4 will deal with weak nearly uniform smoothness (WNUS-ness in short). Fvery
WNUS space has FPP, the fized point property (for nonexpansive mappings; [15, 14]). A
characterization of WNUS-ness for (X1 &---@® Xy ), will be presented by means of the class

o).
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In Section 5 we shall discuss uniform non-squareness (UNSQ-ness) which has been play-
ing an important roll in geometry of Banach spaces. The starting point of our discussion
is the following result in Kato-Saito-Tamura [22]: A ¢-direct sum X @, Y is UNSQ if and
only if X andY are UNSQ and v # 11,100, where 11 and 1o, are the corresponding convex
functions to the £1- and £s-norms, respectively. They [22] asked for a characterization for
N Banach spaces. We shall present a sequence of partial results by Dowling-Saejung [10],
Betiuk-Pilarska and Prus [2], and Dhompongsa-Kato-Tamura [8]. In [10] the following was
shown: Under the assumption ||- ||z is strictly monotone, (X1 @---® Xn)z is UNSQ if and
only if X1,...,Xn are UNSQ and || - ||z has Properties TN and TX. In the case N = 3
this assumption was dropped. More precise results are shown in [8] for -direct sums in

terms of \Ifg\l,), from which the A-direct sum versions are derived. In [2] it was shown that
(X1@---® Xn)z is UNSQ if and only if X1,...,Xn and (RY,| -||) are UNSQ, where it
remains unknown when (RY, || - ) is UNSQ.

Recently Kato-Tamura [30, in preparation]| obtained a characterization of UNSQ-ness
for (X1 & ---® Xn)y as well as A-direct sum without any additional assumption, which
covers all the above-mentioned results and explains why the case N = 3 is successful in [10].

In Section 6 uniform non-¢}-ness will be discussed. When n = 2, uniform non-¢3-ness
coincides with UNSQ-ness. Every uniformly non-¢7 space is uniformly non—E?“. The above
result for UNSQ-ness of X @, Y ([22]) is extended to uniform non-¢7-ness ([23]). The spaces
X @1Y and X © Y cannot be UNSQ, while they can be uniformly non-¢}, n > 3. We
shall discuss when they are uniformly non-¢7.

In the last Section 7 applications to FPP will be discussed. As UNSQ spaces have FPP
([16]), it is natural to ask whether every uniformly non-£3-space has FPP. We shall see a
plenty of Banach spaces (direct sums) with FPP which is not UNSQ can be constructed.
Super-reflexivity will be treated as well.

In the following X, X1, ..., Xy will stand for Banach spaces. Let Sx and Bx denote
the unit sphere and the closed unit ball of X. Let Rf denote the set of all points in RY
with nonegative entries.

2 Absolute norms on RY and convex functions A norm || - | on RY is called ab-
solute if ||(ay, -+ ,an)| = [[(Ja1|, - ,|an])| for all (ai,---,an) € RY, and normalized
if |(1,0,---,0)]] = --- = ]|(0,---,0,1)]] = 1. A norm || | on RY is called monotone
provided that, if |a;| < |bj| for 1 < j < N, |[(a1,...,an)|| < ||(b1,...,bN)||. | -] is
called strictly monotone provided it is monotone and, 1f |aJ| |b| for some 1 < j < N,
[(a1,...,an)]| < |(b1,...,bn)|]. The following is known.

Lemma 2.1 (Bhatia [4], see also [30]) A norm || - || on RY is absolute if and only if it
18 monotone.

We shall see that for every absolute normalized norm on RY there corresponds a unique
convex function ¢ on a certain convex set in RV~=1 ([38, 5]).

Lemma 2.2 Let || - || be an arbitrary norm on RN and define
N—1

(2.1) U(s) = H(l - Z 8iyS15---58N-1)|, s=(s1,""",sn-1) € Ap,
i=1

where Ay = {s = (s1, -+ ,sn_1) € RN~ ZNll s; <1, s; >0}. Then:

(i) The norm || - || is normalized if and only if

(AO) 'I/J(O,,O):’IZJ(].,O,,O)::'ll)((),,o,].):l



SOME RESULTS ON DIRECT SUMS OF BANACH SPACES — A SURVEY

(ii) For each 1 < k < N the following (a) and (b) are equivalent.
(a) The norm || - || is monotone in the k-th entry, that is,

k k

—

k| > Jyel = (@1, @y s 2n) | 2 (@15 Yy oo )|

(b) The convex function ¢ satisfies

k—1

81 = SN-1
A 1) > (1-
( k) '()/}(817 y SN 1)—( Sk)w(l—Sky ) ) 71_3k;>
In the case k = 1, (A1) should be understood as

S1 SN—-1

A 1) > (11—
( 1) ¢(317 y SN 1)—( SO)w(l—SO’ ’1—80),

N-1
where so =1—)".""s;.

Let

ANy = {all absolute normalized norms on R},
Uy = {all convex functions v satisfying (Ax),0 < k < N}.

Theorem 2.3 (Saito-Kato-Takahashi [38]) (i) For any || - || € ANy let

. s=(s1,--,8n-1) € An.

(2.1) P(s) = H(1—1§5i751,...7sN1)

Then i € Uy, that is,

(AO) "/}(07"' ,0)=¢(1,0,'-- ao):"'zl/i(ow“ 7071):1§

and for each 1 <k < N

(40) L (e Iy

1—8;C

Conversely
(ii) For any v € U define

as)| jan|
ziw)w<,~»>
< A L el T ey

ZIf(a'lv"' 7aN)7é(07"' 70)a
0 if(al,"'7(lN):(O,"'7O).

Then || - ||l € ANN and || - ||y satisfies (2.1).

() [la1,---an)lly =

In fact, since an absolute normalized norm is monotone by Lemma 2.1, the statement
(i) is a consequence of Lemma 2.2. For the assertion (ii) we refer the reader to [38]. Thus

ANy and ¥ correspond in a one-to-one way.
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Remark 2.4 (i) Let us see why we defined the norm || - || by the formula (x) from 1 €
Uy. For an arbitrary norm || - || on RN let v be a convex function given by (2.1). Then
the norm || - || is represented by means of 1 as follows. Let M = Zjvzl la;| for nonzero
(a1,...,an) € RN. Then

(v, san)ll = Mll(as /M, -+ can/M)|| = My <|M| XJ) '

(i) In the case N = 2 a convex funtion ¢ on Ay = [0,1] belongs to Uy if and only if
max{1l —t, t} <) <1 for 0 <t <1, from which ¥(0) = (1) =1 is derived. Thus if we
draw the graph of a convex function ¢ € Wq in this triangle area we shall obtain an absolute
normalized norm || - || on R?.

Example 2.5 The {,-norm on RY,

N
{ijl |aj|p}1/p 1<p<o0,
”(alv s 7aN)||P =
maxi<j<n laj|  p=oo

is absolute normalized and the corresponding convex function 1, is given by

N-1
Up(sr,-rsno1) = (1= si s1,. 0 sv-1)lp
i=1
N-1 \p 1/p
{(1—251') +s’1’+~~+sﬁ1} if p < o0,
_ i=1
N-1
maX{l—Zsi,sl,...,sn_l} if p= 0.
i=1

In particular ¥1(s1,...,8n-1) = 1.
Now, the following subclasses \Ilg\l,) and \Ilg\?o) of Wy will play an important role in

our later discussion. In the following let T' be a nonempty subset of {1,..., N}, xr the
characteristic function of T'. For a = (a1,...,an) € RY let

ar = Zajej = (xr(Dai,....xr(N)an),
JET
where e; = (0,...,1,...,0).

Definition 2.6 (Kato-Tamura [27, 30]) (i) Let ¢ € Uy. We say ¢ € \Il%) if there
ezists a € RY and T C {1,...,N} (T # 0) such that

lally = llarlly + llaz]ly, where [lar|ly, [laze|l, > 0.
(i) We say ¢ € \IIE\?O) if there exists a € RY and T C {1,...,N} (T #0) such that

lally = llarlly = llar:(ly > 0.
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The ¢1-norm || - ||; has the above property (i), and the £o,-norm || - || has the property
(ii) (see the example below). These properties (i) and (ii) are much weaker than ¢;-norm’s
and /,,-norm’s, respectively. We call, in general, a norm || - || on RY with the properties (i)
and (ii) a partial £1-norm and a partial £, -norm, respectively.

Example 2.7 i, € \I/S\}) and Y € \Ilg\?o) since

(1 1 1 ) 1 1
"N—-1"""N-1 N-1"""7"N-1

11,1, ..., D)]lec = 1(1,0,...,0)|lcc = 1(0,1,...,1)|lco,
where T = {1} in both cases.

)

— L,0,...,0)], + H(o,
1

)
1

On the other hand Dowling-Saejung [10] introduced the following notions.
Definition 2.8 For a = (a;) € RY let supp a = {j : a; # 0}.
(i) A norm || - || on RY is said to have Property T} if
1
lal] = ||b]| = §Ha+ b|=1, a,b € RY — supp ansupp b # (.

(ii) A norm | - || on RY is said to have Property TY if
lall = [[b]| = [la+ bl =1 = supp aNsupp b # 0.

Note that ¢;-norm || - ||; and fu-norm || - ||oc do not have Property 77V and Property
TX | respectively. We have the following.

Theorem 2.9 (Dhompomgsa-Kato-Tamura [8]) Let v € Uy. Then
(i) |l |l has Property T{ if and only if 1 & \I!S\l,).
(ii) |- |l has Property TX if and only if ¢ ¢ \IIS\C;O).

3 Direct sums Let ||-||z be an absolute norm on RY. The Z-direct sum (X1®---®Xn)z
of Banach spaces X1,..., Xy is their direct sum equipped with the norm

Gz, an)llz = [zl s lanDllz, (21,0 en) € X @6 Xy
(cf. Dowling-Saejung [10]).

Remark 3.1 In the above definition the Z-norm || - ||z on RY is sometimes assumed to be
absolute and monotone in RY in [10]. But the latter condition can be dropped because of
Lemma 2.1.

A direct sum constructed in the same way as above from an absolute normalized norm
|- llan =1 - [l on RY is called a t-direct sum and denoted by

(X1 @ ®XN)y,

where 1 is the convex function corresponding to the norm || - ||an (Kato-Saito-Tamura [21];
cf. [40]).

Let || || be an arbitrary norm on RY. The A-direct sum (X1 @ ---@ Xy)4 is the direct
sum of Xy,..., Xy equipped with the norm

Gz, an)a = [zl llenDlla, - (21, en) € Xa @ ® Xy

(Dhompongsa-Kato-Tamura [8]). Clearly, a ¥-direct sum is a Z-direct sum, which is an
A-direct sum. These notions of direct sums are in fact all isometric.
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Theorem 3.2 (Kato-Tamura [30]) Let || - |4 be an arbitrary norm on RN. Then there
exists Y € Un such that (X1 ®---® Xn)a is isometrically isomorphic to (X1 D - ®Xn)y.
More precisely

l(z1,....,zn)lla = [[(c1z1, ... ,enan)||ys (21,...,28) € X1 B - & XN,
k
where ¢, = ||(0,...,0,1,0,...,0)||la (1 <k < N).

Sketch of proof Take e; € X; with [lej|| =1 (1 < j < N) and define a norm | - || on RY
by

H(al,...,aN)HB = H(alel,...7aNeN)HA.
Then || - || g is absolute. Let
(@1, 2n)ls = ([l enlDl 5

for (z1,...,2n) € X1 ® - ® Xy. Then

[z, an)la =[Gz, - 2n)l B,
Thus we may assume that, without loss of generality, the original norm || - |4 on R¥ is
k
absolute to construct the A-direct sum (X1 @ -+ ® Xn)a. Next let ¢ = ||(0,...,0,1v,
0,...,0)|| s and define a norm || - ||c on RY by
(a1, an)lle = (ar/er, ... an/en)| -
Then | - ||¢ is absolute and normalized, and
(a1,...,an)|lB = ||(c101, ..., cnan)|lc
Consequently we have
(@1, an)lla = [[(c1z1, ... envan)lle

for (z1,...,2n) € X1® - ®Xy. Thus (X1 ®---®Xn) 4 is isometric to (X1®--- B Xn)c =
(X1 ®---® Xn)y with some function ¢ € Uy.

In particular any Z-direct sum is isometrically isomorphic to a t-direct sum. The
advantage of the latter is to allow us to use a convex function » € ¥y in our discussion,
especially to construct examples.

We shall see some basic properties for direct sums. A Banach space X is called strictly
convez if

T
r,y € Sx,x £y = H;yH <1

X is called uniformly convex if for any € > 0 there exists § > 0 such that
T
||‘T _y” > £,%,Y € SX - H;_yH <1-0.

Theorem 3.3 ([21, 40]) A v-direct sum (X1 & --- ® Xn)y is strictly (uniformly) convex
if and only if X1,...,Xn are strictly (uniformly) convex and v is strictly convez.
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Now, ¢ is strictly convex if and only if || - || is strictly convex ([38]), we have the general
A-direct sum version of this theorem by Theorem 3.2.

Theorem 3.4 An A-direct sum (X1 ®---®Xpn)a is strictly (uniformly) convez if and only
if X1,..., XN are strictly (uniformly) convex and || - ||a is strictly convez.

For similar results for the dual notions, smoothness and uniform smoothness we refer
the reader to Mitani-Oshiro-Saito [33].

4 Weak nearly uniform smoothness A Banach space X is called weakly nearly uni-
formly smooth (WNUS in short) if X is reflexive and R(X) < 2, R(X) is the Garcia-Falset
coefficient:

R(X) = sup{lim inf |z, + [},

where the supremum is taken over all weakly null sequences {z,,} in Bx and all x € By. (cf.
Garcia-Falset [14]; we refer the reader to Kutzarova et al. [31] for the original definition;
cf. [27]). A Banach space X is said to have the fized point property for nonexpansive
mappings (FPP in short) provided that for any bounded closed convex subset C' of X every
nonexpansive self-mapping 7" on C' has a fixed point, where T is called nonexpansive if

[Tz =Tyl < [lv—yll Vz,yeC.
Uniformly convex resp., uniformly smooth spaces are WNUS ([35]). We also have

Theorem 4.1 (Garcia-Falset [15, 14]) FEvery weakly nearly uniformly smooth space has
FPP.

For WNUS-ness of direct sums we have the following.

Theorem 4.2 (Kato-Tamura [27]) Let Xi,..., Xy be of infinite dimension. Let @) €
Wy. Then, the following are equivalent.

(1) (Xl D--- EBXN)w is WNUS.

(i) Xi,...,Xn are WNUS and ¢ ¢ U\)).

Remark 4.3 (i) The implication (i) = (i) is valid without the assumption on the dimen-
sion of X;'’s.
(i1) For the case some of X;’s are of finite dimension we refer the reader to [30].

If ¢ € Wy is strictly convex, 9 ¢ \Ilg\}) ([27]). Therefore, taking Remark 4.3(i) into
account, the next previous result is derived from Theorem 4.2.

Corollary 4.4 (Dhompongsa et al. [6]) Let Xi,..., Xy be arbitrary Banach spaces. Let
¥ € Uy be strictly convex. Then the following are equivalent.

(1) (Xl D--- EBXN)w is WNUS.

(ll) Xl, N 7XN are WNUS.

Recall that ¢ ¢ U if and only if || - ||,, has Property TN (Theorem 2.9). Owing to
Theorem 3.2, Theorem 4.2 is reformulated in the general A-direct sum setting as follows.

Theorem 4.5 Let X1,...,Xn be infinite dimensional. Let || - ||a be an arbitrary norm on
RYN. Then the following are equivalent.

(i) (X1®---®Xn)a is WNUS.

(ii) Xi,...,Xn are WNUS and || - ||a has Property T} .
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5 Uniform non-squareness A Banach space X is called uniformly non-square (R. C.
James [17]) (UNSQ in short) if there exists a constant € > 0 such that

min{|lz +y|, |z —yl|} <2(1 —¢) forall z,y € Sx.

It is immediate to see that uniformly convex spaces are strictly convex and UNSQ, while
there is no implication between the latter two notions. The UNSQ-ness has been playing
an improtant role in the geometry of Banach spaces and FPP. One of the most remarkable
recent results is the following.

Theorem 5.1 (Garcia-Falset et al. [16]) UNSQ spaces have FPP.

An important classical result says that UNSQ spaces are reflexive ([17]); in fact, super-
reflexive ([18]); we shall mention about super-reflexivity again in Section 7. Thus UNSQ-ness
lies between uniform convexity and super-reflexivity, as well as FPP. It is worth stating that
some geometric constants have close connections with these notions. In fact UNSQ-ness are
characterized by Cn;(X) < 2 and also by J(X) < 2, where Cn;(X) and J(X) are the
von Neumann-Jordan and the James constants of a Banach space X ([39, 13]; cf. [24, 20]).
Therefore, if Cyj(X) <2 or J(X) < 2, X is reflexive and has FPP. These constants have
been calculated for many concrete Banach spaces (we omit precise descriptions).

Theorem 5.2 (Kato-Saito-Tamura [22]) A -direct sum X @y Y is uniformly non-
square if and only if X,Y are uniformly non-square and ¢ # Y1,%s0, that is, || - ||y #

[l - floo-

In this paper they posed the following problem:

Problem 1. Characterize the uniform non-squareness for (X1 @ --- @& Xn)y.

This problem is quite complicated since in the case N > 3 we need to remove much
more convex functions in Uy (norms in ANy). Dowling and Saejung [10] presented a
partial answer for Z-direct sums, a fortiori, for 1-direct sums.

Theorem 5.3 (Dowling-Saejung [10]) Assume that Z-norm | - ||z or the dual norm
|- I on RY is strictly monotone. Then the following are equivalent.

(1) (X1 D @XN)Z 18 UNSQ

(ii) Xi,...,Xn are UNSQ and || - ||z has Properties TV and T .

For the case N = 3 they dropped the assumption on strict monotonicity, which answers
Problem 1 for N = 3:

Theorem 5.4 (Dowling-Saejung [10]) The following are equivalent.
(ii) X1, Xo, X3 are UNSQ and || - ||z has Properties TY and T3,.

Any A-direct sum is isometric to a Z-direct sum, whence we have the following.

Theorem 5.5 Let || - |4 be an arbitrary norm on RY. Then the following are equivalent.
(i) Xi,Xo, X3 are UNSQ and || - ||a has Properties T{ and T3,.

Remark 5.6 Why did they succeed in the case N = 3¢ Later we shall see the reason, which
is a quite natural consequence of a recent result by Kato and Tamura [30].
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In 2015 Dhompongsa, Kato and Tamura [8] gave more precise results for Theorem 5.3
in the A-direct sum setting.

Theorem 5.7 Let || - ||a be an arbitrary norm on RY. Assume that || - ||a is strictly
monotone. Then the following are equivalent.

(i) (X1@---dXn)a is UNSQ.

(i) X1i,...,Xn are UNSQ and the norm || - |4 has Property T} .

Theorem 5.8 Let || - ||a be an arbitrary norm on RN . Assume that the dual norm || - ||
1s strictly monotone. Then the following are equivalent.

(i) (X1®---®Xn)a is UNSQ.

(i) Xi,...,Xn are UNSQ and the norm || - |4 has Property TX .

If (X;1@®---@® Xn)a is UNSQ, the norm || - |4 has Properties T{ and TX. (This is
a corresponding result to Theorem 5.2; cf. [8, Cororally 4.5] and [30]). Therefore from
Theorems 5.7 and 5.8 the following A-direct sum version of Theorem 5.3 is derived.

Corollary 5.9 Let || - |4 be an arbitrary norm on RYN. Assume that || - ||a or | - || is
strictly monotone. Then the following are equivalent.

(1) (Xl ®--- @XN)A 18 UNSQ

(i) Xi,...,Xn are UNSQ and || - || has Properties T{N and T .

Remark 5.10 Dhompongsa-Kato-Tamura [8] first proved Theorems 5.7, 5.8, and Corollary

5.9 for -direct sums by means of \Ilg\l,) and \I/S\(;O), and then derived these results for A-direct
sums by Theorems 3.2 and 2.9. We shall see below the -direct sum version of Theorem

5.5.

Theorem 5.5' ([8]) Let vp € Wy. Assume that || - ||y is strictly monotone. Then the
following are equivalent.

i) (X1 ® - ®Xn)y is UNSQ.

(ii) Xi,..., Xy are UNSQ and ¢ ¢ U,

Now we are in a position to explain why Dowling-Saejung [10] succeeded for the case

N = 3. Very recently by introducing the class U}, as the class which should be excluded,
Kato-Tamura [30, in preparation] answered Problem 1 without the assumption on strict
monotonicity:

A p-direct sum (X1 @ --- & Xn)y is UNSQ if and only if X1,..., XN are UNSQ and
1[} ¢ \IIS\T/MI)-

(This will appear elsewhere.) They showed \I/émim) = \Ilél) U \Iléoo) for N = 3 and obtained
the following as a corollary.

Theorem 5.11 Let ¢ € V. Then the following are equivalent.
(1) (X1 D XQ D X3)¢ 8 UNSQ
(il) X1, X2, X3 are UNSQ and v ¢ U{Y U0,

According to Theorem 2.9, ¢ & \Ilgl) U \I/éoo) if and only if || - ||, has Properties T} and
T2 . As any Z-direct sum is isometric to a t-direct sum, we have Dowling-Saejung’s result
for (X7 @& X2 ® X3)z. Theorem 5.3 is also derived from the above-announced result by
Kato-Tamura [30].

We shall conclude this section with the following result.
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Theorem 5.12 (Betiuk-Pilarska and Prus [2]) The following are equivalent.
(i) (X1 D--- @XN)Z s UNSQ
(i) Xi,...,Xn are UNSQ and (RV,| - |z) is UNSQ.

Here it remains unknown when the space (RY, ||-||7) is UNSQ. Kato-Tamura [30] answered
to this question by introducing Property T2, in the A-direct sum setting.

6 Uniform non-/7-ness A Banach space X is called uniformly non-¢7 if there exists
€ (0 < e < 1) for which

(6.1) Va1, xa € Sx, 30 = () (6, = £1) s.t. <n(l—e).

n
E O;z;
=1

When n = 2 the uniform non-¢3-ness coincides with the uniform non-squareness. For n = 3
uniformly non-£3 spaces are called uniformly non-octahedral. In the case n = 1 no Banach
space is uniformly non-£1.

Proposition 6.1 Uniformly non-f7 spaces are uniformly non—é}”‘l.

Theorem 5.2 for UNSQ-ness of X @, Y is extended to uniform non-¢7-ness.

Theorem 6.2 (Kato-Saito-Tamura [23]) Assume that neither X nor Y is uniformly
non—ﬂ?_l. Then the following are equivalent.

(i) X @y Y is uniformly non-£7.

(ii) X andY are uniformly non-0% and ¥ # 1, ¥eo.

Remark 6.3 (i) Theorem 6.2 covers Theorem 5.2 as the case n = 2, since no Banach
space is uniformly non-(}.

(ii) We cannot drop the assumption “neither X nor'Y is uniformly non-£7=*”.

(iii) For the N Banach spaces case some results were obtained under the assumption
that the -norm || - ||y is strictly monotone in Kato and Tamura [29].

As before we obtain the A-direct sum version of Theorem 6.2.

Theorem 6.4 Let || - |4 be an arbitrary norm on RYN. Assume that neither X nor Y is
uniformly non-Z’f*l, Then the following are equivalent.

(i) X ®aY is uniformly non-£7.

(i) X andY are uniformly non-€% and || - ||a # || - |1, - |oo-

Now, we shall look into the extreme cases, £1- and {,.-sums, which were excluded in
Theorems 6.2 (and 6.4). According to this theorem, X @1 Y and X $, Y cannot be UNSQ
for all X and Y, while X @, Y and X @ Y can be uniformly non-¢} (n > 3) if either X
or Y is uniformly non-¢7 . In fact the following are true.

Theorem 6.5 (Kato-Saito-Tamura [23]) The following are equivalent.

(i) X ®1Y is uniformly non-¢}, n > 3.

(ii) There exist n1,ny € N with n; + ne = n — 1 such that X is uniformly non—[{”‘l
and Y is uniformly non-€}>**.

As corollaries the following are obtained.

Corollary 6.6 The following are equivalent.
(i) X @1 Y is uniformly non-€3.
(ii) X and Y are UNSQ.
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Corollary 6.7 The following are equivalent.
(i) X @1Y is uniformly non-¢1.
(il) X is UNSQ and Y is uniformly non-octahedral.

Theorem 6.5 is extended as follows.

Theorem 6.8 The following are equivalent.
() (X1@---® Xn)p is uniformly non-€Y 1.
(ii) Xi,...,Xn are UNSQ.
[5744*1

This implies especially that the space ¢7 is uniformly non- . For {,-sums we have the

following.

Theorem 6.9 (Kato-Tamura [26]) Let n > 2. The following are equivalent.
() (X1® - @ Xon_1)eo is uniformly non-€} ",
(ll) Xl,...,XQn_l are UNSQ

Corollary 6.10 The following are equivalent.
(1) (X@Y @ Z)s is uniformly non-£3.
(2) X,Y and Z are UNSQ.

Remark 6.11 Recall that the f1-sum X @1 Y is uniformly non-€3 if and only if X and
Y are UNSQ. Contrary to this, if X and'Y are UNSQ, the {oo-sum X B Y is uniformly
non-€3 (23, Corollary 5.3bis]), but the converse is not true ([23, Remark 5.5]). We added
one more space Z to obtain the equivalence in Corollary 6.9. Compare also Theorems 6.7
and 6.8. These observations show one aspect of the defference between £1- and £, -sums.

7 Applications All UNSQ spaces have FPP. Thus it is natural to ask whether all uni-
formly non-octahedral spaces have FPP. We have the following.

Theorem 7.1 (Kato-Tamura [26]) Let X be uniformly non-octahedral. If X is isometric
to an loo-sum of 8 Banach spaces, X has FPP, while X is not UNSQ.

More generally we have
Theorem 7.2 Let X be uniformly non—f?“. If X is isometric to an ly-sum of 2™ — 1
Banach spaces, X has FPP, while X is not UNSQ.

Example 7.3 Let 1 < p < oco. Since L, is uniformly convez, it is UNSQ. Therefore the
space X = (L, ® L, ® Ly) oo s uniformly non-octahedral by Theorem 6.9, and hence X has
FPP by Theorem 7.1, while it is not UNSQ since X contains {3, as a subspace.

In the same way, the {oo-sum of 2" — 1 L,’s is uniformly non—é’f"'l, which is weaker
than uniform non-octahedralness, has FPP but is not UNSQ.

By using Theorem 4.2 a plenty of Banach spaces with FPP which fail to be UNSQ is
constructed.

Example 7.4 (Kato-Tamura [27]) Let N > 3 and let ¢,11 € ¥, ¢ # 1. Let
¢(81," 'astl)

N—-1
- max{|<1 =S sl (5152l (522 53) g ,||<sN_2,sN_1>||w}

i=1

for (s1,...,8n-1) € ANn.

289



290

Mikio KATO! TakuyA SOBUKAWAT aAND Takayukt TAMURA?

Then ¥ € U and

(a1, a2 ..., an)lly = max{[[(a1, a2)lly, [ (a2, a3)llg; - - [I(an—1, an)llo }
for (ay,...,ay) € RY.

Further, ¢ & \Ilg\}) and || - ||y is not UNSQ.

Since WNUS spaces have FPP, we have the following.

Theorem 7.5 (Kato-Tamura [27]) Let X;,..., Xy be WNUS (N >3). Let ¢ € Uy be
as in Example 7.4. Then (X1 @& ---® Xn)y has FPP, whereas it is not UNSQ.

Indeed, since ¢ & \IJS\}), X=(X1® - ®Xn)y is WNUS by Theorem 4.2 (with Remark
4.3 (i)) and hence X has FPP. On the other hand, X is not UNSQ as (R™, || - |,) is not
UNSQ.

Next, as o, & \I/%), we have

Theorem 7.6 Let X1,...,Xn be WNUS. Then (X1 & ---® Xn)oo has FPP, whereas it is
not UNSQ.

Example 7.7 Let 1 <p, <oo, 1<k < N.
(i) Let v € ¥y be as in Example 7.4. Since L, are uniformly conver and hence
WNUS, the space X = (Lp, ®---® Lpy )y has FPP, while X is not UNSQ by Theorem 7.6.
(1)) The loo-sum X = (Lp, @+ ® Lpy)oo s WNUS and hence has FPP. On the other
hand, the space X is not UNSQ.

Finally we shall discuss super-reflexivity. A Banach space Y is said to be finitely rep-
resentable in X provided for any € > 0 and for any finite dimensional subspace F' of Y
there is a finite dimensional subspace E of X with dim F' = dim E such that d(F, E) :=
inf{||T||||T~Y : T is an isomorphism of F onto E} < 1+ ¢. A Banach space X is called
super-reflexive if every Banach space Y which is finitely representable in X is reflexive ([18];
cf. [1]). The next celebrated result states the connection between super-reflexivity and
uniform convexity as well as UNSQ-ness.

Theorem 7.8 (cf. [12, 34, 18]) The following are equivalent.
(i) X is super-reflezive.
(il) X admits an equivalent uniformly convex norm.
(iii) X admits an equivalent uniformly non-square norm.

UNSQ spaces are super-reflexive ([17]), whereas uniformly non-octahedral spaces are not
always reflexive ([19]). For ¢1-sum spaces we have the following (]26]).

Theorem 7.9 Let X be a uniformly non-octahedral Banach space which is isometric to the
l1-sum of 2 Banach spaces. Then X is super-reflezive.

Indeed, if X is isometric to X1 &1 Xo, X7 @1 X5 is uniformly non-octahedral, from which
it follows that X7 and X are UNSQ by Corollary 6.5, hence super-reflexive. Consequently
the ¢1-sum, and hence X is super-reflexive.

By Theorem 6.9 we have the similar result for ¢,.-sum spaces.

Theorem 7.10 Let X be a uniformly non-octahedral Banach space which is isometric to
the loo-sum of 8 Banach spaces. Then X is super-reflexive.

Acknowledgement. The first author would like to thank the organizers of the
conference FIM&ISME2017, especially, Professors J. Watada, Y. Yabuuchi and H. Sakai for
their kind invitation and warm hopsitality.
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A THEOREM ON SUMMABILITY FACTORS FOR THE WEIGHTED
MEAN METHOD FOR DOUBLE SERIES IN ULTRAMETRIC FIELDS
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CHENNAI 600 028, INDIA
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ABSTRACT. Throughout this paper, K denotes a complete, non-trivially valued, ultra-
metric (or non-archimedean) field. 4-dimensional infinite matrices, double sequences
and double series have entries in K. In the present paper, we prove a theorem on
summability factors for the Weighted mean method for double series in K.

1 Introduction and Preliminaries Throughout the present paper, K denotes a com-
plete, non-trivially valued, ultrametric (or non-archimedean) field. 4-dimensional infinite
matrices, double sequences and double series have entries in K. We recall the following
definitions and results briefly (for details, see [2]) for the sake of completeness.

Definition 1.1. For a double sequence {xy, n} in K and x € K, we write

L lim 2y, =2,
m+n—oo ’

if for every € > 0, the set {(m,n) € N? : |z, ,, — x| > €} is finite, N being the set of
non-negative integers. In such a case, x is unique and x is called the limit of the double
sequence {Tm n}. We also say that {x,, n} converges to x.

Definition 1.2. Let {xn} be a double sequence in K and s € K. We write

00,00
§ Tm,n = S,

m,n=0
if
hm Smm =S,
m+n—oo
where
m,n
Sm,n = E Tkl m,n:0,1,2,....
k=0

00,00
In such a case, we say that the double series g Tm,n converges to s.

m,n=0
Remark 1.3. If {zy,n} converges, then {Tm. n} is bounded.

Theorem 1.4. [2, Lemma 1] +lim T, = T if and only if

n—oo

2010 Mathematics Subject Classification. 40.
Key words and phrases. Ultrametric (or non-archimedean) field, summability factor, double sequence,
double series, 4-dimensional infinite matrix, regular method, Weighted mean method.
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(i) lim zp,=2,n=0,1,2,...;
m— 00

(i) lim zp, =z, m=0,1,2,...;
n—oo
and

(iii) for every € > 0, there exists N € N such that |ty , — x| < €, m,n > N, which is
written as

lim zp, ==,
m,n— oo

noting that this is Pringsheim’s definition of convergence of a double sequence.

Proof. We can suppose that x = 0. Leaving out the trivial part of the theorem, let (i), (ii),
(iii) hold. Using (iii), we can choose a positive integer N; such that

[Zm.n| <€, m,n> Ni.
In view of (i), there exists a positive integer N such that
|Zm.n| <€, m>Nyyn=0,1,2,..., Ny.
In view of (ii), there exists a positive integer N3 such that
|Zm.n| <€, n>N3,m=0,1,2,...,Ny.

Let N = max{Ny, N2, N3}. Then it is possible that in the square 0 < m,n < N,

|Zpmn| > €.
Note that outside this square,
|Zm.n| < e
Thus,
{(m,n) € N?: |x,,.n| > €} is finite,
t.e., lim x,, =0,
m-+n—oo
completing the proof. O
00,00
Theorem 1.5. [2, Lemma 2] Z Tm,n converges if and only if
m,n=0
lim  x,, =0.
m-+n—oo
00,00
Remark 1.6. Let K = Q,, the 2-adic field. Consider the series Z Tm,n, where, T n =
m,n=0

3m2" , m,n=20,1,2,....
|l‘m7n|2 = |2|g — 0, n— o0,

since |3|2 = 1, from which we have,

lim =z, =0.

m,n— o0
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FEasy calculation shows that
m,n
’ 3m+1 -1
S =Y 327 = (Gl 5 )(2”+1 —1)
P,q=0
and Spt1.n — Smon = (2701 = 1)3m L
so that
‘Serl,n - Sm,n 2 = |2n+1 - 1‘2|3m+1‘2
=1.1
=140, mn— oo,
using the fact that
|a + blz = max(|al2, |b]2),
if lalz # |bl2, | - |2 being an ultrametric valuation. Consequently, {Sm .} is not Cauchy and
00,00 00,00

so Z 3™2" does not converge in the Pringsheim’s sense. Thus Z 3M2" diverges in the

m,n=0 m,n=0
00,00

sense of Definition 1.1. Thus, lim x,,, =0 does not ensure convergence of g Tm.n

m,n— 00
m,n=0
in the sense of Definition 1.1.
o0
Remark 1.7. In the case of simple series, it is well-known that an converges if and
n=0

only if

lim z, =0.
n—oo

(see [1], p. 25, Theorem 1.1). Theorem 1.5 shows that Definition 1.1 is more suited in the
ultrametric case than Pringsheim’s definition of convergence of a double sequence.

Definition 1.8. Given a 4-dimensional infinite matric A = (ammnke), Cmmnke € K,
m,n,k, ¢ = 0,1,2,... and a double sequence {z ¢}, ke € K, k,£ = 0,1,2,..., by the
A-transform of x = {zk ¢}, we mean the double sequence A(z) = {(Az)mn},
00,00
(Ax)mn = Z Am,n,k Tk, MM,T = 07 ]-7 27 ceey
ke =0

where it is supposed that the double series on the right converge. If lim (Ax)mn, = s,

1
m-+n—oo
we say that the double sequence x = {xy ¢} is A-summable or summable A to s, written as

Zre — S(A).
If lim (A%)m, = s, whenever lim x,e = s, we say that A is reqular. A double
m-+n— o0 k+0—o00
00,00
series Z Tm,n 15 said to be A-summable to s, if {smn} is A-summable to s, where
m,n=0

m,n
Sm,n = E Tkt m,n:0,1,2,....
k=0
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The following important result, due to Natarajan and Srinivasan [2], gives a criterion
for a 4-dimensional infinite matrix to be regular in terms of its entries.

Theorem 1.9 (Silverman-Toeplitz). The 4-dimensional infinite matric A = (amnke) 18
reqular if and only if

(1) SUp [@m,n.ke| < 00;
m,n,k,l
(2) lim ampre=0, k,¢=0,1,2,...;
m-+n— oo

(3) lim Z Aokt = 1;

m-+n—oo

k=0
(4) lim  suplamnre =0, €=0,1,2,...;
m—+n—o0 k>0
and
(5) lim  suplamnke =0, £=0,1,2,....

m—+n—oo >0

2 Weighted Mean Method for Double Sequences in K The Weighted mean method
(N, pm.n) for double sequences and double series in K was introduced earlier by Natarajan
and Sakthivel in [5].

Definition 2.1. Givenpy,, € K, m,n=0,1,2,..., the Weighted mean method, denoted by
(N, pm.n), is defined by the 4-dimensional infinite matric (ammn k), m,n, k,£=0,1,2,...,
where

m,n

Lt - ifk<m and £ < n;
Um,n, k0 =

0, otherwise,
m,n
Py = Z P, myn = 0,1,2, ... with the double sequence {pm.n} of weights satisfying
k,£=0

the conditions:
Pm,n #0, myn=0,1,2,...;

and for every fized pair (i,7),

=0,1,2,...,i5i=0,1,2,...;

k
<P .
|pk7[‘ = “PZ»J|’ E:O,LQ,...,].;].:Ozlaza""

Natarajan and Sakthivel [5] proved the following result.
Theorem 2.2. [5, Theorem 3.1] (N, py.n) is regular if and only if

miggoo |Pm,n| = Q3

max

o hax |Pr.e|
lim

m-+n—oo Pm,n

=0,¢=0,1,2,...;

and
o gmax [Pk e
lim

m-+n—oo Pm n
>

=0, k=0,1,2,....
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3 Main Theorem Some properties of the Weighted mean method for double sequences
in K were studied in [5].

A theorem on summability factors for the Weighted mean method for simple series in
K was proved in [4] and more generally, a theorem on summability factors for any regular
method for simple series in K was proved in [3]. For the definition of summability factors
for simple series in the classical case, the reader can refer to [6], pp. 38-39. We retain the
same definition for double series in the ultrametric set up with suitable changes.

We now prove the main result of the paper, which deals with summability factors for
the Weighted mean method for double series in K.

00,00
Theorem 3.1. If Z am.n 18 (N, pm.n) summable, (N, pm ) being reqular and if {bm n}
m,n=0
00,00
converges, then Z Amnbm.n 8 (N, pm.rn) summable too.
m,n=0
m,n m,n
Proof. Let sy, = Z ke, tmon = Z ag,bre, m,n=0,1,2,.... Let {amn}, {Bmn} be
k,6=0 k=0

the (N, pm.n)-transforms of {s,,.n}, {tm.n} respectively so that

1 m,n
Qm n = P E Pk,tSk,es
N g =0

1 m,n
Bmn = P Z Dk, etk 05

N g =0
m,n=20,1,2,.... Let lim «a,,=sand lim b, , =m. Let
m-+n—oo ’ m-+n—oo ’

bpn =m+emm, mn=0,1,2,...

so that
lim ¢&,,,=0.
m-+n—oo ’
Now,
m,n
1
Omyn = E Pk eSk.e
’ P k) i)
TN =0
m,n k£
1
= E Pk, E ;5
P k) ).
T e 0=0 i,j=0
m,n k,l
1
= E Ak E Dij
P k) )
T e 0=0 i,j=kt
Similarly,
m,n m,n

Bmn = PL Z ak,ebi e Z Dij

M g 0=0 i,j=k,¢
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Thus,

m,n m,n

B = B S aremtene) | D pij

Mk 0=0 i,j=k,0

1 m,n
=m|p— Z Q.0 Z Di,j

T p=0 i,j=k.¢

1 m,n m,n
—I-Pi Z Ak (€0 Z Di,j

T e 0=0 i,j=k¢

1 m,n m,n
= MOmn + 5 E Ak k¢ E Di,j
Pm,n o R
k,£=0 i,j=k,L

00,00

= Mamn + § Qmon,k L€k L5
k,£=0

where the 4-dimensional infinite matrix (am,n k.e), m,n,k, £ =0,1,2,... is defined by

m,n
Q.0 E Dij
Am,n kL = i,j=Fk,l
Pm,,n

0, otherwise.

if k<m and ¢ <mn;

Using the fact that (N, pp, ) is regular, one can prove that A transforms all null double
sequences, i.e., all double sequences converging to zero into convergent double sequences.
Since lim &4 =0,
k+f0— o0

00,00
lim E Amon kt€Le | exists.
m-+n— oo e ’
k=0
Thus,
o0, 00
lim Gp,=ms+ lim E G n k€K,
m-+n—oo m-+n—oo
k=0
00,00
In other words, E Amonbm.n 18 (N, Pm,n) summable to
m,n=0
00,00
ms+ lim Am.n.ke€ke |- This completes the proof of the theorem. O
L k%—o .k LEk,

I thank the referee for his constructive suggestions.
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ON APPROXIMATE SOLUTION TO THE INVERSE
QUASI-VARIATIONAL INEQUALITY PROBLEM

SOUMITRA DEY AND V. VETRIVEL

ABSTRACT. In the recent past, several existence theorems for the solution of inverse
variational problem which is a special case of variational inequality problems have
been established by several authors. In this paper, we have define an approximate
solution to inverse quasi-variational inequality problem in a locally convex Hausdorff
topological vector space.

1 Introduction The theory of variational inequality problems (VIP) and its applications
are well known in the last five decades. The notion of inverse variational inequality problem
(IVIP) has received the attention of researchers recently due to its applications in various
fields, such as traffic network problems, economic equilibrium problems (see, for example
[1]). Though, the inverse variational inequality problem is a special case (see [13]) of vari-
ational inequality problems, various authors [1, 11] have explored new sufficient conditions
for the existence of solution to inverse variational inequality problem, because of the fact
that the existence theorems for inverse variational inequality problem are stronger than
those for variational inequality problems.

He et. al. [6] introduced the inverse variational inequality problem to study the bipartite
market equilibrium problem. Zou et. al. [13] gave a novel method to solve inverse variational
inequality problems based on neural networks.

Recently, Aussel et. al. [2] have studied the inverse quasi-variational inequality problem
(IQVIP) with an application to road pricing problem and Han et. al. [1] have established
the existence of solution to the inverse quasi-variational inequality problem using fixed point
theorem and Fan-Knaster-Kuratowski-Mazurkiewicz (KKM) Lemma.

Let K be a non-empty subset of IR" and f : R® — IR". Let ® : IR® — 2% be a set-valued
mapping. The inverse quasi-variational inequality problem is to find a vector z € IR" such
that

(1) fx)e®(z), (x,y— f(z))>0,Vye d(x).

When ®(z) = Q for all z € IR*, where Q is a non-empty subset of IR", the inverse
quasi-variational inequality problem reduces to the inverse variational inequality problem,
that is, to find an = € IR* such that

f@) e, (x,y—f(x))=0,Vy .

For more details, one can also refer to [3, 4, 5, 7, 8, 9, 10].

Han et. al. [1] proved the following existence theorem.

2010 Mathematics Subject Classification. 49J40, 47J20, 47H04, 47H10.

Key words and phrases. Inverse variational inequality, inverse quasi-variational inequality, best ap-
proximation, upper semi-continuity, lower semi-continuity, Kakutani factorization, Lassonde fixed point
theorem.
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Theorem 1.1 Let f~1(K) be bounded convexr and K C f(IR™) be compact. Assume that
(i) fis continuous on R™ and natural quasi RY -convex on f~(K),

(ii) fis monotone on f~1(K), and f=1(.) is l.s.c. on K,

(iii) @ is continuous on IR® and for each u € IR® , ®(u) is convex closed, and f~(®(u))
is bounded and convezx with f~(®(u)) C RY.

Then, the inverse quasi-variational inequality has a solution.

When there is no solution to the inverse quasi-variational inequality problem especially
when the ranges of f and ® do not intersect, one can look for an approximate solution,
as there is no possibility of the existence of solution. In this paper we give sufficient
conditions for the existence of an approximate solution to the inverse quasi-variational
inequality problem in infinite dimensional setting.

2 Basic definitions and results Let K be a non-empty subset of a locally convex Haus-
dorff topological vector space X, p be a continuous semi-norm on X and (-, -) be a continuous
bilinear functional on X x X. Then, for any z € X define d,(z, K) = inf {p(z — y),Vy € K}.
A point z € K is said to be a best approximation to x with respect to p from K if
p(z —x) = dp(x, K). Tt is well known that[12] if K is a non-empty compact convex subset,
then such a best approximation from K exists to given any = in X. We say that K is
relatively compact if it’s closure is compact.

Definition 2.1 [15] Let X and Y be two Hausdorff topological spaces. A set-valued map-
ping ® : X — 2Y is said to be

(i) upper semi-continuous (in short u.s.c) at xo € X if for any neighbourhood Ny of ®(xo),
there exists a neighbourhood N (xo) of xg such that

O () C Ny, for all x € N (o).

(1) lower semi-continuous (in short l.s.c) at xo € X if for any yo € ®(x¢) and any neigh-
bourhood N (yo) of yo, there exists a neighbourhood N (xq) of xg such that

O(x) NN (yo) # 0, for all x € N(zp).

A set-valued mapping ® : X — 2Y is said to be continuous at a point xo € X if it is
both u.s.c and l.s.c at xg € X. It is said to be continuous on X, if it is continuous at every
point x € X.

Definition 2.2 [17] Let X and Y be two topological vector spaces. A set-valued mapping
®: X — 2V is said to be concave if

DAz + (1 —Ny) CAP(z) + (1 — N)P(y), for allxz,y € X and X € [0,1].

Lemma 2.3 [15] Assume that X and Y are any two topological spaces and ® : X — 2Y is
a set-valued mapping. Then ® is lower semi-continuous at xog € X if and only if for any
net {zxq} C X with o — o and for any yo € ®(xo), there exists a subnet {xg} of {za}
and a net yg € ®(xg) such that yg — yo.

Let K be a non-empty subset of X. We call a set-valued mapping ® : K — 2% Kakutani
factorizable [14] if ® = &, 0 P,,_q 0 ..... o @, that is, if there is a diagram

P ] P
(I)K—O>K1—1>K2—>—> n+1:K7

where for each ®iis a non-empty set-valued mapping and Kiis a convex subset of X. For such
Kakutani factorizable mappings, Lassonde [14] proved the following fixed point theorem.
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Theorem 2.4 [1}] Let K be non-empty convex subset of a locally convex Hausdorff topo-
logical vector space X and a set-valued mapping ® : K — 2K be Kakutani factorizable, that
s d=®, 0P, _10..... o @y, where each ®; is non-empty compact convex valued upper semi-
continuous set-valued mapping. If ®(K) is relatively compact, then ® has a fixed point, that
is, there exists xg € K such that xo € ®(x0).

We end this section with the following theorem which we will need in the proof of our
main theorem.

Theorem 2.5 [12, Theorem B] Let E and F' be two locally convex topological vector spaces,
X be a non-empty compact and convex subset of E, Y be a non-empty subset of F', and
fg: X xY —=R. If
(1) fz,y) < g(z,y),
(ii) for each x € X, {y €Y : f(x,y) > 0} is convez,
(ii7) for eachy €Y, v — f(x,y) is lower semi-continuous on X,
(iv) for eachy €Y, {x € X : g(z,y) <0} be non-empty and convez,
(v) g is lower semi-continuous on X x Y,
then there exists xo € X such that f(xg,y) <0 for ally €Y.

3 Existence of approximate solution to IQVIP We now prove our main theorem.

Theorem 3.1 Let K be a non-empty compact and convex subset of a locally convexr Haus-
dorff topological vector space X. Let f : K — X be a continuous mapping and ® : K — 2K
be a continuous set-valued mapping with non-empty compact conver values, satisfying the
following conditions:

(i) @ is concave and ®(K) is convex

(#) for z1, xo € K and uy € ®(x1), ug € ®(x2), we have

(x1,u2 — 2) + (2, u1 — 2) > 0, forall z € A,

(t3i) for each y € ®(K), {x € K : (z,z —y) <0} is non-empty and convex for all z € A,

where Ay = U,ep {2 € 9(2) : plz — f(2)) = dyp(f(x), D))}
Then, the inverse quasi-variational inequality problem (1) admits an approzimate solution,
that is, there exist xog € K and zg € ®(xg) such that

p(z0 — f(x0)) = dp(f(x0), P(x0)) and (zo,y — 20y > 0, for all y € P(x).

Proof. Define a set-valued mapping S : K — 2% by S=S; o Sy, where
Sy : K — 2% and S A, — 2K with
So(xz) ={z€ ®(x) : p(z — f(z)) = dp(f(x), ®(z))} and
S1(z)={we K :{w,y—z)>0,Vy € P(w)}.
We first claim that S is a Kakutani factorizable set-valued mapping. By our assumption,

®(x) is compact, convex for each x € K, and thus for every x € K, f(x) has a best
approximation from ®(x). Hence Sy(z) is non-empty.

To show that Sp(x) is closed, let {z,} be any net in Sp(x) which converges to z. We
show that z € Sp(x). Since {24} belongs to Sy(z),

P(2a — f(2)) = dp(f (), D(2)).

As ®(x) is compact, z € ®(x). Letting o — oo, we see that d,(f(x), ®(z)) = p(z — f(x)),
that is, z € Sp(z) and hence Sp(x) is closed. For each z € K, ®(z) is compact, hence Sp(x)
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is compact.

Also, Sp(z) is convex for each x € K. Indeed, let z; and 2z belong to Sy(z) for fixed
x € K. This implies that

p(z1 = f(2)) = dp(f(2), ®(2)) and p(z2 — f(z)) = dp(f(2), B(2)).

We show that for any A € [0,1], Az1+ (1 —A)za € Sp(z). Since ®(x) is convex, Az + (1 —
A)zg € ®(x) for any A € [0,1]. For X € [0,1]

p(Az1 + (1= A)z2 — f(2)) < Ap(z1 — f(z)) + (1 = Ap(z2 — f(2))
= Adp(f(2),@(2)) + (1 = N)dp(f(2), 2(x))
= dp(f(2), ®(x))
<p(Az1 + (1= Az — f(z)),

which implies that Azq 4+ (1 — X)z2 € Sp(x). Hence Sp(x) is convex.

We now show that Sy is upper semi-continuous. Let B be any non-empty closed subset
of ®(K). To show that Sy *(B) is closed, it is enough to show that if w, € S;*(B)
and w, — w, then w € Sy '(B). Let w, € Sy (B) and w, — w. This implies that
So(wa) N B # 0. Let {4 € So(wa) N B. Since ®(K) is compact, without loss of generality,
we can assume that (, — (. This implies that ( € B as B is closed. Now we show that
¢ € So(w). Indeed, since (n € So(wa), P(Ca—f(wa)) = dp(f(wa), P(wa)). Now, as « — o0,
we get p(¢ — f(w )) dy(f(w), ®(w)), that is, ¢ € Sp(w) and hence ¢ € Sp(w) N B. Thus
Sy 1(B) is closed and S is upper semi-continuous.

We next show that Si1(z) is non-empty. Fix z € A, and define f> : K x ®(K) — R by
fo(x,y) = (x,z — y). By assumption (iii), the continuity of (-,-), it is easy to see that all
the conditions of Theorem 2.5 are satisfied by taking f.(,) = ¢.(, ). Therefore there exists
2o € K such that (xg,z —y) <0 for all y € ®(K). In particular there exists o € K such
that (xg,z —y) <0 for all y € ®(x0), that is, there exists xg € K such that (zo,y —2) >0
for all y € ®(zp). Hence S;(z) is non-empty.

To show the compactness of Sy(z), it is enough to show that it is closed. Let {z,} be a
net in S;(z) such that x, — x. Since z,, € S1(2), (za,y —2) > 0, for all y € ®(z,), for
each a. Let us show that (z,y — z) > 0, for all y € ®(x). Let y € ®(z). Since z, — = and
@ is lower semi continuous, by Lemma 2.3, there exists a net y/, € ®(x,) such that y, — v.
This implies that (z4,y,, — z) > 0, as 2, € S1(z). Since z, — z, (-,-) is continuous and
Yy, — vy, as a — oo, we see that (x,y — z) > 0. Since y is arbitrary, (x,y — z) > 0, for
all y € ®(x), that is, z € Si(z) and hence S;(z) is closed. Since K is compact, Si(z) is
compact.

Let us now show that Si(z) is convex. Let p,q¢ € Si(z) and A € [0,1]. That is,
(p,y —2z) > 0, for all y € ®(p) and (¢q,y" — z) > 0, for all ¥/ € ®(q). It is enough to show
that (A\p + (1 — AN)g,y — 2z) > 0, forall y € ®(Ap+ (1 —AN)gq). Let y € ®(Ap+ (1 —N)q). Since
® is concave, we have y = Ay; + (1 — A)yz, for some y; € ®(p),y2 € P(q).
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Now,

(Ap—=(1=Nag,y —2)

= (Ap— (1 =N)g, A\y1 + (1 = Ny2 — 2)

=2 (pyr = 2) + (1= N> (q,92 — 2) + A1 = N [(p,y2 — 2) + (¢, 51 — 2)]
>0 [ p,q € S1(2) and assumption (ii)],

which implies that (Ap + (1 — X)g,y — 2) > 0, for all y € D(A\p+ (1 — A)g). Thus Ap+ (1 —
A)q € S1(z), for all A € [0,1] and hence S;(z) is convex.

We now show that S is upper semi-continuous. Let B C K be closed and {z,} be a
net with z, € S;'(B) such that z, — 2 as & — oo. This implies that S1(z4) N B # 0,
for all . Let yo € S1(z4) N B and yo, — yo as « — oo. Since B is closed, yo € B. We
have to show that yo € S1(2). Since yo € S1(2a), (Yas ¥ — 2a) > 0, for all y € P(y,) and
for all . Let y € ®(yp). Since yo, — Yo, by lower semi-continuity of ®, there exist a net
yl, € ®(yo) such that y,, — y. This implies (Yo, y), — za) > 0,Va. As @ — o0, we get
(yo,y — z) > 0. Since y is arbitrary,

Yo,y — z) >0, for all y € B(yo),

which implies that yg € S1(z). Hence yo € S1(z) N B, that is, Sy is upper semi-continuous.
Thus the set-valued mapping S is Kakutani factorizable. Now, by Theorem 2.4, S :
K — 2% has a fixed point. That is, there exists an 2y € K such that

To € 51(2}0), for some z € So(afo)
which implies that there exists zo € K and zg € ®(x) such that
p(z0 — f(x0)) = dp(f(x0), P(x0)) and (xg,y — 2z0) > 0, for all y € P(zp).

It is worth noting that if f(z¢) = 20, then zy becomes a solution to inverse quasi-
variational inequality problem (1).

The following example illustrates our Theorem 3.1.

Example 3.2 Let K = [-1,0] C R. Let f(x) = e* and ® : K — 2K be defined by

O(z) = [z,0], for allz € K. Here Ap= {0} and it is easy to verify that all the conditions of
Theorem 3.1 are satisfied and that zo= 0 is an approximate solution to inverse quasi-
variational inequality problem. It is important to note that there is no solution to the inverse
quasi-variational inequality problem involving these K, f and ®.

Acknowledgement: The authors thank the referee for his valuable suggestions to im-
prove the earlier version of this paper.
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A NOTE ON CERTAIN FUZZY METRIC SPACES
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ABSTRACT. In this note we provide complete metrics for a large class of fuzzy sets on
R which may not have bounded support and which may not even be measurable.

1 Introduction This note, a sequel to [9], continues to explore the problem of enlarging
the scope of fuzzy numbers. Kaleva [6] consolidated the approach of Goetschel and Voxmax
[5] in metrizing a larger class of fuzzy numbers, introduced by Dubois and Prade [3]. The
monograph by Diamond and Kloeden [2] elaborates the contributions of Kaleva as well as
their applications to differential equations besides other metrice on fuzzy sets. In the earlier
publication [9], the author modified Kaleva’s approach to metrize a class of fuzzy numbers
that may not have bounded supports. The present note provides a method of metrizing all
functions mapping R, the real number system into [0,1], generalizing the work of Congxin
Wu and Li [1].

2 A General Representation Theorem for Fuzzy Sets A general representation
theorem for fuzzy subsets of an arbitrary nonvoid set is described below. Unlike in other
representation theorems no assumptions involving either topology or convexity is made in
the following.

Proposition 2.1. Let X be a nonvoid set and u : X — [0,1], a function such that u(z) =1
for some x € X. Let C, = [u]* = {z € X : u(x) > a} for each o € [0,1]. Then

(i) for each a € I, C, is a nonempty subset of X ;
(ii) Cs C Co for0<a<B<1;

(iii) Co = ﬂ Cy, for each sequence {ca;} 1« in I.
i=1
Conversely if for a nonempty set X, there is a family of nonempty sets Cqo, a € [0,1]
satisfying the properties (i), (ii) and (iii) above, then there is a unique function u : X —
[0,1], viz. a fuzzy subset u of X such that [u]* = C, for each a € [0,1] with u(x) =1 for
some x € X.
Proof. Since C1 # ¢, (i) and (ii) are clear. Let « € [0,1] and o; T . Then C,, 2 C,, for

each 7. So ﬂ Co, 2 Cy. If z € C,,, then u(x) > «; for each i. So u(z) > lima; = . Thus
=1

ﬂ Ca, C [u]* = C4. Thus ﬂ Co, = Cy. If @ =0, and o;(€ [0,1]) T v, then a; = 0. In

=1

i= i=1
this case also (iii) is true.

2010 Mathematics Subject Classification.
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To prove the converse, define u : X — I by u(z) =sup{a € I :x € C,}. Since Cp = X
u(x) is well-defined for each x € X. u(z) = 1 for some z as C is nonempty. If x € [u]%, then
u(z) > a. Define I, ={f € I:z € Cg}. Let & =supl,. So’ = u(z) > . By assumption
(ii) Cor € Cf. Thus [u]* C C,. On the other hand for x € Cy, u(z) =supl, =o' > «
and so z € [u]®. Thus C, C [u]* and so [u]® = C, for each « € I. If for some v : X — I,
[v]* = C, for each o € I, then v(z) = u(x). Without loss of generality let v(z) = r > u(z).
Then [v]" = C,. # [u]", a contradiction. So u : X — I is uniquely defined. O

We have a more general representation theorem.

Theorem 2.2. Let X = U X, be a set where X1 C X5 C---C X, C X;,41 C--- and
n=1

each X; is nonempty. Let u : X — [0,1] be a function such that ull = {x € X : u(z) >
1} N Xy # ¢. Then

(i) for each n, Cop = [u]* N X, # ¢ for all a € [0,1]: and [u]® = U wn;

(i1) Cgp C Cop for all0 < a < (<1 for all n;

(iii) for a; €10,1] and {a;} T a € ]0,1], C, ﬂ Cou;n for each n € N.

i=1

Conversely if X is the countable union of an increasing sequence of nonempty sets (X,,)
and {Cy.n : « € [0,1],n € N} is a family of nonempty subsets satisfying (i), (i) and (iii)
above then there exists a unique uw : X — [0,1] such that for each o € I and n € N.
w*NX, =Cqpn.

Proof. The proof of (i), (ii) and (iii) is easy and omitted.
For the proof of the converse define u : X — [0,1] by u(z) = sup{a € [0,1] : = €

Co,p for the smallest n € N}. Since z € X = U X, v € X, for the least ng € N. Let
n=1

u(z) = ap. Then z € Cyy pny- Further [u U Con- Since Cy 7 is nonempty [u]! # ¢ and
neN
for0<a<ﬂ<1 [u]® C [u]® asC[;nQCanforallnGN IfaZTaal,OzE[O 1], then

by (iii) an—mCanforeachnEN So [u UC’an—ﬂUC“n—ﬂ

i=1 neN i=1neN
If w # v, then for some xo u(xg) > v(xo) without loss of generality. So for some T,
u(zg) > r > v(zg). I U Crn # [v]" as g € [u]", though zo & [v]". Thus u is
neN
uniquely defined. O

3 Outer Measure Spaces Let X be a nonvoid set with a hereditary o-algebra .. Let

u* % — [0, 00] be a nonnegative extended valued countably subadditive (set) function such

that pu(¢) = 0. Such a (set) function is called an outer measure and the triple (X,.%, u*)
(o)

is known as an outer measure space. An outer measure p* is called o-finite if X = U X,

where X,, € &, p*(X,,) is finite for each n € N.
It is known that an outer measure for which p*(X) < 400 induces metrics naturally. The
following theorem is esentially due to Frechet [5] and rediscovered by Meyer and Sprinkle
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[8] (see MR 0104211 21 # 2968 for [8] by F.B. Jones). Since it is not widely known, both
the statement and the proof are presented here for the sake of completeness.

Theorem 3.1. Let (X, ., u*) be an outer measure space for which p*(X) < +oo, . being
a hereditary o-algebra on a nonvoid set X. The functions p and § defined on . by

p(A,B) = p* (A= B) + p* (B — A)
6(A,B) = p*[(A—B)U (B — A)]

for A, B € .7 define pseudometrics on . Further p and § are complete pseudometrics.
By defining equivalence relations A ~ B in .7 if p(A,B) =0 or §(A, B) = 0 the set of all
equivalence classes in ¥ becomes a complete metric space under p or §. Also p(A,B) =0
or 0(A,B) =0 if and only if AU Zy = BU Zy where p*(Z;) =0 fori=1,2.

Proof. Clearly p(A, A) and §(A, A) = 0 for all A € .. Further p(A, B) = p(B,A) and
0(A,B) =46(B,A) for all A,B €., p(A,B) =0 implies u*(A — B) = p*(B—A) =0. So
AUB =AUB—-A=AUZ;, with p*(Z;) = p*(B—A)=0and AUB=BUA—-B=BUZ,
with Zo = A — B and p*(Z3) = 0. This is true for § as well, for (4, B) = 0 implies
p*(A—BUB—A) =0 leadingto AUB=AUZ, =AUB-A=BUZy,=BUA-B
with p*(Z;) = 0, i = 1,2 as before. If AU Z; = BU Zy where m*(Z;) = 0 for i = 1,2,
m*(A—B) < m*(BUZy— B) = m*"(BNB°UB°NZy) < m*"(Zz) = 0. Slmllarly
m*(B—A) <m*(AUZ; —A) <m*(ANA°UZ,NA%) <m*(Z;) =0. So p(A,B) =m*(A—
B)+m*(B—A) = 0. Similarly (A, B) = m*(A—BUB—A) <m*(A-B)+m*(B-A) =
For A,B,C € &

p(A,B) =m*(A— B)+m*(B— A)
m*(A-CUC—-B)+m*(B-CUC - A)
m*(A—-C)+m"(C - B)+m"(B—-C)+m"(C—A)

— )(A,C) + 9(C, B)

Similarly

5(A,B)=m*(A— BUB — A)
m'(A—CUC—-BUB-CUC-A)
m*(A-CUC—-A)+m"(C—-BUB-C)

=0(4,C)+4(C,B)

Thus both p and § are pseudometrics on ..

We now prove that (.7, p) as well as (.-, §) are both complete. Let (C),) be a sequence
of sets in .. Suppose it is Cauchy in (.7, p). It suffices to show that a subsequence of (C},)
converges to an element C in .. Choose a subsequence C,,; of C,, such that p(C,,,, C, j) < %
for i € N and j > 1.

DeﬁneDk:ﬁCm,Ek:GCni for k€N, D = GDk: GﬁCni:himCm and

i=k i=k k=1 k=11i=k

E = U E, = ﬂ C,n, = imC,,. As . is a g-algebra, D, E, D}, and Ej, € .. For each

tij

k k=1i=k
keN,DL,CDCEC
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Now

So p(Ek, Cp,) = m*(Ex, — Cp,) — 0 as k — oo.

So p(Chy,, D) = m*(Cy, — Di) — 0, as k — oo.

Since p(Elw Dk) < P(Ek, an) + p(anv Dk)

Jim p(Ey, Dy) =0

Since p(E, D) < p(Ey, Dy,) as

D, CDCECEforalk, p(EF,D)=0

Thus limC,,, = limC,,, = E or D and p(E,C,,) — 0 as k — oo.

So (Cy, ) converges to E(= D) in (-, p) and hence (C},) converges to E(= D) in (.7, p)
and hence (C,,) converges to E(= D) in (., p). Thus (., p) is complete.

If (Cy) is Cauchy in (.7,6) as before choose a subseqeunce (C,,) of (C,) such that
§(Cn,, Ci) < 5= for all k > n.

5(Ek - O”k) =m" (U Chn,; — an)
i=k

< im*(c’m - an)

So klim (Fk,Cpn,) =0
Also
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Thus khm (S(an,Dk) = 0. Now as (S(Dk,Ek) S 6(Dk,Cn,€) +5(an,Ek), klim 5(Dk,Ek) =
0. Since §(E, D) = m*(E— D) < m*(Ey — D) = 0(Ey, Dy,) for all k, §(E, D) =0 or E—D.
Thus Cp, converges to £ = imC,,, = imC,,, = D. So 6(E(= D),C,) — 0 as n — oo.
Thus (., 0) is complete. O

Considering the set of all equivalence classes of sets in . induced by the equivalence
relation A ~ B if and only if p(4, B)’ = 0 or §(A, B) = 0 the metric induced by p or ¢ is
complete.

In this context we recall the following definition (see Dugundji [4]).

Definition 3.2. Let D = {D) : X\ € A} be a family of pseudometrics on a nonvoid set X.
The topology (D) with the subbase {B(x;dx,€)(={y € X : dx(z,y) < €}} where e >0 and
dx, a pseudometric on X is called a gauge space, the family D being a gauge. The gauge is
called separating if for x,y € X © # y, there exists Ao € A such that dy,(x,y) > 0. (Clearly
a gauge is separating if and only if the topology is Hausdorff).

Definition 3.3. Let (X, D) be a gauge space. A sequence (xy,) is called Cauchy if dy (X, Tn)
0 as m,n — oo for each A € A. The gauge space is said to be sequentially complete if every
Cauchy sequence in X is convergent.

Remark 3.4. A topological space is a gauge space if and only if it is a Tychonoff space.
A necessary and sufficient condition for a gauge space to be metrizable is that it has a
countable gauge. For these and related results Dugundji [4] may be referred.

We have the following theorems whose straight-forward proofs are left as exercises.
Theorem 3.5. Let (X,.7,u*) be an outer measure space with a hereditary o-algebra & .
Suppose X = U X, where X1 C Xo--- C X,, € X411 C -+ with p*(X,,) < 400 for

n=1
all n. Then (,D)(<,D")) is a Hausdorff complete metrizable gauge space. Here D =
{pn, : n € N}, D' = {6, : n € N} where p,(4,B) = p(ANX,,BNX,) and 6,(4,B) =
(AN X,,BNX,) forn € N, p and & being the metrics defined in Theorem 3.1. Also
A, B €. for which p,(A,B) =0 (0,(A, B) =0) for all n are identified as equal.

Theorem 3.6. Let (X, 7, u) be a complete measure space. Suppose X = U X, where
n=1
X1CXo-CX, CXpy1 C-o- with u(X,) < +o0o for alln € N. Then (&, D)((#,D"))
is a Hausdorff complete metrizable gauge space. Here D = {p, :n € N} and D' = {6, : n €
N} where p, (A, B) = u(X, N (A — B)) + w(X,, N (B — A)) and 6, (A, B) = p{X,, N ((A -
B)U (B — A))} for eachn € N. In ¥ sets A, B with p,(A,B) =0 (6,(A, B) = 0) for all

n € N are treated equivalent.

4 Fuzzy Subsets of an Outer Measure Space In this section we provide a metrical
structure for a class of fuzzy subsets of an outer measure space (X,.7,u*) defined on a
hereditary o-algebra .. This is described in Theorem 4.1 and Theorem 4.2 and Corollary
4.3 point out how a wide class of fuzzy subsets of R or R can be endowed with a complete
metric.

Theorem 4.1. Let (X,.7,u*) be an outer measure space, & being a hereditary o-algebra
oo
with X = U Xy, where X1 C Xo C - C X, C X1 €+ and p*(X,) < +oo foralln €

n=1

N. Let F}(x) be the set of all functions u : X — [0,1] such that {z € X : u(z) > a} € .% for
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each o € [0,1] and u and v for which p*{z : u(z) # v(x)} = 0 are treated as equal in F}(z).

Further suppose there exists A € . with A C {x : u(x) > 1} C Xy for all u in F}(X) and

p*(A) > 0. Define A,, Al : FA(X) x FA(X) — RY by Ap(u,v) = sup p([u]®, [v]*) and
0<a<l

Al (u,v) = sup 6([u]®, [v]*). Then {F}(X),A,:n € N} and {F}(X),Al : n € N} are
0<a<1
Hausdorff, gauge spaces which are complete metrizable spaces.
Proof. Since A, (u,v) = Ap(v,u) and Ay, (u,v) < Ay (u,w) + Ay (w,v) for all n each A,
is a pseudometric on F}(X). Further for A, (u,v) = 0 for all n [u]* = [v]* on X for
all @ € [0,1]. Since [u]” = [v]" for all rationals in [0,1] it follows that v = v almost
everywhere on X with respect to p*. Thus {F'(U),A, : n € N} is a Hausdorff gauge
space. Let u, be a Cauchy sequence in {F}(U), A, }. Since sup p(X,, N [up]®, X N[ug]®) is
acl

€
Cauchy in (X, p), there exists C¢ such that sup p(X, N [um,]%, Cs) — 0 as m — oo. Define
acl

e}
ce = U C2. Clearly C € . for each a € [0,1]. Since [u,,)? for 3 > a, a,8 € [0,1],
n=1
for each n € N X,, N [um]® € X, N [um]® As m — oo, since [up,)’ — C° = lim[u,,]”.
X, NCP C X, Nlim[u,]* = X, NCY If a; T ain [0,1], lim [w,,]® N X, = [um]® N X
71— 00
p([um]¥NX,, C%) < eforall m > mg for all . Now as «; T a0, P([tm]*NXp, [um]*NX,) <
€ for i > ig. So p([um]® N Xy, C%) < p([um]® N Xp, [um]® N X5) + p([um]® N Xy, CF) < 2e.
So as m — oo p(C%,C%) < 2¢ for i > ig
Hence C2 — C% as limCY = m C%. Also [u,]' D A for all n. So lim [u,]' =
n—oo
i=1

C!' O A. Thus {F}(X),A, : n € N} is a Hausdorff countable gauge space which is
sequentially complete. So it is metrizable and complete. One can generate the gauge

topology using the metric A(u,v) = nzz:l w or nzz:l WEI(L;;))

A similar argument shows that F}(X,.7, u*) with the countable gauge {A/, : n > N} is
Hausdorff and completely metrizable and

A, v) = Z min(l,QAn’n(u, v))

n=1
_ i Aj (u, )
n=1 2”/},* (Xn)

gives a complete metric. O

or

The following theorem can be proved along similar lines.

Theorem 4.2. Let (X,.7, 1) be a complete measure space where X = U X, where X C
n=1

XoC- - CX, C Xy € and 0 < p(X,,) < o0 for all n. Let Fi(X,., ) be the set

of measurable functions mapping X into [0,1] such that for some A C X1 with u(A) > 0

and ull D A. Then F},(X) is a Hausdorff complete metrizable gauge space with the gauge

{A, :ne€ N} or {Al, :n e N} where

An(u,v) = Oigglpn([U]“7 [v]*) and

A7 (u,v) = 031;121%([“](”, [v]*)
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for u,v € FL(X). p, and 6, are as in Theorem 3.6.

Corollary 4.3. Let pu* be the Lebesgue outer measure on X = R™. Then for any A C
B(0;1) the unit open ball with p*(A) > 0, F4(X, 2%, u*), the set of all fuzzy subsets u of R"
with ull D A is a sequentially complete Hausdorff gauge space with the gauge {A, :n €N}
or {A! :n € N} where A, and A!, are as in Theorem 4.1.

Corollary 4.4. If u* is the Lebesque measure on R™ and A C B(0,1) the unit open ball in
R™ with p(A) > 0. Then Fﬁ (R™, ., 1) the set of all fuzzy Lebesgue measurable subsets of R™
with [u]' D A is a sequentially complete Hausdorff gauge space with the gauge {A,, : n € N}
or {A! :n € N} where A, and Al, are as in Theorem 4.2.

Remark 4.5. As the space of Lebesgue outer measurable subsets of (0,1) or the unit ball in
R™ with the metrics p or § induced by the Lebesgue outer measure is not separable, F} (R, 2%)
or FY(R™, 28" with the gauge {A, :n € N} or {A! :n € N} described in Theorem 4.1 is
not separable.

Remark 4.6. Characteristic functions of singletons in R are identified with fuzzy real
numbers in the Kaleva approach to fuzzy real numbers. However as singletons have zero
Lebesgue measure, the characteristic functions of singletons are all equivalent to the zero
function and so cannot be used to represent fuzzy real numbers in F1(R). However this
can be remedied by considering the product metric space F1(R) x R with the corresponding
metric of the product space so that the real number system can be isometrically embedded
in this product space. This is similar to embedding the real numbers isometrically in the
complex plane or R?.

Remark 4.7. When (X,.%,u*) is a finite outer measure space, then FL(X, ., u*), the set
of all fuzzy subsets u : X — [0,1] with [u]! D A and p*(A) > 0 is a complete metric space
under the metrics

) = sup {m* ()" = ) + m* ()" = [u]")]
0) = sup {m[([u]" — 1) U ()" ~ [1]°)]

Finally we provide just one example to show that certain fuzzy functional equations
can be solved in this setting, affording greater flexibility and scope for solving nonlinear
equations involving fuzzy numbers which are neither upper semicontinuous nor convex.

Example 4.8. Let X be [0,1] and u* the Lebesque outer measure on the power set 2% of
X. Let A be a non-measurable subset of X with positive outer measure and Fi (X, %, n*)
the set of all fuzzy subsets u : X — [0,1] such that [u]' D A. Define T : F}(X) — Fi(X)
by [Tu]® = [v]* = f{z : u(z) > a} U A where f(z) = <. Since p*([Tw1]® — [Tua]®) +
p([Tus)® — [Tug]*) < 2p*([ua]® — [ug]®) + p* ([ug]® — [w1]*) and F}(X) is complete and
A(Tuy, Tug) < %A(ul,ug), T has a unique fized point which is a solution of the functional
equation Tu = u in F}(X).
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Abstract

Let Q be the unit cube in R™ centered at the Origin O and H a
hyperplane through O.The intersection is called a central Cube slice and
its study was initiated by Hadwiger, Henesley and Vaaler , continued by
Ball and others. A zonoid is the range of a non atomic vector measure
into R™ . In this paper, when n = 4 we give examples ofnon -zonoid cube
slices. Let H: x 4+ y +2z +t =0 ; the slice has triangle faces and is not a
zonoid. This contrasts with a result inR* where it follows from a classical
Theorem due to Herz and Lindenstrauss that every central cube slice is a
zonoid( zonotope). We also give nontrivial examples in which the slice is
a zonoid. For ex. let H : ax + y + z+t=0 with a>1. If a> 3, the slice is
a zonotope. Otherwise it has faces that are trapeziums or pentagons and
is not a zonoid.We also give other examples of the like nature.

1 Introduction

1.1 Slices Zonoids ,Zonotopes
Let us recall the result from [3]:— Let Q™ =Q =unit cube in R™ centered at

Origin O; ie. Q= {x = (x) : |zi| < %}

Let H be a vector subspace of dimension n-1, ie. a plane thru the Origin
with equation : H= ( x= ( x} ) with x .a =0 ) for a( non zero) vector a in R".
The intersection of H and(Q will be called central slice or, slice. Following [ 3
] we denote by|A| the appropriate volume /area of the measurable set A ,and
assume n >2. As other examples let us note the papers [7 |, [ 8], 13]initial to this
subject , and the surveys [5], [10] [14] Jthat treats many related topicsWenote
the p th powerof LP norm of the sinc function in [3] : for (p> 2 ):

1 |sint|P

I, =— dt 1
p T ’th ( )

S

An upperbound for this is:- , with equality iff p = 2. The lower bound

E

is assumed by H: ;= 0 and upper only if n=2 and H: z + y=0 or with z — y=0
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Let us mention that Valler[13] considers concepts of analytic interest; his
results not only prove lower bound but also apply to Minkowski’s Theorem on
Linear foirms.

We note that there are alsoresults on sections by centralplanes of dimension
k( see [14] TH 1.2, 1.3 p 154), alsodue toBall. We treat only the case k= n-1.

This estimate is in [3 ]; see also [10, Chl]. The proof of this estimatein |3,
p468] is with 7 direct ” and uses only elementary methods . The one in [10]
uses Fourier methods.This integral I, has found use in wavelets] 11 |

For our needs we use the more precise values also from ( [3] Lemma3) below
,see eq(9), (10). In [3] this is derived ,first using Characteristic functions( =
Fourier Transform) then the standard Inverse Fourier Formula .

As pointed out by an anonymous referee (of another paper)— see Acknowl-
edgements —this I, is in the classic, [ 12] ( also in [9]); see [10] for many related
deeper results However we use the formula from [3] for vol of slice of cube .
Our interest is more in the sliceitself .With n=4 in Sec 3we give example ofa a
( central)slice that has a triangle face, and isnot nota zonoid ( ” face” ) defined
below).On the other hand,in Sec 4 we give examples of slices that are zonoids,
and othersthat have a pentagon or trapezium face and so are not.

Notation and preliminaries : We write an element of R* as (x, y, z, t)
and use a, b, ¢, d as coefficients. Below we avoid the case when H is paralll to
acoordinate hyperplane;inthis case the slice is a Cube of lower dimension and
so a zonoid

Let a hyperplane be H : ax + by + ¢z + dt =0 .As in [ 8 |, we may assume
that no coefficient is zero, and next they are all positive. Further we may
assumethat a>b>c>d and then by dividing by d, that H: ax + by + ¢z + t =0
with a>b>c>1. In all examples of non zonoids we consider the equation [ t=
-1/2] to get a Face that is atriangle,trapezium or pentagon( disqualifying slice
fombeig a zonoid : see beginning of Sec 3).

In ex 3.1 we consider the case when a=b=c(= 1); and as mentioned above
show that the slice has triangular faces and so not a zonoid(” face” defined
below).The sections of this sliceby planes| t= -c] with 0 < ¢ < 1/2 are hexagons
.These tend to the triangle face as ¢ tends to 1/2 . We may feel that ” cube
slices in R* are never nontrivial zonoids”. Hencein ex 4.1 we consider H: a x +
v + z + t =0 with a > 1 Now the slice is a zonoid if a>3 and is a paralletope;in
the contrary cases the slice has pentagon faces and isnot a zonoid . In Ex4.2 we
consider H:a( x +y)+ z +t=0 ; the slice is not a zonoid onaccount of trapezium
faces.In Ex 4.3 we have H: a(x + y) +z +t=0and slice has pentagon faces In
ex4.4 Webriefly indicate special cases of H: ax 4+ by + z +t=0 witha > b >1.
As the methods in these examples is same asthe one in Ex 3.1 we donot give
details. In Ex.4.4 we consider the case of H:ax + by + cz + ¢t = 0.Slice is a
paralleotope in case a>b+ ¢+ 1 and b>c + 1. If (i) and (ii) both fail then the
slice has pentagon faces and is not a zonoid

We give these as samples ; and do not consider every possible case .Roughly
, the non zonoids prevail in our list of examples.

DiagramThey will help.
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Our methods are elementary and can be found for ex in [6]. We do use the
formula for vol of slices from [3] ( see also [10] chl) referred to above.

We notethatthat in al of our examples we use the face [ t=-1/2] of the cube
, this is also a faceof the slice The "domain” C of face is found first , then an
affine map T to determine theFace T(C). The points in C are found by checking
the x and y intercepts of lines involved satisfy theconditions for slice:—|x|, |y| and
|z| are all< 1/2. This condition must be satisfied by all coordinates of points
in the Face (of slices) that we find, and leads tothe conditions imposed on the
coefficients of H.

Let us first describe the result on slices

. 1.2Theorem ([3][5] ,[7], [8] [13] ,[14] )In all dimensions the measure
of cube slice is between 1 and /2; these arebest.

1.3Zonoids

Returning to the title of this paper, about Zonoids:— Our concern is :— When
is a slice a zonoid? We do not have a complete characterization of this .Instead
let us concentrate in R*, and give examples of non zonoid slices as well as those
that are zonoids and a consequence( known) for I, . We recall from [ 6] with
X=R" = . A zonoid is range of a non atomic vector measure and above all
the classical Liapunovs Theorem:- A zonoid is compactand convex A zonotope
is sum of segments( each centered at the Origin) For our purpose we need the
classic result of Herz and Lindenstrauss from [ 6]:— The closed unit ball in every
2dimensional normed space is a zonoid

2 Zonoids and Zonotopes

2.1 Theorem]| 6]

i)If H is 2 dimensional then every such slice is a zonotope ii) In all dimensions
every projection of Q is a zonotope

Proof:

(1) This follows from the classic result due to Herz and Lindenstrauss quoted
above and the result from ( [6] ) - inR? every centrally symmetric polygon is
always a sum of segments

(ii) This is in | 6] and can also be verified directly. Hence the Theorem.

Remark 2.2:

For much more about projections see, [ 4].

3 Example of slice that is not a zonoid

A notedbefore,in contrast(Th 2.1, part i) to the situation in R*® we offer an
example of a slice in R* that is not a zonoid. Reasons to disqualify it from
being a zonoid are the useful facts, all from | 6] :—If K is a zonoid then

(i) K has center of symmetry c say .In fact by definition of ” K is a Zonoid
" (see Introduction)
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1
K=pu(>_) for a ( vector measure) u then c= §,u(S) will do For, with A¢ =

1
complement of set A, we have i(M(A) + u(A¢) = 1/2u(S) =c for every A in
domain) of u
(ii) faces are translates of zonoids of lower dimension and

(iii) Since it has no center of symmetry,the triangle is not a zonoid; neither is a
trapezium (trapezoid) or a pentagon

(iv)Hence any compact ,convex, balanced set that has a triangular,( or a trapez-
ium face) cannot be a zonoid. Thus, the Octohedron in R3 is nota zonoid, for
it has triangular faces. There are deeper non zonoids for ex the 1976 result due
to LE Dor ( for ex[10]):-If 1 < p < 2 and n> 3 then the closed unit Balls of the
spaces [P are not zonoiids

We give, in Th3.4, a version of(ii) from [2 |:— a face ( defined below) is a
translate of some zonoid of lower dimension . We need this version in the Th
3.4 to produce non zonoid slices in our examples.

Let us recall fom [6] theterm , Face of acompact convex set K in a real(
normed space ) X. Let us use H for any hyperplane ( not necessarily thru O)

As above a hyperplane is

H=(zeX : (z,2") =) , (2)

where x* isa non zero functional in X™* and «ais a real number .
The set K is on one side” of this H if

sup|(x, %) : zeK]<a, (3)

A similar condition holds with inf replacing sup and by> replacing <
;and H supports K if K is to one side of H as in eq(3,) H NK#¢and K is not
entirely contained in H. Finally the ( compact convex ) set HN K is called
a Face of K .

Below we use the fact that an affinemap preserves convexity.

Let X, Y be real Banach spaces .Then a mapT: X Y is affineif T ( ax +
by)= aT(x) + bT(y) for every x, y in X and a , b 0 with a + b =L.ie; the
definition of Linear map is now restricted to line segments in domain.

Let us recall ; K= HNQ is the slice correponding to H[t = —1/2] In the next
( and other ) examples all we need is that the relevant , y, z coordinates of our
pints are limited by |z| < 1/2 etc .

3.1Example with triangle face

Let us recall H is given in R* by

r+y+z+t=0, (4)

The slice (i) has triangular faces and so is not a zonoid
1
(ii) the intersections of slice with t= -c , 0<c < 5

are hexagons ;these are sections (iii) These tend to the above triangle as ¢
tends to 1/2
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proof(i)

Substituting t = -1/2 in eq(4) of H , for any x =( x, y, 2z, t) in this H we
have

x =x( 1,0,0 -1) + y (0,1,0,-1) +z( 0,0, 1, -1) is the linear combination x u
+ y v+ zw. ( these 3 vectors u, v, w are Linearly independent)

First consider the 2 dimensional set S in slice,in span of vectors u and v.
Starting with A ( u/2) on the x axis and going counterclockwise,we see

that S is a hexagon with vertices A ( u/2), B(v/2), C(( v-u)/2, A’= -A,

B’= -B, C= -C. Further it is regular all sides have length 1/4/2 and that
this = sum of 3 segments , OA , OC and OB’. This set S is in plane z=0 Now we
consider the 3rd term in above eq for x ; we note that the vector D= w/2 cannot
be added to A or B as the sum will leave the cube We consider the Hyperplane
Hy = (x,¥ 2,t): t=-1/2 ) or, simply by t = -1/2 and claim that

(a) this plane supports the slice K and that

( b)the face F =H;NK is convex triangle.

As noted above, ( b) disqualifies the slice from being a zonoid

Let us verify the claims. Now (a) follows directly from def. of Q.In fact for
every element in Q we have t> —1/2 ie., Q is to one side of Hj; so is the slice
.Further , the elements A , B, are in the slice, and also lie inH; , hence in Face
F. The Origin O is in slice K not in Hy; ie. the sliceis not entirely contained
inH;.Hence H; is a supporting hyperplane of the slice as claimed.

For claim (b) we may write any element in the Face as

X = (X7 Y, %, t):( XY 5 —$—y,—1/2),

since we use t= - 1/2 in eq (4) of H and

we get z= 1/2 — —x —y.

As x is in Q we need |z| and |y| and also |z| from above <1/2 and so

[1/2—2z—y[<1/2, (5)

This last translates to

0<z +y<l1, (6)

Geometrically, we note that the last inequality gives two boundary lines of
"domainC” sayl, := x+y =1, and Ly:= x+ y=0. We sketch these lines; as
the x-intercept ofL; exceed the bound 1/2 let us consider its intersection with
the line x =1/2 toget point (1/2, 1/2).; intersection of Lo with the line y=1/2
gives ( -1/2, 1/2). This line with y=-1/2 gives (1/2, -1/2)

These result in a ( convex right angled ) triangle C in x-y plane with above

vertices P( 1/2,-1/2) , Q( 1/2,1/2) and R ( - 1/2, 1/2)

Now let us define a map Tfrom Cto F by

T(xvy) = (xvya 1/2—x—y,—1/2) (7)

and C is its domain. Then we may verify that, T is affine and that T( C)=F.
Further as observed before statement of this example, affine map
preserves convexity, and so the image T ( C) = convex hull of the 3 points
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(p17p2 7p3) where P11 = T( P): ( 1 /2 ) _1/2 71/27 _1/2) y P2 =

T( Q): ( 1 /27 1/27 '1/27 '1/2) andpSZ T( R): (_ 1 /27 71/27 1 /27'1/2)
These points are not collinear, form a triangle and we conclude that the face F
is a triangle , completing Claim ( b) and proof of (i) .

We need to prove (ii) and (iii) .

Recall K = slice ; now we let 0 < ¢ < 1/2 and Section K, = K N[t = - ¢].

Use t= - ¢ in eq (4) H; any x in Kc is then of

the form x = ( x, y , -x-y+c¢, -¢) with the conditions

=], |yl and |z +y —cf < 1/2.

Similarly to above ( 6) this last translates to

—1/24 <z +y<1/2+c, (8)

As in part (i) we draw the "boundary” lines Ly , Lo from eq (8) . Again , both
the x and y- intercepts of L; fail the bounds of 1/2; however Lo passes ( noting
the limits on c¢)Then we find the vertices of our "domainC” by intersecting
Ly and Lo with the lines y=1/2, y= -1/2, x= 1/2 and x= - 1/2. . We get a
hexagon( domain). Its 6 vertices are shown in a Chart in next Theorem 3.3 and
as follows:—

pe =(c, -1/2) on lines y = -1/2 and Ly , p1 =

(1/2,-1/2) andps =(1/2, c¢) on line x=1 / 2 andL; .Next ps =(c, 1/
2) on lines Ly and y=1/2 and ps =(- 1/2, 1/2) then p5 = ( -1/2, ¢) on lines Lo
and x= -1/2

These 6 points (p;) form a hexagon making

the new domain C of map T defined analogous to eq(7) in part (i) above.

As there we see that the section K, = T( C ) is also a hexagon.

Finally let ¢ tend to 1 / 2 ; then we see from above that the

following vertices coincide:- p2 = p3 =(1/2, 1/2) ,ps = ps

=(-1/2, 1 /2) and ps = (1/2, -1/2) = py . Correspondingly ( as in

case i above) we verify that the section T( C ) becomes the triangle in

part(i) completing thereby proof of (ii) and the example

Remark 3.2. Above we used the hyper plane given by the equation,
t=-1 /2 and found that the face of slice given by it is triangular
we may instead consider t = 1 / 2 Further, the equation defining H is
symmetric with respect to the four variables x, y, z, t. Hence we may con-
clude that there are 8 triangular faces. We do not know what are the remaining
faces and we think there are 4 more but not triangles .

For the next result, we follow | 3]Lemma 3 ( see also[10] chl ) and recall

from Introduction eq(1) theintegral I, :
f \smt!

wh WP

Here p is an integer >2, and we have from the result in [3] above,

the formula forthe exact value of slice :-

im0Ql =~ [ g )



EXAMPLE OF CUBE SLICES THAT ARE NOT ZONOIDS 321

where g is the finite product

Al sina;t
g(t) = [T 2%, (10)
1 1

and the sequence ( a; ) ( of coordinatesof vector normal to H) is normalized
in I, andalso each |a;| < 1/2

To find volume of slice S we use Cavaleri s principle = Fubini’s Theorem .

Let |A(c)|= area of the section of S by plane [ t= -c]. Then the

vol of slice =2 f01/2 |A(c)|dc.

We saw in ex 3.1 that A ( ¢) is a hexagon . We give the details in the

next result;

3.3Theorem (i)The volume of the slice in Ex3.1 is 4/3 (ii) I, = 2/3

Proof(i) We refer to part (b)in ex3.1 and list the vertices of the hexagons in

domain C as well as in the range T(C).

Recall T( x, y)= ( x,y, c-x-y, -¢) with 0 < ¢ < 1/2.

Domain C .....ccceeviiiiiiiinnn, rangeT( C)
Pp1(1/2, -1/2) i Pi(1/2,-1/2, ¢, -c)
P2 (1/2,C) voviiiiiiiii, Py, (1/2,¢ -1/2 , -c)
p3 (€, 1/2) i, P;(c,1/2,-1/2, -c)
pa (-1/2,1/2) i, Py(—1/2,1/2,¢,—c)
D5(—1/2,C) v P5(-1/2, ¢, 1/2, -c)
Pe( € -1/2) i Ps (c,-1/2,1/2, -c)

We claim that area of domain C=

[A(0)l = (3/4—¢c?), (11)

In the following we use formula for area of trapezium by rule

(1 /2) h (a + b) where h is the height and a, b are lengths of parallel sides.
Let us use the chart for domain C first then use it to get the image.
The domain C = two trapeziumsT; andT5 ; these are the top and at
bottom respy. Namely, 17 has vertices, ps, p2, p3 and py

and T5 has vertices, pg, p1,p2 andps.

Then wle have

Ty |= 5(1 +c+1/2)(1/2—-¢) =1/2(3/2+ ¢)(1/2 — ¢)and

|To|=1/2 (1-c +1/2) (1/2 4+ ¢c)=1/2(3/2-c) ( 1/2 4c)

Adding them we get the eq ( 11) for A(c).

To get the area of image T( C ) observe that the domain C is the
projection on plane( z=0) of the wanted T( C) .

For the factor needed we note that the unit normal to H is
n=(1/2,1/2,1 /2,1 /2) and that e3 = ( 0,0,1, 0).

Using the dot product n.es we see that area of Projection

= 1/2 area of T ( C). Thus the area of T (C) = 2(3/4 — ¢?) from above.
We integrate from c¢=0to 1 / 2 to get

1/2, 3
2f0/ (Z—CZ)dc:2/3
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Taking into account alsothe part t=1/2 to 0 we get 2( 2/3) =4/3 as claimed

Part (ii) :Recalling H: x+ y + z+t =0 and the coefficients, normalized , we
apply the formulzz from [ 3] quotedabove in eq (9) , (10) to get vol of slice=
1 / (sint/2) it
T Jr (t/2)*

(‘as in part (i) we used each a; coefficient is 1/2 due to normalizing them in
eq of H ) Now a change of variable gives

% [ (sint/t)* dt = 214.

From part (i) we have 2, =4/ 3

and so part (ii) and the Theorem

Above,in example of a non zonoid slice we used the important fact about
faces of a zonoid from [6] ( innext Theorem) The following proof is different from
the one in[6] which uses Every Zonoid is a zonoid of moments .This approach
is not suitable for our purpose; hence we give a proof ( in[ 2]) in next result. We
see in the proof that it is more meaningful incase the Face isnot a singleton, ie.
when the composed measure x*opu is not equivalent to p

3.4Theorem|[6][2]]Let K =x(> ) be a zonoid in X=R", and H a supporting
Hyperplane given by x* in X*.Then the face F=KNH is a translate of a zonoid
of lower dimension . In fact there are p almost disjoint sets Sy and S such that

(i)x*ou(S1)=sup{z*ou(E) : Fe)_} and every set E inSy is x*op - null

(it F= p(S1) + pmso(20)-

Proof: With = supz*u(}_) we have,from definition of F

F={z:z=p(E)sta*(z) =8}, (12)

Let ST be such that z*ou(S*) = f.

We will writeST =S5 U S; as stated in the Theorem.

To do this let usnote that the signed measure x*ou << p

;consider those E that are x*op - null but not p — null.

(ifthere are no such sets E then Symay be taken to be ().

Othewise consider a maximal pairwise disjoint family ofsuch sets; this family
is countable, so that theirunion is in .. Call this set Sy and let S; = ST —S
.Then

(i) follows from the fact that

x*o nu(Sp) =0 by the construction of Sy and so

B=x* pu(ST)=x* ou(Sy)+x *ou(S)

= z*o p(S1) . we see that second part in (i) follows by construction again.

As for part(ii) we have from Eq (12) if x= u(F) € F then

zrop (E) = .

We need to write x = ( E) asthe sum, u ( E)= p (S1) + p ( A) for some
set ACSy To do this,first we claim that( ae—x*ou) this EC ST . Ifnot we can
argue to contradict to the fact that S = ST US™ is a Hahndecomposition of the
underlying set S in terms of x*op

Again we can argue that S; - E is y null;from it being z*ou null, and then
on ( subsets of ) S; these two measures are equivalent by construction.
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Hence we have E= E N S; UENSy, andso
u(E) = p(EN)S1) + p(ENSo) =

w(S1) + p(A)withA = (ENSy)CSp as claimed.
Hence the Theorem

4 Examples of non zonoids with pentagon faces
and some zonoids a >1

As in Introduction welet H: ax 4+ by+ cz + t=0 be a hyperplane in R* with
a>b >c >1.

We donot consider all cases but hope the following are of interest. There
are non trivial cases of zonoid slices . As the methods are same as the one in
the earlier ex 3.1 we only summarise the results It seems the non zonoid slices
dominate:—

In the next ex. we donotknow if the converse is truein this gnerality. Hencewe

give some special cases ofthe eq of H in the EXs 4.2 and on.In all cases for the
-1
Face we use as before the support hyperplane of Q [ t= ?]

4.1 H: general caseabove
If a > b+ ¢+ 1 then the sliceis a zonotope.

Proceeding as in Ex3.1, we find the ” domain” for the face .For this we have

—c+1

1
the boundary lines L; to be ax 4+ by = et and Lo to be ax+by =

Firstwe note bothx andy-intercepts of Lo are always ( regardless ofthis con-

1
dition ) 5 in absolute value. As forl; this condition gives the x-intercepttobe
1 .
< 3 in absolute velue. In the following ” domain the vertex ps depends on this

1
condition, ie. its ” |z|: satisfies the limits gi.

Withthe condition above we have now the chart

Domain

P1 2. ’ 9
c+1+b —1)

D2 %2, ; ) 2

p3 (c+21afb’ 5 )
1-b—¢c 1

p4( 2a ’5)

Next the corresponding points on the Face:—

1/2 — —by -1
FaceT(XaY):(X7 Y, w? 7)

b—c+1 11 ;1)
2 7 272 2
c+14+b -1 -1 -1
2¢ 27 27 2

Py (

Py ( )
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c+1—-b 1 -1 -1
P - =
— C J—
P - - =
(7))
It is seen that this domain is a parallogram with the parallel sides( so is the

Face):
(p1p2 ) = (pap3) = (g, 0) and

(p2 p3) = (P1 pa) 2(2 .-1)

Likewise, it can be verified using the map ”"T” , that so is the Face.

Further, the sections of thesliceby planes with eqs t= —¢yp, with 0 <c; < 1/2
are parallograms that are congruent to the one for the Face. Hence it follows
(using symmetry) thatthe slice is a zonotope.

42H:ax 4y + z+ t=0

In one direction this is a special caseofEx 4.1 ;however due tolimitation of
eq ofH we can state ” iff’ and we give details :—

In this case if >3 then the slice isa zonoid ; it is a paralleotope if not the
slice has pentagon faces and is not a zonoid.

Case a>3: Face is a ;paralleogram ; so is every parallel section congruent to
it

Letus note that analogously to eq(6) above we replace x by ax there. Thus
the x-intercept of the line with equation ax +y = 1 is x= 1/a.The condition x<
1/2 now holds (due tothe condition on a ). This forces the "Domain” to be a
paralleogram as we now state. As before we use (x,y) forpoints p; and

x= T(x,y)= (x, vy, 1/2- ( ax +y), -1/2) for points P; :

Domain C( x,y) Face T(C)

pi( 1/2a,-1/2) Py(1/2a, - 1/2,1/2,-1/2)

p2(3/2a, -1/2) Py ( 3/2a,-1/2,-1/2,-1/2)

ps (1/2a, 1/2) P3(1/2a, 1/2,-1/2,-1/2)

pa (-1/2a, 1/2) Py(- 1/2a, 1/2, 1/2, -1/2)

We see that the opposite sides are parallel and have equal length , so that the
Face is a rhombus .Further so is any section by plane[ t= -c] with 0 < ¢ < 1/2,
the area does not depend on ¢ and equals v/1 + 2a=2

case a < 3 in this case we can verify the ” domain” tobe apentagon; so is
the face and slice is not a zoniod

4.3 H: a(x +y) +z +t =0 with a>2

The Face[t = —1/2] is a trapezium again, slice not a zonoid

4.4 H:ax +by+ z 4+t =0 ( compare ex4.1 ) Face is a paralleogram in
case b + 2<a . The parallel sections[t = —c] are congruent parallograms, and
the slice isa parallotope. Otherwise Face is a pentagon, slice is not a zonoid

4.5 H: ax + by + z +t =0 The slice is a zonotope if (i) a >b+c¢+ 1 and
(ii) b=>c+ 1.

In case (i) and (ii) both fail Face is a pentagon and slice is nota zonoid.

If (i) fails but(ii) is true then the Face is a hexagon

Remark 4.5 In the last case we dont know if the slice is a zonoid
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(b") schroderjd@ufs.ac.za

(¢) Enumerative combinatorics, Categorical methods in topology, Set theoretic topology (cardinal invariants, elementary
submodels)

SPAIN
(a) Javier Gutierrez Garcia
(b) Departamento de Matematicas, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apartado 644,
48080, Bilbao, Spain
(b") javier.gutierrezgarcia@ehu.eus
(¢) General topology (in particular, insertion and extension of functions), Pointfree topology,Many-valued topology

(a) Jorge Galindo

(b) Instituo de Matematicas y Aplicaciones de Castellon (IMAC), Departamento de Matematicas, Universidad Jaume I,
12071-Castellon, Spain.

(b") jgalindo@mat.uji.es

(c) Topological Algebra, Abstract Harmonic Analysis, General Topology.

(a) Luis M. Sanchez Ruiz

(b) ETSID-Depto. de Matematica Aplicada & CITG, Universitat Politécnica de Valéncia, E-46022 Valencia, Spain

(b") LMSR@mat.upv.es

(c) Functional Analysis, Topological Vector Spaces, Barrelledness Properties, Baire-like Spaces, Continuous Function
Spaces, Wavelets

(a) Salvador Hernandez

(b) Departamento de Matematicas, Universitat Jaume I, 12071 Castellon, Spain

(b") hernande@uji.es

(c¢) Topological groups and semigroups, Spaces of continuous functions, Operators defined between spaces of continuous
functions, General Topology.

TAIWAN
(a) Hang-Chin Lai
(b) Department of Mathematics, National Tsing Hua University, Hsin Chu City, Taiwan
(b’) laihc@mx.nthu.edu.tw
(¢) Nonlinear analysis and convex analysis, Optimization theory, Harmonic analysis

UNITED STATES OF AMERICA

(a) Andreas Blass
(b) Mathematics Department, University of Michigan, Ann Arbor, MI 48109-1043, USA
(b") ablass@umich.edu



(c) Mathematical logic, set theory, category theory

(a) John B Conway

(b) Professor Emeritus, George Washington University,Phillip Hall 801 22" St. NW
Washington, DC 20052, U.S.A

(b”) Conway@gwu.edu

(¢) Functional Analysis and Operator Theory

(a) Paul Cull

(b) Computer Science, Kelley Engineering Center, Oregon State University, Corvallis, OR 97331, USA

(b") pc@cs.orst.edu

(c¢) Difference Equations and Dynamical Systems, Computer Science (Theory, Algorithms, Networks), Mathematical
Biology (Population Models, Neural Nets)

(a) W. Wistar Comfort

(b) Department of Mathematics, Wesleyan University, Wesleyan Station, Middletown, CT USA 06459
(b") weomfort@wesleyan.edu

(c) Topological theory of topological groups, General (set-theoretic) topology

JAPAN

(a) Mariko Yasugi

(b) non-public

(b) yasugi@cc.kyoto-su.ac.jp
(c) Logic Oriented Mathematics

(a) Haruo Maki

(b) non-public

(b") makih@pop12.odn.ne.jp

(¢) (Topological) digital n-spaces (n>0), Generalized closed sets (after Levine),
Operation theory in topology (in the sense of Kasahara and Ogata)

(a) Kohzo Yamada

(b) Faculty of Education, Shizuoka Univ., 836 Ohya, Shizuoka 422-8529, Japan
(b’) kohzo.yamada@shizuoka.ac.jp

(¢) General Topology

(a) Yasunao Hattori

(b) Shimane Univ., Matsue, Shimane 690-8504, Japan
(b) hattori@riko.shimane-u.ac.jp

(¢) General Topology

(a) Yoshikazu Yasui

(b) Department of Modern Education, Faculty of Education, Kio University, 4-2-2, Umami-naka, Koryo-cho,
Kitakaturagi-gun, Nara, 635-0832, Japan

(b’) y.yasui@kio.ac.jp

(c) General Topology

(a) Eiichi Nakai

(b) Department of Mathematics, Ibaraki University, Mito, Ibaraki 310-8512, Japan

(b") eiichi.nakai.math@vc.ibaraki.ac.jp

(c) Real analysis, harmonic analysis, Fourier analysis, function spaces, singular and fractional integrals

(a) Jun Kawabe

(b) Division of Mathematics and Physics, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
(b") jkawabe@shinshu-u.ac.jp

(c) Measure and integration, Vector measure, Nonadditive measure



(a) Shizu Nakanishi

(b) non-public

(b’) shizu.nakanishi@nifty.ne.jp
(c) measures and integrations

(a) Jun Ichi Fujii

(b) Department of Educational Collaboration(Science, Mathematics and Information),Osaka Kyoiku
University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan

(b") fujii@cc.osaka-kyoiku.ac.jp

(¢) Operator Theory

(a) Masaru Nagisa

(b) Department of Mathematics and Informatics, Graduate School of Science, Chiba University, Yayoi-cho,
Chiba, 263-8522, Japan

(b’) nagisa@math.s.chiba-u.ac.jp

(c) operator algebra, operator theory

(a) Hiroyuki Osaka

(b) Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu,
Shiga 525-8577 Japan

(b') osaka@se.ritsumei.ac.jp

(c) Operator Theory and Operator Algebras

(a) Masatoshi Fujii

(b) non-public

(b”) mfujii@cc.osaka-kyoiku.ac.jp
(c¢) Operator Theory

(a) Wataru Takahashi

(b) Keio Research and Education Center for Natural Science,Keio University,Kouhoku-ko,Yokohama 223-8521,
Japan

(b”) wataru@jis.titech.ac.jp, wataru@a00.itscom.net

(c) Nonlinear Functional Analysis

(a) Shigeo Akashi

(b) Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science,
2641, Yamazaki, Noda-City, Chiba-Prefecture, 278-8510, Japan

(b)) akashi@is.noda.tus.ac.jp

(c) Information Theory, Entropy Analysis, Applied Mathematics, Functional Analysis

(a) Yoshitsugu Kabeya

(b) Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku,
Sakai, Osaka 599-8531, Japan

(b)) kabeya@ms.osakafu-u.ac.jp

(c) Partial Differential Equations, Ordinary Differential Equations

(a) Atsushi Yagi

(b) Dept. of Applied Physics, Graduate School of Engineering, Osaka Univ., 2-1 Yamadaoka, Suita, Osaka 565-0871,
Japan

(b) yagi@ap.eng.osaka-u.ac.jp

(c) Nonlinear partial differential equations, Infinite-dimensional dynamical systems

(a) Yoshimasa Nakamura
(b) Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
(b)’ ynaka@i.kyoto-u.ac.jp



(c) integrable systems, numerical linear algebra, special functions

(a) Yasumasa Fujisaki

(b) Department of Information and Physical Sciences, Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

(b*) fujisaki@ist.osaka-u.ac.jp

(¢) Control Systems Theory

(a) Naruhiko Aizawa

(b) Department of Physical Science, Graduate School of Science, Osaka Prefecture
University,Sakai,Osaka 599-8531,Japan

(b”)aizawa@p.s.osakafu-u.ac.jp

(c) representation theory

(a) Hisao Nagao

(b) non-public

(b’) nagao.hisao@aqua.plala.or.jp

(c) Multivariate Analysis, Sequential Analysis, Jackknife Statistics and Bootstrap Method

(a) Masamori Ihara

(b) non-public

(b’) thara@osakac.ac.jp

(c) Structural equations modeling, Statistical Quality Managment, Factor analysis, Multivariate Analysis

(a) Masanobu Taniguchi

(b) Dept. of Applied Mathematics, School of Fundamental Science & Engineering, Waseda University,
3-4-1, Okubo, Shinjuku-ku, Tokyo,169-8555, Japan, Tel & Fax: 03-5286-8386

(b’) taniguchi@waseda.jp

(c) Statistical Inference for Stochastic Processes

(a) Masao Kondo

(b) non-public

(b”) kondo@sci.kagoshima-u.ac.jp
(¢) Time Series Analysis

(a) Masao Fukushima

(b) Dept. of Systems and Mathematical Science, Faculty of Science and Engineering,
Nanzan University, Nagoya, Aichi 466-8673, Japan

(b)’ fuku@nanzan-u.ac.jp

(c) Mathematical Programming, Nonlinear Optimization

(a) Ryusuke Hohzaki

(b) Department of Computer Science, National Defense Academy, 1-10-20, Hashirimizu,
Yokosuka, 239-8686, Japan

(b”) hozaki@cc.nda.ac.jp

(c) Reviewable area: Operations Research, Search theory, Game theory

(a) Hiroaki Ishii

(b) Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

(b’) ishiihiroaki@kwansei.ac.jp

(c) Operations Research and Fuzzy Theory, especially Mathematical Programming (Stochastic Programming,
Combinatorial Optimization, Fuzzy Programming), Scheduling Theory, Graph and Network Theory, Inventory control,
Mathematical evaluation method



(a) Junzo Watada

(b) Universiti Teknologi PETRONAS Department of Computer & Information Sciences 32610 Seri Iskandar,Perak Darul
Ridzuam,Malaysia Office Phone:
+60-5-368-7517 Mobile:+60-13-598-0208
Professor Emeritus,Waseda University,Japan

(b”) junzow(@osb.att.ne.jp

(¢) Fuzzy systems, Management Engineering

(a) Kensaku Kikuta
(b) School of Business Administration, University of Hyogo,
8-2-1 Gakuen-nishi-machi, Nishi-ku, Kobe City 651-2197 JAPAN
(b”) kikuta@biz.u-hyogo.ac.jp
(¢) Game Theory, Operations Research,

(a) Wuyi Yue

(b) Dept. of Intelligence and Informatics, Faculty of Intelligence and Informatics, Konan University, 8-9-1 Okamoto,
Higashinada-ku , Kobe 658-8501, JAPAN

(b’) yue@konan-u.ac.jp

(c¢) Queueing Networks, Performance Analysis and Modeling, Communications Networks, Operations Research, Markov
Processes, Probabilistic Methods, Systems Engineering

(a) Hiroaki Sandoh

(b) Faculty of Policy Studies Kwansei Gakuin University 2-1, Gakuen, Sanda-shi, Hyogo 669-1337 Japan
(b’) sandoh@kwansei.ac.jp

(c) Operations Research and Management Science, Stochastic modeling

(a) Katsunori Ano

(b) Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku Minuma-ku
Saitama-city, 337-8570, Japan

(b”) k-ano@shibaura-it.ac.jp

(c) Optimal Stopping, Mathematical Finance, Applied Probability

(a) Koyu Uematsu

(b) Graduate School of Management and Information Sciense Faculty of Global Business ,Osaka International University
6-21-57 Tohdacho, Moriguchi-Shi, Osaka,570-8555,Japan

(b’) uematsu@oiu.jp

(c) Stochastic Process and its Applications,Reliability Analysis,and Game Theory

(a) Yoshiki Kinoshita

(b) Dept. of Information Sciences , Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka-shi, Kanagawa
259-1293, Japan

(b”) yoshiki@kanagawa-u.ac.jp

(¢) Software Science, Programming language semantics

(a) Shunsuke Sato

(b) non-public
(b*)ss_22362(@nifty.com

(c) Mathematical biology in general

(a)Tadashi Takahashi

(b)Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto,
Higashinada, Kobe, Hyogo 658-8501, Japan

(b’) takahasi@konan-u.ac.jp

(c)Mathematics Education



(a) Benoit Collins

(b) Department of Mathematics, Faculty of Science, Kyoto University

(b") collins@math.kyoto-u.ac.jp

(¢) Random Matrix Theory, Free Probability, Quantum Information Theory
Quantum Groups (operator algebra side), Operator Algebra

(a) Yoko Watamori

(b) Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University,
Sakai, Osaka 599-8531, Japan

(b") watamori@mi.s.osakafu-u.ac.jp

(c) Directional statistics, Multivariate Analysis

(a) Koichi Osaki

(b)Department of Mathematical Sciences,School of Science and Technology, Kwansei Gakuin University,
2-1 Gakuen, Sanda, 669-1337, Japan.

(b"osaki@kwansei.ac.jp

(c)Nonlinear partial differential equations, Infinite-dimensional dynamical systems
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Managing Editor

Koyu Uematsu (Professor of Osaka International University)
International Society for Mathematical Sciences
1-5-12-202 Kaorigaoka-cho, Sakai-ku, Sakai-city, 590-0011,Japan
uematsu@jams.jp
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Submission to the SCMJ

In September 2012, the way of submission to Scientiae Mathematicae Japonicae
(SCMJ) was changed. Submissions should be sent electronically (in PDF file) to the

editorial office of International Society for Mathematical Sciences (ISMS).

(1) Preparation of files and Submission
a. Authors who would like to submit their papers to the SCMJ should make
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty)
Submissions should be in PDF file compiled from the source files. Send the
PDF file to slbmt@jams.jp .
b. Prepare a Submission Form and send it to the ISMS. The required items to
be contained in the form are:
1. Editor’s name whom the author chooses from the Editorial Board

(http://www.jams.or.jp/hp/submission f.html )and would like to take in

charge of the paper for refereeing.
2. Title of the paper.
3. Authors’ names.
4. Corresponding author’s name, e-mail address and postal address (affiliation).

5. Membership number in case the author is an ISMS member.
Japanese authors should write 3 and 4 both in English and in Japanese.

At http!//www.jams.or.jp/hp/submission fhtml, the author can find the

Submission Form. Fulfill the Form and sent it to the editorial office by pushing
the button “transmission”. Or, without using the Form, the author may send
an e-mail containing the items 1-5 to slbmt@jams.jp

(2) Registration of Papers
When the editorial office receives both a PDF file of a submitted paper and a
Submission Form, we register the paper. We inform the author of the
registration number and the received date. At the same time, we send the PDF
file to the editor whom the author chooses in the Submission Form and request
him/her to begin the process of refereeing. (Authors need not send their papers to

the editor they choose.)

11



(3) Reviewing Process

a.

4) a.

b.

The editor who receives, from the editorial office, the PDF file and the request
of starting the reviewing process, he/she will find an appropriate referee for
the paper.

The referee sends a report to the editor. When revision of the paper is
necessary, the editor informs the author of the referee’s opinion.

Based on the referee report, the editor sends his/her decision (acceptance of

rejection) to the editorial office.

Managing Editor of the SCMdJ makes the final decision to the paper valuing the
editor’s decision, and informs it to the author.
When the paper is accepted, we ask the author to send us a source file and

a PDF file of the final manuscript.

c. The publication charges for the ISMS members are free if the membership dues

have been paid without delay. If the authors of the accepted papers are not the
ISMS members, they should become ISMS members and pay ¥6,000 (US$75,
Euro55) as the membership dues for a year, or should just pay the same

amount without becoming the members.

Items required in Submission Form

1. Editor’s name who the authors wish will take in charge of the paper
Title of the paper

Authors’ names

w

3’.  3.1n Japanese for Japanese authors

Corresponding author’s name and postal address (affiliation)
4. in Japanese for Japanese authors

ISMS membership number

S T

E-mail address
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Call for ISMS Members

Call for Academic and Institutional Members

Discounted subscription price: When organizations become the Academic and Institutional
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the
yearly price of US$225. At this price, they can add the subscription of the online version upon
their request.

Invitation of two associate members: We would like to invite two persons from the
organizations to the associate members with no membership fees. The two persons will enjoy
almost the same privileges as the individual members. Although the associate members
cannot have their own ID Name and Password to read the online version of SCMdJ, they can
read the online version of SCMJ at their organization.

To apply for the Academic and Institutional Member of the ISMS, please use the following
application form.

Application for Academic and Institutional Member of ISMS

Subscription of SCMdJ
[JPrint OPrint + Online

(US$225) (US$225)

Check one of the two.

University (Institution)

Department

Postal Address
where SCMdJ should be

sent

E-mail address

Name:

Person in charge Signature:

Payment
[OBank transfer OCredit Card (Visa, Master)
Check one of the two.

Name of Associate Membership

13



Call for Individual Members

We call for individual members. The privileges to them and the membership dues are shown
in “Join ISMS !” on the inside of the back cover.

Items required in Membership Application Form

Name

Birth date

Academic background

Affiliation

4’s address

Doctorate

Contact address

E-mail address

Special fields

0. Membership category (See Table 1 in “Join ISMS !”)

290000k W

Individual Membership Application Form

1. Name

2. Birth date

3.
Academic background

4. Affiliation

5. 4’s address

6. Doctorate

7. Contact address

8. E-mail address

9. Special fields

10.
Membership
category
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Contributions (Gift to the ISMS)

We deeply appreciate your generous contributions to support the activities of our
society.
The donation are used (1) to make medals for the new prizes (Kitagawa Prize,
Kunugi Prize, and ISMS Prize), (2) to support the IVMS at Osaka University
Nakanoshima Center, and (3) for a special fund designated by the contributors.

Your remittance to the following accounts of ours will be very much appreciated.

(1) Through a post office, remit to our giro account ( in Yen only ):

No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS )
or send International Postal Money Order (in US Dollar or in Yen) to our
address:

International Society for Mathematical Sciences

2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan

(2) A/C 94103518, ISMS
CITIBANK, Japan Ltd., Shinsaibashi Branch
Midosuji Diamond Building
2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan

Payment Instructions:
Payment can be made through a post office or a bank, or by credit card. Members may
choose the most convenient way of remittance. Please note that we do not accept payment by
bank drafts (checks). For more information, please refer to an invoice.

Methods of Overseas Payment:

Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4)
UNESCO Coupons.

Authors or members may choose the most convenient way of remittance as are shown below.
Please note that we do not accept payment by bank drafts (checks).
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send
International Postal Money Order to our postal address (2) Remittance through a
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO
Coupons.

Methods of Domestic Payment:

Make remittance to:
(1) Post Office Transfer Account - 00930-3-73982 or
(2) Account No0.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING
CORPORATION, Sakai, Osaka, Japan.
All of the correspondences concerning subscriptions, back numbers, individual and
institutional memberships, should be addressed to the Publications Department,
International Society for Mathematical Sciences.
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Join ISMS !

ISMS Publications: We published Mathematica Japonica (M.J.) in print,
which was first published in 1948 and has gained an international reputation in
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online
and in print. In January 2001, the two publications were unified and changed to
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and
published both online and in print. Ahead of this, the online version of SCMJ
was first published in September 2000. The whole number of SCMdJ exceeds 270,
which is the largest amount in the publications of mathematical sciences in
Japan. The features of SCMJ are:

1) About 80 eminent professors and researchers of not only Japan but also 20
foreign countries join the Editorial Board. The accepted papers are
published both online and in print. SCMJ is reviewed by Mathematical
Review and Zentralblatt from cover to cover.

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ
are introduced to the relevant research groups for the positive exchanges
between researchers.

3) ISMS Annual Meeting: Many researchers of ISMS members and
non-members gather and take time to make presentations and discussions
in their research groups every year.

The privileges to the individual ISMS Members:
(1) No publication charges
(2) Free access (including printing out) to the online version of SCM{J
(3) Free copy of each printed issue

The privileges to the Institutional Members:
Two associate members can be registered, free of charge, from an institution.

Table 1: Membership Dues for 2018

Categories Domestic Overseas Develol).lng
countries

L-year Regular ¥8,000 US$80, Buro?5 | US$50, Eurod7

member

Lyear Students ¥4,000 US$50 , Eurod7 US$30 , Euro28

member

Life member* Calculated USS750 , Buro710 | US$440, Eurodl6
as below

Honorary member Free Free Free

(Regarding submitted papers,we apply above presented new fee after April 15 in
2015 on registoration date.) * Regular member between 63 - 73 years old can apply

the category.
(73—age) x ¥3,000

Regular member over 73 years old can maintain the qualification and the privileges
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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