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OPTIONAL GROUPING OF STUDENTS IN COALITIONAL GAMES
WITH THE SHAPLEY VALUE

NAOYA UEMATSU* AND KOYU UEMATSU **

Abstract 
In this paper, the classroom consists of three different kinds of students, and we discuss the 

problem how to divide these students into three person groups. The benefit of one group is the sum 

of three students’ benefit by cooperation game. The benefit of each person is given by the Shapley 

value from the characteristic function we defined. Our goal is how to divide 18 students into 

subgroups with three persons to make the total benefit of the classroom maximal.

It is impossible to get the maximal score by using different 18 students having different potentials 

and six different coefficients for the combinations of three different levels of potentials. Especially, 

the number of combinations for dividing 18 students by 3 persons evenly is tremendous. Therefore, 

we can investigate some numerical examples under some limited conditions. Finally, we can obtain

the theorem to make the total benefit of the classroom maximal under the limited condition.

The authors believe that this research can apply to group learning and the field of Education in the 

real life. 

1. Introduction
There is a proverb, “Two heads are better than one”. In school life, groups form spontaneously, 

and usually smart people study with other smart people. People who cannot be in that smart team 

gather and construct other groups. Seen from a big picture, in Japan, every university, high school, 

and even private junior high school is ranked. Each student is sent to a specific school based on their 

score on a paper examination which is given by each school.

I am not sure if it is good to divide students ordered by smartness for the classroom and for society, 

or not. The way to divide proper groups is affected by what is considered as priority. If your purpose 

is to make the smartest student smarter, the way we are adopting the structure of the deviation value 

now is obviously correct. However, to make the benefit of the entire classroom or entire society 

biggest, we are not sure if it is correct that the deviation value structure we have now in Japan is the 

best way. Therefore, we are going to talk about the structure, which makes the benefit of the entire 

group the biggest. 

In this paper, the classroom has three different kinds of students, and we divide these students into 

three person groups. We assume that they cooperate and study together in groups. We anticipate that 

three smart students compete or work together with each other and their score should go up. 

Conversely, we assume, if three students who don’t like to study gather, they will not gain anything. 

On this paper, we set one classroom with 6 smart students, 6 neutral students, and 6 not good 
students. We divide them into 3 persons groups, so there are 6 groups in the classroom. The benefit 
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of one group is the sum of three students’ benefit by cooperation game. The benefit of each person is 

given by the Shapley value from the characteristic function we defined. Also, in this model, we think 

and simulate how and where to put these groups in the classroom. If a group talks to another group, 

possibly they will gain something by conveying and receiving information. 

2.1 Model of the classroom with 18 students
We figured out some dispositions from this problem when we construct the problem as a general 

form. After giving the concrete numbers to the functions and others, we find the proper structure of 

the classroom after finding proper groups by computational simulations.  

Let X={ X1, X2, X3, X4, X5, X6 } be the set of 6 smart students.

Let Y={ Y1, Y2, Y3, Y4, Y5, Y6 } be the set of 6 neutral students. 

Let Z={ Z1, Z2, Z3, Z4, Z5, Z6 } be the set of 6 not good students.

Let S = {s1, s2, s3, s4, s5, s6} be the set of relationship between two students.

It is assumed that si ≫ sj for any i < j,  so s1≫s2≫s3≫s4≫s5≫s6.

≫ means that the relationship of si is better than that of sj .
Wj  𝜖𝜖𝜖𝜖𝜖𝜖 W={X, Y, Z} ∍ (j=1,2,･･･,18)  W is the set of all students. 

Wi, Xi, Yi, and Zi represent people. 

wi , xi , yj , and zi represent values v(Wi), v(Xi), v(Yi), and v(Zi) respectively.

Let s1 be the state of the relationships between Xi and Xj.

Let s2 be the state of the relationships between Xi and Yj.

Let s3 be the state of the relationships between Yi and Yj.

Let s4 be the state of the relationships between Xi and Zj.

Let s5 be the state of the relationships between Yi and Zj.

Let s6 be the state of the relationships between Zi and Zj.

So we have assumed the quality of the relationship is highest for good students with good students 

and lowest for poor students with poor students.  This is probably the strongest assumption in the 

paper and only reasonable in some situations.  In some situations, it is possible that two average 

(neutral) students will be able to combine and really both grow, but good students will not have 

much room for growth.  In other situations (modeled here), two average students gain but less than 

two good students. So, we have the following value ordering.  Another part of this assumption is 

that two average or neutral students gain more than a good student combined with a poor student.  

This would not always be true.

[Definition I ]

We define the characteristic function of the reward that both Wi Wj corporate together. 

v(Wi ∪ Wj , s)= s(wi + wj,), where Wi represents an arbitrary person with value wi=v(Wi). s is an 

arbitrary element of S={s1… s6}. ■
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s represents the state of the relationship between two persons and is real value.

Let G1 =(W1, W2, W3), G2=(W4, W5, W6),… , G6=(W16, W17, W18), 

where Wj  𝜖𝜖𝜖𝜖𝜖𝜖 W={X, Y, Z} (j=1,2,･･･,18) .

In this coalitional game of three players, the Shapley value of player Wi in Gi = ( Wi, Wi+1,, Wi+2 ) is

f(Wi) =
2!
3!{ v(Wi) – v(Φ) } + 1

3!{ v(Wi∪ Wi+1, s’) – v(Wi+1)}

+ 1
3!{ v(Wi∪ Wi+2, s”) – v(Wi+2)}

+ 2!
3!{ v(Wi∪ Wi+1 ∪ Wi+2) – v(Wi+1 ∪ Wi+2, s”’ )}･･････････････････････(2-1-1)

s’, s”, s”’ ∊ S  (Φ is an empty set.) 

s’ depends on combination of Wi and Wj, so there are 6 possible values.

v(Wi∪ Wi+1 ∪Wi+2) is defined as
1
2 {v(Wi∪ Wi+1, s’) + v(Wi∪ Wi+2, s”) + v(Wi+1 ∪ Wi+2, s’”) }.

From (2-1-1),

f(Wi) = 16 {2wi – (wi+1 + wi+2 )} + 16 {2{v(Wi∪ Wi+1, s’) + v(Wi∪ Wi+2, s”) } 

– v(Wi+1 ∪ Wi+2, s”’) } ･････････････････････････････････････････(2-1-2)

Gi’s group value is defined as F(Gi) = f(Wi) + f(Wi+1) + f(Wi+2)

The Sum of Group Values: SGV=∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝜖𝜖6
𝑖𝑖𝑖𝑖𝑖𝑖1 ･･････････････････････････(2-1-3)

SGV represents the total score of whole classroom. Our objective is to find the grouping the make 

the SGV maximal.

2.2 The comparison of two kinds of the classroom
There are so many ways to make six groups with three people each having different values. We 

will observe the total value of classroom with two examples. We let ∑ xi
6
i=1 > ∑ yi

6
i=1 𝜖𝜖> ∑ zi

6
i=1 and 

s1 ≥ s2≥ s3 ≥ s4≥ s5≥ s6.

[Example I]

Let us consider the situation where the groups are divided by matching abilities.

Xi and Xj have different numbers. 

We let G1 = (X1, X2, X3), G2=(X4, X5, X6), G3 = (Y1, Y2, Y3), G4=(Y4, Y5, Y6), 

G5 = (Z1, Z2, Z3), and G6= (Z4, Z5, Z6).

f(X1) = 12 {2x1 – (x2 + x3 )} + 16 {2{(x1 + x2)s1 + (x1 + x3)s1 } – (x2 + x3)s1 }

f(X2) = 12 {2x2 – (x1 + x3 )} + 16 {2{(x2 + x1)s1 + (x2 + x3)s1} – (x1 + x3)s1 }

f(X3) = 12 {2x3 – (x1 + x2 )} + 16 {2{(x3 + x1)s1 + (x3 +x2)s1 } – (x1 + x2)s1 }

F(G1)= f(X1)+ f(X2)+ f(X3)=𝜖𝜖12{ (x1 + x2)s1 + (x1 + x3)s1 +(x2 + x3)s1 } = (x1 + x2 +x3)s1

F(G2)= (x4 + x5 +x6)s1 , F(G3)= (y1 + y2 +y3)s3, F(G4)= (y4 + y5 +y6)s3

F(G5)= (z1 + z2 +z3)s6, F(G6)= (z4 + z5 +z6)s6 .
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Call the total value SGV1 =s1 ∑ xi
6
i=1 +s3∑ yi

6
i=1 +s6 ∑ zi

6
i=1 ･･････････････(2-2-1)

[Example II]

Next, let G1 = (X1, Y1, Z1), G2=(X2, Y2, Z2),…, and G6=(X6, Y6, Z6).

f(X1) = 1
2 {2x1 – (y1 + z1 )} + 1

6 {2{(x1 + y1)s2 + (x1 + z1)s4 } – (y1 + z1)s5 }

f(Y1) = 1
2 {2y1 – (x1 + z1 )} + 1

6 {2{(x1 + y1)s2 + (y1 + z1)s5 } – (x1 + z1)s4 }

f(Z1) = 1
2 {2z1 – (x1 + y1 )} + 1

6 {2{(y1 + z1)s5 + (x1 + z1)s4 } – (x1 + y1)s2 }

F(G1) = 1
2 {(x1 + y1)s2 + (x1 + z1)s4 + (y1 + z1)s5 }

Call the total value for these groups

SGV2 = s2+s4
2 ∑ xi

6
i=1 + s2+s5

2 ∑ yi
6
i=1 + s4+s5

2 ∑ zi
6
i=1  ････････････････････(2-2-2)

We show a situation where SGV1 > SGV2 and one where SGV1 < SGV2.

SGV1－SGV2 = (s1－
s2+s4

2 ) ∑ xi
6
i=1 + (s3－

s2+s5
2 ) ∑ yi

6
i=1 + (s6－

s4+s5
2 ) ∑ zi

6
i=1

The first coefficient, s1－
s2+s4

2 , is bigger than 0. The third coefficient, s6－
s4+s5

2 , is smaller than 0.  

But the second coefficient, s3－
s2+s5

2 , is the thing we cannot know in this setting.

1)  If we let the si-values differ by a constant increment ,

then s6 < s5= s6+Δ< s4= s6+2Δ < s3= s6+3Δ < s2= s6+4Δ < s1= s6+5Δ.  

And we get, 

SGV1 – SGV2 = (5Δ－ 4Δ+2Δ
2 ) ∑ xi

6
i=1 + (3Δ－4Δ+Δ

2 ) ∑ yi
6
i=1 + (0 －

2Δ+Δ
2 ) ∑ zi

6
i=1

                      = 2Δ∑ xi
6
i=1 + Δ

2 ∑ yi
6
i=1 －

3Δ
2 ∑ zi

6
i=1 >0 

Therefore SGV1 > SGV2.

2)  However, if we let s1 = s2 = s3 = s4 = s5 > s6,

SGV1 – SGV2= (s6 － s5) ∑ zi
6
i=1 <0. 

Therefore SGV1 < SGV2.

The two examples above show that it is hard to find the maximal SGV. That is because the total 

value of the classroom changes with s-values. 

2.3 Finding all possible groupings
We want to make these models simple. So, now we examine all possible groupings where all the 

Xi’s have the same value.  The Yi’s and Zi’s have a single y-value and z-value respectively.

X = (X, X, X, X, X, X),Y = (Y, Y, Y, Y, Y, Y),Z = (Z, Z, Z, Z, Z, Z)

To represent a group’s makeup, we use the following notation: 

( number of x members in the group, number of y members, number of z members).

Group H1 : (X,X,X)=(3,0,0), Group H2 : (X,X,Y)=(2,1,0), 

Group H3 : (X,X,Z)=(2,0,1), Group H4 : (X,Y,Y)=(1,2,0),
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Group H5 : (Y,Y,Y)=(0,3,0), Group H6 : (Y,Y,Z)=(0,2,1), 

Group H7 : (Y,Z,Z)=(0,1,2), Group H8 : (X,Y,Z)=(1,1,1), 

Group H9 : (X,Z,Z)=(1,0,2), Group H10 : (Z,Z,Z)=(0,0,3).

The alphas in the following equation represent the number of groups of each makeup.

α1 (
3
0
0

) + α2 (
2
1
0

) + α3 (
2
0
1

) + α4 (
1
2
0

) + α5 (
0
3
0

) + α6 (
0
2
1

) + α7 (
0
1
2

) + α8 (
1
1
1

) +

α9 (
1
0
2

) + α10 (
0
0
3

) = (
6
6
6

) ･･････････････････････････････(2-3-1)

Equation (2-3-2) represents that the sum of alphas needs to be 6 because we have six groups.  

Equations , , and come from the equation (2-3-1).

We will solve these with matrices. 

α1+ α2+ α3 +α4 +α5 +α6 +α7 +α8 +α9 +α10 = 6 ･･････････････････････

0≦αi ≦6, αi ∊ N

3α1+ 2α2+ 2α3 +α4              +α8 +α9             = 6 ･････････(

 α2    +2α4 +3α5 +2α6 +α7 +α8                    = 6 ･････････

  α3             +α6 +2α7 +α8 +2α9 +3α10  = 6 ･････････

By using a computer programming language VBA, we found there are 103 solutions meeting

through . (Appendix)  These solutions correspond to possible groupings.    As we 

did before, we find the group values for different group makeups. 

(
3
0
0

) ・・・F(H1)= 3xs1    (
2
1
0

) ・・・F(H2)= xs1+ xs2+ ys2

(
2
0
1

) ・・・F(H3)= xs1+ xs4+ zs4   (
1
2
0

) ・・・F(H4)= xs2+ ys2+ ys3

(
0
3
0

) ・・・F(H5)= 3ys3 (
0
2
1

) ・・・F(H6)= ys3+ ys5+ zs5

 (
0
1
2

) ・・・F(H7)= ys5+ zs5+ zs6   (
1
1
1

) ・・・F(H8)=1/2{x(s2 + s4) +y(s2 + s5)+ z(s4 + s5) } 

(
1
0
2

) ・・・F(H9)= xs4 + zs4 + zs6    (
0
0
3

) ・・・F(H10)= 3zs6

The possible groupings given by the alpha values are in the following tables.  They were found by 

Program 3 which is given an appendix.

Also, we have the chart of all possible groupings given by alphas at an appendix. We sort the 

numbers of groupings by ascending order. 
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This chart is all Possible Groupings Given by Alphas. We set through s1 to s6 the characteristic 

numbers because this case, we assume that good student and good student can help each other the 

most. In other words, we assume that poor student and poor student don’t cooperate each other much 

because they don’t know the material they need to do. Finally, we sort this by highest score to lowest 

score. 

 
 s1 s2 s3 s4 s5 s6  X y z  
 1.25 1.2 1.15 1.1 1.05 1  80 60 40  
            
            
NO α１ α２ α３ α４ α５ α６ α７ α８ α９ α１０ SGV 
99 2 0 0 0 2 0 0 0 0 2 1254 
94 1 1 0 1 1 0 0 0 0 2 1252 
60 0 3 0 0 1 0 0 0 0 2 1251 
76 1 0 0 3 0 0 0 0 0 2 1251 
54 0 2 0 2 0 0 0 0 0 2 1250 
98 2 0 0 0 1 1 1 0 0 1 1246 
93 1 1 0 1 0 1 1 0 0 1 1244 
59 0 3 0 0 0 1 1 0 0 1 1243 
89 1 1 0 0 1 0 1 1 0 1 1242.5 
96 2 0 0 0 0 3 0 0 0 1 1242 
97 2 0 0 0 1 0 3 0 0 0 1242 
73 1 0 0 2 0 0 1 1 0 1 1241.5 
85 1 0 1 1 1 0 1 0 0 1 1241 
91 1 1 0 0 1 1 0 0 1 1 1241 
51 0 2 0 1 0 0 1 1 0 1 1240.5 
57 0 2 1 0 1 0 1 0 0 1 1240 
75 1 0 0 2 0 1 0 0 1 1 1240 
92 1 1 0 1 0 0 3 0 0 0 1240 
41 0 1 1 2 0 0 1 0 0 1 1239 
53 0 2 0 1 0 1 0 0 1 1 1239 
58 0 3 0 0 0 0 3 0 0 0 1239 
71 1 0 0 1 1 0 0 1 1 1 1238.5 
87 1 1 0 0 0 2 0 1 0 1 1238.5 
82 1 0 1 0 2 0 0 0 1 1 1238 
95 2 0 0 0 0 2 2 0 0 0 1238 
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49 0 2 0 0 1 0 0 1 1 1 1237.5 
84 1 0 1 1 0 2 0 0 0 1 1237 
90 1 1 0 0 1 0 2 0 1 0 1237 
30 0 1 0 2 0 0 0 1 1 1 1236.5 
40 0 1 1 1 1 0 0 0 1 1 1236 
56 0 2 1 0 0 2 0 0 0 1 1236 
68 1 0 0 1 0 1 0 2 0 1 1236 
74 1 0 0 2 0 0 2 0 1 0 1236 
80 1 0 1 0 1 1 0 1 0 1 1235.5 
10 0 0 1 3 0 0 0 0 1 1 1235 
46 0 2 0 0 0 1 0 2 0 1 1235 
52 0 2 0 1 0 0 2 0 1 0 1235 
63 1 0 0 0 1 0 0 3 0 1 1234.5 
86 1 1 0 0 0 1 2 1 0 0 1234.5 
38 0 1 1 1 0 1 0 1 0 1 1233.5 
44 0 1 2 0 1 1 0 0 0 1 1233 
72 1 0 0 1 1 0 1 0 2 0 1233 
83 1 0 1 1 0 1 2 0 0 0 1233 
88 1 1 0 0 0 2 1 0 1 0 1233 
26 0 1 0 1 0 0 0 3 0 1 1232.5 
20 0 0 2 2 0 1 0 0 0 1 1232 
34 0 1 1 0 1 0 0 2 0 1 1232 
50 0 2 0 0 1 0 1 0 2 0 1232 
55 0 2 1 0 0 1 2 0 0 0 1232 
67 1 0 0 1 0 0 2 2 0 0 1232 
79 1 0 1 0 1 0 2 1 0 0 1231.5 
7 0 0 1 2 0 0 0 2 0 1 1231 
31 0 1 0 2 0 0 1 0 2 0 1231 
45 0 2 0 0 0 0 2 2 0 0 1231 
17 0 0 2 1 1 0 0 1 0 1 1230.5 
69 1 0 0 1 0 1 1 1 1 0 1230.5 
23 0 0 3 0 2 0 0 0 0 1 1230 
66 1 0 0 0 2 0 0 0 3 0 1230 
81 1 0 1 0 1 1 1 0 1 0 1230 
37 0 1 1 1 0 0 2 1 0 0 1229.5 
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47 0 2 0 0 0 1 1 1 1 0 1229.5 
43 0 1 2 0 1 0 2 0 0 0 1229 
64 1 0 0 0 1 0 1 2 1 0 1229 
70 1 0 0 1 0 2 0 0 2 0 1229 
19 0 0 2 2 0 0 2 0 0 0 1228 
29 0 1 0 1 1 0 0 0 3 0 1228 
39 0 1 1 1 0 1 1 0 1 0 1228 
48 0 2 0 0 0 2 0 0 2 0 1228 
65 1 0 0 0 1 1 0 1 2 0 1227.5 
77 1 0 1 0 0 2 1 1 0 0 1227.5 
2 0 0 0 3 0 0 0 0 3 0 1227 
27 0 1 0 1 0 0 1 2 1 0 1227 
35 0 1 1 0 1 0 1 1 1 0 1226.5 
61 1 0 0 0 0 1 1 3 0 0 1226.5 
78 1 0 1 0 0 3 0 0 1 0 1226 
8 0 0 1 2 0 0 1 1 1 0 1225.5 
28 0 1 0 1 0 1 0 1 2 0 1225.5 
18 0 0 2 1 1 0 1 0 1 0 1225 
36 0 1 1 0 1 1 0 0 2 0 1225 
42 0 1 2 0 0 2 1 0 0 0 1225 
62 1 0 0 0 0 2 0 2 1 0 1225 
9 0 0 1 2 0 1 0 0 2 0 1224 
25 0 1 0 0 1 0 0 2 2 0 1224 
32 0 1 1 0 0 1 1 2 0 0 1224 
1 0 0 0 2 0 0 0 2 2 0 1223 
102 0 1 0 0 0 0 1 4 0 0 1223 
6 0 0 1 1 1 0 0 1 2 0 1222.5 
15 0 0 2 1 0 1 1 1 0 0 1222.5 
33 0 1 1 0 0 2 0 1 1 0 1222.5 
14 0 0 2 0 2 0 0 0 2 0 1222 
22 0 0 3 0 1 1 1 0 0 0 1222 
4 0 0 1 1 0 0 1 3 0 0 1221.5 
24 0 1 0 0 0 1 0 3 1 0 1221.5 
12 0 0 2 0 1 0 1 2 0 0 1221 
16 0 0 2 1 0 2 0 0 1 0 1221 
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5 0 0 1 1 0 1 0 2 1 0 1220 
13 0 0 2 0 1 1 0 1 1 0 1219.5 
101 0 0 0 1 0 0 0 4 1 0 1219 
3 0 0 1 0 1 0 0 3 1 0 1218.5 
21 0 0 3 0 0 3 0 0 0 0 1218 
11 0 0 2 0 0 2 0 2 0 0 1217 
100 0 0 1 0 0 1 0 4 0 0 1216 
103 0 0 0 0 0 0 0 6 0 0 1215 

When you see the difference between top 5 groups, 

Highest No.99 (X,X,X),(X,X,X), (Y,Y,Y) ,(Y,Y,Y), (Z,Z,Z) ,(Z,Z,Z)

Second highest No.94 (X,X,X),(X,X,Y), (X,Y,Y) ,(Y,Y,Y), (Z,Z,Z) ,(Z,Z,Z)

Third highest No.60 (X,X,Y),(X,X,Y), (X,X,Y) ,(Y,Y,Y), (Z,Z,Z) ,(Z,Z,Z)

Fourth highest No.76 (X,X,X),(X,Y,Y), (X,Y,Y) ,(X,Y,Y), (Z,Z,Z) ,(Z,Z,Z)

Fifth highest No.54 (X,X,Y),(X,X,Y), (X,Y,Y) ,(X,Y,Y), (Z,Z,Z) ,(Z,Z,Z) .

As you can see, for creating the group with second highest score in this situation, you need to 

exchange one of X for one of Y on the highest grouping. And then, No.94 is created from No.99 with 

one exchange. Next, No.60 is created by No.94 with an exchange X for Y. By fifth highest group in 

this situation, the ranking changes only by exchanging X for Y. 

From 6th highest to lower, the ranking changes by exchanging something for Z. The group with 

lowest score, 103th, is (X,Y,Z),(X,Y,Z), (X,Y,Z) ,(X,Y,Z), (X,Y,Z) ,(X,Y,Z).

2-4  Some numerical calculations with different conditions
[Numerical exampleⅠ]

We selected a simple constant decrease in the s-values favoring the good students working together. 

We also selected values for the X and the Z. For getting the different result, we change the value of Y 

from 50 to 70 by 10. 
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This chart is describing the ranking by ys’, respectively. For example, 99 in this chart means 

grouping No.99, which is (X,X,X),(X,X,X), (Y,Y,Y) ,(Y,Y,Y), (Z,Z,Z) ,(Z,Z,Z).

When we change ys’ from 50 to 70 by 10, we describe the top 25 groupings by descending order. We 

cannot see the difference above 7th but we can see the difference under the 8th. The No.59 goes up 

from 10th, 8th to 8th, respectively. On the other hand, No.96 goes down from 8th, 10th to 18th,

respectively. 

No.59 is (X,X,Y),(X,X,Y),(X,X,Y),(Y,Y,Z),(Y,Z,Z),(Z,Z,Z). 

No.96 is (X,X,X),(X,X,X), (Y,Y,Z) ,(Y,Y,Z), (Y,Y,Z) ,(Z,Z,Z).

Ranking y=50 y=60 y=70 
1 99 99 99 
2 94 94 94 
3 60 60 60 
4 76 76 76 
5 54 54 54 
6 98 98 98 
7 93 93 93 
8 96** 59* 59* 
9 97 89 89 
10 59* 96** 73 
11 89 97 51 
12 92 73 85 
13 95 85 91 
14 73  91 57 
15 85 51 75 
16 91 57 41 
17 58 75 53 
18 51 92 96** 
19 87 41 97 
20 57 53 71 
21 75 58 49 
22 41 71 82 
23 53 87 92 
24 84 82 30 
25 90 95 58 
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By giving y the difference, y has more advantage when Y is with Xs. Therefore, the rankings change.  

We can see that the degree of tops and lows don’t change at all. But we can also see that some 

groupings around middle of the rankings change much.

[Numerical example II] 
We didn’t change anything but the value of s3. Numerical example II changes the value of s3 from 

1.12 to 1.18 by 0.03.

NO s3=1.12 s3=1.15 s3=1.18 
1 54** 99* 99* 
2 60 94 94 
3 76 60 60 
4 94 76 76 
5 99* 54** 54** 
6 59 98 98 
7 93 93 82 
8 58 59 91 
9 98 89 85 
10 51 96 89 
11 92 97 93 
12 73 73 96 
13 89 85 97 
14 96 91 71 
15 97 51 57 
16 41 57 75 
17 53 75 73 
18 87 92 59 
19 57 41 40 
20 75 53 49 
21 95 58 80 
22 85 71 41 
23 91 87 53 
24 46 82 84 
25 52 95 90 

Since s3 is the coefficient for the relationship between Y and Y, when the value of s3 decreases, the 

value of (Y,Y,Y) decreases as well. Therefore, the ranking of No.99 goes down. When s3 is 1.12, the 
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grouping having the highest score is No.54, which is (X,X,Y),(X,X,Y), (X,Y,Y) ,(X,Y,Y), 

(Z,Z,Z) ,(Z,Z,Z). The grouping of just Ys was disappeared, and groupings with X and Y have 

advantage more than Ys.  

[Numerical example III]

Numerical example III changes the values of coefficients s’s. There are three ways to change 

coefficients, which are concave, linear, and convex. This chart below is how we set them. 

State concave Linear Convex 
s1 1.25 1.25 1.25 
s2 1.15 1.2 1.24 
s3 1.07 1.15 1.22 
s4 1.03 1.1 1.18 
s5 1.01 1.05 1.1 
s6 1 1 1 

This chart describes the ranking by ascending order from top to 25th.  
No.99 is the top when we use concave and linear ways. No.14 is the top with convex way. 

NO concave linear convex 
1 99 99 14 
2 94 94 2 
3 98 60 29 
4 60 76 23 
5 76 54 66 
6 96 98 6 
7 97 93 10 
8 54 59 40 
9 93 89 82 
10 95 96 17 
11 59 97 1 
12 92 73 9 
13 89 85 25 
14 58 91 30 
15 73 51 36 
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16 87 57 18 
17 85 75 49 
18 91 92 54 
19 51 41 3 
20 86 53 71 
21 57 58 7 
22 75 71 31 
23 84 87 60 
24 90 82 76 
25 41 95 13 
We cannot see the difference a lot between concave and linear. But when we apply the 
convex way, the rankings change a lot. 
What we need to check out is No.14. No.14 is changed from 100th, 90th, to 1st by different 
settings, respectively.  
No.14 is (X,X,Z), (X,X,Z),(Y,Y,Y), (Y,Y,Y),(X,Z,Z),(X,Z,Z).  
s5 (relationship between Y and Z) and s4 (relationship between X and Z) causes this 
result because the values of s4 and s5 go up drastically. No.99 which is the top at other’s 
setting becomes 34th with convex situation. 
We have observed just groupings whose rankings are increasing or decreasing, but we 
found the groupings doing weird movement in rankings. For example, No.60 places 4th, 
3rd, and 23th, respectively.  
No.60 is (X,X,Y), (X,X,Y),(X,X,Y), (Y,Y,Y),(Z,Z,Z),(Z,Z,Z). 

2-5 The Model with limited sequence {si}
In this part, Xi and Xj have different numbers which is xi and xj respectively.

Let｛si｝be sequence of numbers with common difference d (constant),

si=s+(6－i)d , and x1≥ x2 ≥････≥ x6˃ y1≥ y2≥････≥y6˃ z1≥ z2 ≥････≥ z6 .

We let G1= (X1, X2, X3) , G2= (X4, X5, X6) , G3= (Y1, Y2, Y3) , G4= (Y4, Y5, Y6) ,

G5= (Z1, Z2, Z3) , and G6= (Z4, Z5, Z6) and call this grouping “the group of likes”.

The SGVmax denotes the sum of group values of “the group of likes”.

[ Theorem ]

The SGVmax is the maximum in the all groupings. ■

Proof:

No matter how you exchange arbitrary Xi and Xj between the two X-only groups {X1, X2, X3} and 

{ X4, X5, X6}, the value of SGVmax doesn’t change.  It is the same for {Y1, Y2,･･･,Y6} and {Z1,

Z2,･･･,Z6}.  When you exchange an arbitrary Xi in G1 or G2 for an arbitrary Yj in G3 or G4, we let 
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SGV’. We have already obtained SGVmax from Example I.

We let α= ∑ xi
6
i=1 , β= ∑ yi

6
i=1 ,and γ= ∑ zi

6
i=1 .

SGVmax= s1 ∑ xi
6
i=1 +s3∑ yi

6
i=1 +s6 ∑ zi

6
i=1

= s1α + s3β+ s6γ = s(α+β+γ) + 5dα+ 3dβ   (by si=s+(6－i)d )

If Xl and Ym belong to the same group with Xi and Yp and Yq belong to the same group with Yj, we

exchange Xi for Yj to be able to get SGV’ easily, where l, m, p, and q 𝜖𝜖𝜖𝜖𝜖𝜖{1, 2, 3, 4, 5, 6}.

SGV’= s(α+β+γ)+5dα－(d/2)(xl+ xm)－dxi+3dβ+dyj+(d/2)(yp+ yq)

SGVmax – SGV’= dxi+(d/2)(xl+ xm)－dyj－(d/2)(yp+ yq)

= d(xi－ yj)+ (d/2){(xl+ xm)－(yp+ yq)}  >0  ( since xi > yj )

In “the group of likes”, exchanging one of X for one of Y makes the value of SGVmax small.

From the same process, we can tell easily that exchanging one of X for one of Z makes the value of 

SGVmax small. Therefore, we can show that any exchange to “the group of likes” reduce SGVmax.

■

  From numerical example Ⅰ,Ⅱ,and III, we have predicted that the sum of group values of “likes 

grouping” became the maximum. But under ∑ xi
6
i=1 > ∑ yi

6
i=1 𝜖𝜖> ∑ zi

6
i=1 and s1 ≥ s2≥ s3 ≥ s4≥ s5≥ s6.,

we can’t prove the theorem. This proof is done with giving {si} the condition of sequence of 

numbers with common difference.

3. Conclusion
We divide 18 students into six groups. We let each group do a coalitional game. Our 

purpose is that we find the benefit of whole classroom maximal. As we saw the results of 
numerical example I and Theorem of chapter 2-5, No.99 makes the highest benefit. That 
means we make groups from better students in order. However, we noticed that we have 
the different proper groupings from numerical example Ⅱ and Ⅲ with the different 
coefficient si. The rank of No.99 has chances to become not the highest under the 
condition, s1 >s2 >…>s6 . We want to focus on the result with the convex way. No.14 
became the highest with the convex way. Under the condition that the only relationship 
between Z and Z creates less benefit than others, to group Z and X creates the whole 
benefit bigger.  
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       ActiveCell.Offset(2, k) = c

       ActiveCell.Offset(3, k) = d

       ActiveCell.Offset(4, k) = e

       ActiveCell.Offset(5, k) = f

       ActiveCell.Offset(6, k) = g

       ActiveCell.Offset(7, k) = h

       ActiveCell.Offset(8, k) = i

       ActiveCell.Offset(9, k) = j

End With

End If

Next j

Next i

Next h

Next g

      Next f

       Next e

        Next d

         Next c

          Next b

           Next a

End Sub
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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Key words and phrases. diffusion approximation, multiclass feedforward queueing network, customer

abandonment, state-space collapse.
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from a lower numbered station to a higher numbered one, or remains in the original station
(as a new class customer). After at most a finite number of such class changes, customers
will eventually leave the network. In this paper, the FCFS (firsr-come, first-served) service
discipline is investigated in our multiclass feedforward queueing networks with abandon-
ments and we establish the diffusion approximation for those networks in heavy traffic.

Related research. Diffusion approximations for (single-class) generalized Jackson queue-
ing networks (GJNs) in heavy-traffic were established in Reiman [22] under typical moment
conditions on primitive variables of the network. However, some counterexamples were
found to the validity of heavy-traffic limit for multiclass queueing networks (MQNs) (cf.
Dai and Wang [9]), which is in contrast with the case of GJNs. So the identification of the
category of the MQNs subject to the heavy-traffic analysis has been one of the main topics
in queueing theory. Due to the feature that a single server processes more than one class
of customers in MQNs and also to the class-transition nature of a customer, the increased
complexity is brought so that the heavy-traffic limit of scaled K-dimensional queue length
vector in an MQN is understood to be difficult to obtain without additional restrictive
conditions not appearing in such limits of GJNs.

In late 1990s, such problem was solved by Bramson [3] and Williams [26] for some types
of MQN with important service disciplines such as FCFS, processor-sharing and buffer-
priority ones. More specifically, Williams [26] established heavy-traffic limit theorems for
MQNs with the limit referred to as a semimartingale reflecting Brownian motion, assuming
the condition of state-space collapse. Loosely speaking, state-space collapse corresponds
to an asymptotic-law version of Little’s formula for MQNs in heavy traffic. Further, [26]
indicated that state-space collapse is also a necessary condition for the heavy-traffic limit
theorem in MQNs with FCFS disciplines. (Cf. Appendix B in [26]). At the same time,
Bramson [3] constructed the framework on state-space collapse for MQNs in which the initial
condition on strong state-space collapse is proved to imply multiplicative strong state-space
collapse (cf. Theorem 1 in [3]), which forms the basis for the use of state-space collapse in
[26]. In addition, [3] showed that state-space collapse is exhibited after a brief period of
time under the relative compactness (tightness) of initial scaled workload (cf. Theorem 3
in [3]), which is used to prove that state-space collapse holds for a multiclass single-server
queue in stationarity (cf. Katsuda [15]).

On the other hand, for the last decade, the study of a many-server queue with abandon-
ment in the so-called Halfin-Whitt heavy-traffic regime has attracted considerable attention,
because it is relevant to practical large-scale service systems such as call centers. (Cf. Dai
and He [8] and references therein). Furthermore, the heavy-traffic analysis of a (single-
class) single-server queue, and more generally, that of a GJN are associated with customer
abandonment. (Cf. Ward and Glynn [23], [24], Reed and Ward [21] for the former study,
and Huang and Zhang [13] for the latter). In particular, the works [24] and [21] identi-
fied a reflected Ornstein-Uhlenbeck process and a more general reflected diffusion process,
respectively, as the heavy-traffic limit of a GI/GI/1(+GI) queue with abandonment. In
all of those works, for the scaling of abandonment (or, patience time) distribution, the
continuous or locally-bounded hazard-rate scaling and more generally, the locally-Lipschitz
hazard-type scaling were employed because of their technical tractability. ¿From a unified
point of view, those scalings are extended to the most general hazard-type one by Katsuda
[17] for a G/Ph/n+GI queue in the Halfin-Whitt regime. According to such general scal-
ing, practical and yet previously intractable examples of abandonment distribution become
subject to the analysis of diffusion approximation. For instance, the Gamma distribution
with scale parameter less than unity is such case. (See the introduction of Katsuda [17]).

Main result. In this paper we will state and prove a diffusion approximation for a
multiclass feedforward queueing network with abandonment under the FCFS service disci-
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to the limit equation for workload by reducing it to the uniqueness of a semimartingale
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to analyze systems arising in a wide range of computer systems, communication networks
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natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
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from a lower numbered station to a higher numbered one, or remains in the original station
(as a new class customer). After at most a finite number of such class changes, customers
will eventually leave the network. In this paper, the FCFS (firsr-come, first-served) service
discipline is investigated in our multiclass feedforward queueing networks with abandon-
ments and we establish the diffusion approximation for those networks in heavy traffic.

Related research. Diffusion approximations for (single-class) generalized Jackson queue-
ing networks (GJNs) in heavy-traffic were established in Reiman [22] under typical moment
conditions on primitive variables of the network. However, some counterexamples were
found to the validity of heavy-traffic limit for multiclass queueing networks (MQNs) (cf.
Dai and Wang [9]), which is in contrast with the case of GJNs. So the identification of the
category of the MQNs subject to the heavy-traffic analysis has been one of the main topics
in queueing theory. Due to the feature that a single server processes more than one class
of customers in MQNs and also to the class-transition nature of a customer, the increased
complexity is brought so that the heavy-traffic limit of scaled K-dimensional queue length
vector in an MQN is understood to be difficult to obtain without additional restrictive
conditions not appearing in such limits of GJNs.

In late 1990s, such problem was solved by Bramson [3] and Williams [26] for some types
of MQN with important service disciplines such as FCFS, processor-sharing and buffer-
priority ones. More specifically, Williams [26] established heavy-traffic limit theorems for
MQNs with the limit referred to as a semimartingale reflecting Brownian motion, assuming
the condition of state-space collapse. Loosely speaking, state-space collapse corresponds
to an asymptotic-law version of Little’s formula for MQNs in heavy traffic. Further, [26]
indicated that state-space collapse is also a necessary condition for the heavy-traffic limit
theorem in MQNs with FCFS disciplines. (Cf. Appendix B in [26]). At the same time,
Bramson [3] constructed the framework on state-space collapse for MQNs in which the initial
condition on strong state-space collapse is proved to imply multiplicative strong state-space
collapse (cf. Theorem 1 in [3]), which forms the basis for the use of state-space collapse in
[26]. In addition, [3] showed that state-space collapse is exhibited after a brief period of
time under the relative compactness (tightness) of initial scaled workload (cf. Theorem 3
in [3]), which is used to prove that state-space collapse holds for a multiclass single-server
queue in stationarity (cf. Katsuda [15]).

On the other hand, for the last decade, the study of a many-server queue with abandon-
ment in the so-called Halfin-Whitt heavy-traffic regime has attracted considerable attention,
because it is relevant to practical large-scale service systems such as call centers. (Cf. Dai
and He [8] and references therein). Furthermore, the heavy-traffic analysis of a (single-
class) single-server queue, and more generally, that of a GJN are associated with customer
abandonment. (Cf. Ward and Glynn [23], [24], Reed and Ward [21] for the former study,
and Huang and Zhang [13] for the latter). In particular, the works [24] and [21] identi-
fied a reflected Ornstein-Uhlenbeck process and a more general reflected diffusion process,
respectively, as the heavy-traffic limit of a GI/GI/1(+GI) queue with abandonment. In
all of those works, for the scaling of abandonment (or, patience time) distribution, the
continuous or locally-bounded hazard-rate scaling and more generally, the locally-Lipschitz
hazard-type scaling were employed because of their technical tractability. ¿From a unified
point of view, those scalings are extended to the most general hazard-type one by Katsuda
[17] for a G/Ph/n+GI queue in the Halfin-Whitt regime. According to such general scal-
ing, practical and yet previously intractable examples of abandonment distribution become
subject to the analysis of diffusion approximation. For instance, the Gamma distribution
with scale parameter less than unity is such case. (See the introduction of Katsuda [17]).

Main result. In this paper we will state and prove a diffusion approximation for a
multiclass feedforward queueing network with abandonment under the FCFS service disci-

DIFFUSION APPROXIMATIONS

pline. Our main result is a generalization of two previous works [24] and [21] cited above.
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Uhlenbeck type diffusion for a GI/GI/1+GI queue to a multiclass feedforward queueing
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serving the class, which is a consequence of state-space collapse for our queueing network
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convergence, we impose the following four main assumptions:
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will be taken in our argument:
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Step 4. Using the results of Step 2 and Step 3, we have the C-tightness of the sequence
of scaled workloads satisfying the heavy-traffic condition, and then derive a J-dimensional
reflected stochastic differential equation (SDE) satisfied by any limit process of the sequence.
Step 5. Observe that our limit SDE has a nonlinear drift term as the limit of scaled
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Overview of the contents. The rest of the paper is organized as follows. In Sect. 2,
we introduce some primitive variables and processes for a multiclass queueing network
with abandonment under study. In terms of those primitives, we construct a piecewise
deterministic Markov process for the dynamical description of our queueing network in
Sect. 3. In other words, the performance measures for our network are adapted to the
history of the process. In Sect. 4, we state our main result, i.e., a diffusion approximation
theorem for a multiclass feedforward queueing network with abandonment, and Sect. 5
is devoted to its proof, in which the methodology mentioned above are employed. In the
appendix, we put some lemmas used in the demonstration of state-space collapse in Sect.
5.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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Notation. For a random variable X defined on a probability space (Ω,F , P), the ex-
pectation of X on an event A ∈ F is denoted by EP[X; A]. For a local martingale M , the
optional quadratic variation process of M is denoted by [M ]. (Cf. (1.8.3) in Liptser and
Shiryayev [20]).

The symbols Z, N, R1 and R1
+ denote the set of integers, positive integers, real numbers

and nonnegative real numbers, respectively. For a, b ∈ R1, a ∧ b ≡ min{a, b}, a ∨ b ≡
max{a, b}, a+ ≡ a∨ 0, a− ≡ (−a)∨ 0, �a� ≡ max{i ∈ Z : i ≤ a} and �a� ≡ max{i ∈ Z : i <
a}.

For d ∈ N, Rd denotes the d-dimensional Euclidean space. Every vector in Rd is
envisioned as a column vector. For example, a = (ak, k ∈ L) denotes the L-dimensional
column vector with L the number of elements in the index set L. The transpose of a vector
or a matrix is denoted by putting a tilde on its top. The vector e ∈ Rd denotes (1, 1, . . . , 1).
The norm |u| of a vector u = (u1, . . . , ud) ∈ Rd is defined by |u| = |u1| + · · · + |ud|. The
matrix diag(u) with a vector u = (u1, . . . , ud) ∈ Rd denotes the d× d diagonal matrix with
(i, i)-diagonal element equal to ui, i = 1, . . . , d.

The space of functions f : [0,∞) → Rd that are right-continuous on [0,∞) and have left-
hand limits in (0,∞) is denoted by D([0,∞),Rd) or simply by Dd. The space Dd is endowed
with the Skorohod J1-topology. Similarly, the space of Rd-valued continuous functions on
[0,∞) is denoted by C([0,∞),Rd). For f ∈ Dd and t > 0, f(t−) denotes its left-hand limit
at t and ∆f(t) ≡ f(t) − f(t−). For a sequence of random elements {Xr}r≥1 taking values
in a metric space S, the symbol Xr =⇒ X in S as r → ∞ means the weak convergence of
Xr to X in S as the index r tends to infinity.

2 Multiclass feedforward queueing networks with abandonments and their
Markovian description of dynamics

2.1 Model primitives In this section we first introduce some primitive random variables
(r.v.’s) on a probability space (Ω,F , P) to construct the model of a multiclass queueing net-
work with abandonment studied in this paper. The network is composed of J service stations
indexed by j = 1, . . . , J , and the set of service stations is denoted by J = {1, 2, . . . , J}. Each
of the service stations has a single server and a waiting buffer of unlimited capacity. Each
customer (or job) belongs to one of K classes with K ≥ J , indexed by k = 1, . . . ,K, and
the set of the classes is denoted by K = {1, 2, . . . ,K}. For each k ∈ K, customers of class
k are served at service station s(k) ∈ J exclusively. The mapping s(·) maps K onto J in a
many-to-one fashion. In addition, we let C(j) = {k ∈ K : s(k) = j}, j ∈ J.

Customers of classes in A, which is a non-empty subset of K, enter the network from
outside and no external arrival is allowed for any class in K − A. Upon arrival, a customer
is assigned the abandonment time (or, patience time) whose probability law depends on
his class, and if the time until the customer is supposed to enter service, called the offered
waiting time, exceeds his abandonment time, then he will abandon the system as soon as his
remaining abandonment time is exhausted. Otherwise, i.e., if the customer is supposed to
receive service eventually, he is assigned the service time on his arrival, which also depends
on his class. The service of customers by the server is performed according to the first-
come-first-service (FCFS) discipline, i.e., in the order of their arrivals independently of
their classes. (We also take the convention that customers within each class are numbered
on the first-in basis). On service completion, a customer either changes his class and waits
for service as the new class customer in the end of the queue, or leaves the system.

External arrivals
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count process. The desired convergence is shown by taking the following steps: first,
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property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.
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natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
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Notation. For a random variable X defined on a probability space (Ω,F , P), the ex-
pectation of X on an event A ∈ F is denoted by EP[X; A]. For a local martingale M , the
optional quadratic variation process of M is denoted by [M ]. (Cf. (1.8.3) in Liptser and
Shiryayev [20]).

The symbols Z, N, R1 and R1
+ denote the set of integers, positive integers, real numbers

and nonnegative real numbers, respectively. For a, b ∈ R1, a ∧ b ≡ min{a, b}, a ∨ b ≡
max{a, b}, a+ ≡ a∨ 0, a− ≡ (−a)∨ 0, �a� ≡ max{i ∈ Z : i ≤ a} and �a� ≡ max{i ∈ Z : i <
a}.

For d ∈ N, Rd denotes the d-dimensional Euclidean space. Every vector in Rd is
envisioned as a column vector. For example, a = (ak, k ∈ L) denotes the L-dimensional
column vector with L the number of elements in the index set L. The transpose of a vector
or a matrix is denoted by putting a tilde on its top. The vector e ∈ Rd denotes (1, 1, . . . , 1).
The norm |u| of a vector u = (u1, . . . , ud) ∈ Rd is defined by |u| = |u1| + · · · + |ud|. The
matrix diag(u) with a vector u = (u1, . . . , ud) ∈ Rd denotes the d× d diagonal matrix with
(i, i)-diagonal element equal to ui, i = 1, . . . , d.

The space of functions f : [0,∞) → Rd that are right-continuous on [0,∞) and have left-
hand limits in (0,∞) is denoted by D([0,∞),Rd) or simply by Dd. The space Dd is endowed
with the Skorohod J1-topology. Similarly, the space of Rd-valued continuous functions on
[0,∞) is denoted by C([0,∞),Rd). For f ∈ Dd and t > 0, f(t−) denotes its left-hand limit
at t and ∆f(t) ≡ f(t) − f(t−). For a sequence of random elements {Xr}r≥1 taking values
in a metric space S, the symbol Xr =⇒ X in S as r → ∞ means the weak convergence of
Xr to X in S as the index r tends to infinity.

2 Multiclass feedforward queueing networks with abandonments and their
Markovian description of dynamics

2.1 Model primitives In this section we first introduce some primitive random variables
(r.v.’s) on a probability space (Ω,F , P) to construct the model of a multiclass queueing net-
work with abandonment studied in this paper. The network is composed of J service stations
indexed by j = 1, . . . , J , and the set of service stations is denoted by J = {1, 2, . . . , J}. Each
of the service stations has a single server and a waiting buffer of unlimited capacity. Each
customer (or job) belongs to one of K classes with K ≥ J , indexed by k = 1, . . . ,K, and
the set of the classes is denoted by K = {1, 2, . . . ,K}. For each k ∈ K, customers of class
k are served at service station s(k) ∈ J exclusively. The mapping s(·) maps K onto J in a
many-to-one fashion. In addition, we let C(j) = {k ∈ K : s(k) = j}, j ∈ J.

Customers of classes in A, which is a non-empty subset of K, enter the network from
outside and no external arrival is allowed for any class in K − A. Upon arrival, a customer
is assigned the abandonment time (or, patience time) whose probability law depends on
his class, and if the time until the customer is supposed to enter service, called the offered
waiting time, exceeds his abandonment time, then he will abandon the system as soon as his
remaining abandonment time is exhausted. Otherwise, i.e., if the customer is supposed to
receive service eventually, he is assigned the service time on his arrival, which also depends
on his class. The service of customers by the server is performed according to the first-
come-first-service (FCFS) discipline, i.e., in the order of their arrivals independently of
their classes. (We also take the convention that customers within each class are numbered
on the first-in basis). On service completion, a customer either changes his class and waits
for service as the new class customer in the end of the queue, or leaves the system.

External arrivals
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The external arrival process E(t) = {Ek(t), k ∈ K}, t ≥ 0, counts the number of arrivals
at each class from outside the network. For each k ∈ A, we define Ek(·) by

Ek(t) ≡ max{n ∈ N : Uk(n) ≤ t}

with maxφ ≡ 0, where

(1) Uk(n) ≡
n∑

i=1

uk(i)

with Uk(0) ≡ 0. For each k ∈ A, the external interarrival times {uk(i), i = 2, 3, . . .} are
i.i.d. (independent and identically distributed) positive r.v.’s with the distribution function
(d.f.)

Fu
k (x) ≡ P(uk(2) ≤ x), x ≥ 0,

the mean 1/αk ≡
∫ ∞
0

xdFu
k (x) > 0, and the finite variance ak ≡

∫ ∞
0

(x − 1
αk

)2dFu
k (x) ≥ 0.

The r.v. uk(1) > 0, corresponding to the remaining interarrival time of the customer
entering first after time t = 0, is independent of {uk(i), i = 2, 3, . . .}. For each i = 2, 3, . . . ,
the r.v. uk(i) corresponds to the interarrival time between the (i− 1)-th customer and i-th
customer in class k. For conveniece, we set

Ek(·) ≡ 0 and αk = 0

for k ∈ K − A. The vector α = (αk, k ∈ K) is referred to as the arrival rate.

Service times

For each k ∈ K, there are two sequences of service times, i.e., a sequence of original
service times and a sequence of subsequent service times. The sequence of original service
times {vo

k(i), i = 1, 2, . . .} gives the (remaining) service times for class k customers who are
in the system at time 0 and will eventually receive service. (There are more elements in the
infinite sequence than needed). Those initial customers are assumed to have the prescribed
order of arrivals at or before time 0, and if there is such i-th customer in the system, the
original service time vo

k(i) is assigned to him for i = 1, 2, . . ..
For each k ∈ K, the original service times {vo

k(i), i = 2, 3, . . .} are i.i.d. positive r.v.’s
with

(2) F v
k (x) ≡ P

(
vo

k(2) ≤ x
)
, x ≥ 0,

the mean mk =
∫ ∞
0

xdF v
k (x) > 0 and the finite variance bk ≡

∫ ∞
0

(x−mk)2dF v
k (x) ≥ 0. The

constant µk ≡ 1/mk is referred to as the service rate of class k. The r.v. vo
k(1), corresponding

to the (remaining) service time of initial class k customer who arrived the longest time
ago among those eventually receiving service, is independent of {vo

k(i), i = 2, 3, . . .}. The
cumulative original service time process Vo

k(n), n ∈ N, k ∈ K, is given by

(3) Vo
k(n) ≡

n∑
i=1

vo
k(i)

with Vo
k(0) ≡ 0.

The subsequent service times {vs
k(i), i = 1, 2, . . .}, k ∈ K, are i.i.d. positive r.v.’s with

P
(
vs

k(1) ≤ x
)

= F v
k (x), x ≥ 0. For each k ∈ K, vs

k(i) corresponds to the service time
assigned to the i-th class k customer among those arriving after t = 0 from outside or due
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applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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to class change and eventually receiving service. The cumulative subsequent service time
process Vs

k(n), n ∈ N, k ∈ K, is given by

(4) Vs
k(n) ≡

n∑
i=1

vs
k(i)

with Vs
k(0) ≡ 0.

Abandonment times
Similar to the service times above, we introduce the abandonment times in two dis-

tinct sequences, i.e., the original abandonment times and subsequent abandonment times.
For each k ∈ K, the original abandonment times {γo

k(i), i = 1, 2, . . .} is a sequence of in-
dependent positive r.v.’s which corresponds to the remaining abandonment times of the
customers of class k initially at the network. (The assignment of those abandonment times
to each customer is done in the same way as in service times, but distinct to that case, the
abandonment time is assigned to every customer at the system, whether he will abandon it
or not). For each k ∈ K, the subsequent abandonment times {γs

k(i), i = 1, 2, . . .} are i.i.d.
positive random variables with

(5) F γ
k (x) ≡ P(γs

k(1) ≤ x), x ≥ 0,

and correspond to the abandonment times assigned to the customers of class k arriving
after t = 0.

Class routings
The class-routing process Φ(n) = {Φk(n), k ∈ K}, n ∈ N, is defined by

Φk(n) ≡
n∑

i=1

φk(i)

where {φk(i) = (φk
l (i), l ∈ K), i = 1, 2, . . . , } are i.i.d. random vectors taking values in the

set {0, e1, . . . , eK} with ek denoting the unit basis vector parallel to the k-th coordinate
axis in RK , k ∈ K. The identity φk(i) = el indicates that the i-th customer served at
class k changes his class to class l after the service, and the identity φk(i) = 0 indicates his
departure from the system.
Let Pkl = P(φk(1) = el) and Pk0 = P(φk(1) = 0), k, l ∈ K. Then the K × K substochastic
matrix P = [Pkl; k, l ∈ K], called the class-routing matrix, is assumed to have spectral
radius strictly less than unity. Thus

Q ≡ (I − P̃ )−1 = I + P̃ + (P̃ )2 + · · ·

is finite where P̃ denotes the transpose of P . It is readily seen that for each k ∈ K,

E[φk(1)] = Pk· and

Cov[φk(1)] ≡ [Cov(φk
l (1), φk

m(1)), l,m ∈ K]

= Υk(6)

where Pk· denotes the k-th row vector of P and Υk denotes the K × K matrix such that

(7) Υk
lm =

{
Pkl(1 − Pkl) if l = m,

−PklPkm if l �= m.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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to class change and eventually receiving service. The cumulative subsequent service time
process Vs

k(n), n ∈ N, k ∈ K, is given by

(4) Vs
k(n) ≡

n∑
i=1

vs
k(i)

with Vs
k(0) ≡ 0.

Abandonment times
Similar to the service times above, we introduce the abandonment times in two dis-

tinct sequences, i.e., the original abandonment times and subsequent abandonment times.
For each k ∈ K, the original abandonment times {γo

k(i), i = 1, 2, . . .} is a sequence of in-
dependent positive r.v.’s which corresponds to the remaining abandonment times of the
customers of class k initially at the network. (The assignment of those abandonment times
to each customer is done in the same way as in service times, but distinct to that case, the
abandonment time is assigned to every customer at the system, whether he will abandon it
or not). For each k ∈ K, the subsequent abandonment times {γs

k(i), i = 1, 2, . . .} are i.i.d.
positive random variables with

(5) F γ
k (x) ≡ P(γs

k(1) ≤ x), x ≥ 0,

and correspond to the abandonment times assigned to the customers of class k arriving
after t = 0.

Class routings
The class-routing process Φ(n) = {Φk(n), k ∈ K}, n ∈ N, is defined by

Φk(n) ≡
n∑

i=1

φk(i)

where {φk(i) = (φk
l (i), l ∈ K), i = 1, 2, . . . , } are i.i.d. random vectors taking values in the

set {0, e1, . . . , eK} with ek denoting the unit basis vector parallel to the k-th coordinate
axis in RK , k ∈ K. The identity φk(i) = el indicates that the i-th customer served at
class k changes his class to class l after the service, and the identity φk(i) = 0 indicates his
departure from the system.
Let Pkl = P(φk(1) = el) and Pk0 = P(φk(1) = 0), k, l ∈ K. Then the K × K substochastic
matrix P = [Pkl; k, l ∈ K], called the class-routing matrix, is assumed to have spectral
radius strictly less than unity. Thus

Q ≡ (I − P̃ )−1 = I + P̃ + (P̃ )2 + · · ·

is finite where P̃ denotes the transpose of P . It is readily seen that for each k ∈ K,

E[φk(1)] = Pk· and

Cov[φk(1)] ≡ [Cov(φk
l (1), φk

m(1)), l,m ∈ K]

= Υk(6)

where Pk· denotes the k-th row vector of P and Υk denotes the K × K matrix such that

(7) Υk
lm =

{
Pkl(1 − Pkl) if l = m,

−PklPkm if l �= m.
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In this paper we will impose on the class-routing probability {Pkl, k, l ∈ K} the following
condition:
Feedforward class-routing condition

For each k, l ∈ K,

(8) if Pkl > 0, then s(k) ≤ s(l).

When J = 1(i.e., a multiclass single-server queue), condition (8) is obviously satisfied.

Remaining time processes
Associated with the interarrival, service and abandonment times introduced above, we

define their remaining time processes as follows. For each k ∈ K and t ≥ 0, let Ru
k(t)

and Rv
k(t) denote the remaining interarrival time and remaining service time of class k

customer at time t, respectively. (For k ∈ K − A, we set Ru
k(·) ≡ −1). In particular,

Ru
k(0) = uk(1), k ∈ A, Rv

l (0) = vo
l (1), l ∈ K.

Now, for each k ∈ K, let

(9) Zk(t), t ≥ 0,

denote the number of class k customers who are either being served or waiting in queue at
time t, which is referred to as the queue length of class k at time t. Then the remaining
abandonment time process of class k, k ∈ K, is represented by

Rγ
k(t) = (Rγ

k,i(t), i = 1, 2, . . .), t ≥ 0,

in which, for each 1 ≤ i ≤ Zk(t), Rγ
k,i(t) denotes the remaining abandonment time of i-th

customer of class k at time t, and for i ≥ Zk(t) + 1, we set Rγ
k,i(t) ≡ −1. In particular,

Rγ
k,i(0) = γo

k(i) for each 1 ≤ i ≤ Zk(0) and k ∈ K. If the remaining abandonment time
Rγ

k,1(·) expires at t = t0 and the service of the corresponding customer began before time
t0 and continues at t = t0, then we set Rγ

k,1(t) ≡ 0 for each t ∈ [t0, t1) where t1 denotes the
time at which the service finishes.

Class designation processes
Relevant to the FCFS discipline investigated in this paper, we have to track the designa-

tion of the class of each customer in each service station in order to describe the dynamics
of the network. For the purpose, we introduce the {0, 1, . . . , 2K}∞-valued process

(10) O(t) = (Oj(t), j ∈ J), t ≥ 0,

where
Oj(t) = (Oj,i(t), i ≥ 1), j ∈ J,

and for j ∈ J and 1 ≤ i ≤
∑

m∈C(j) Zm(t),

Oj,i(t) ≡





k if i-th customer in the queue of station j at time t is
of class k and will eventually receive service;

K + l if i-th customer in the queue of station j at time t is
of class l and will eventually abandon the system,

(11)

and for i ≥
∑

m∈C(j) Zm(t)+1, we set Oj,i(t) ≡ 0. (The variable Oj,1(t) corresponds to the
class of the customer being served at time t, whenever

∑
m∈C(j) Zm(t) ≥ 1).

DIFFUSION APPROXIMATIONS FOR MULTICLASS FEEDFORWARD
QUEUEING NETWORKS WITH ABANDONMENTS UNDER FCFS

SERVICE DISCIPLINES

TOSHIYUKI KATSUDA ∗

Received February 26, 2016 ; revised August 6, 2016

Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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Note that under our assumptions on the primitives, simultaneous (exogenous or internal)
arrivals of customers from different classes are allowed. So, to determine the components of
the process O(·) without ambiguity, a rule is needed for the specification of the ordering of
such customers. Following page 41 of Williams [26], we henceforth take a deterministic tie
breaking rule to treat that case. For example, we adopt the convention that for customers
with simultaneous arrivals, a customer of higher numbered class is ordered ahead of a
customer of lower numbered class in the queue of each station.

Offered waiting times
To determine whether each customer will abandon the network or not either on his

arrival to a class or at initial instant, we assign to him the offered waiting time as follows.
For each k ∈ K and i = 1, 2, . . ., the original offered waiting time wo

k(i) is the amount of time
the i-th customer of class k initially in the system would have to wait in queue (i.e., waiting
line) until getting into service if his abandonment time were infinite, with the convention
that wo

k(i) ≡ 0 for i ≥ Zk(0)+1. Thus, if γo
k(i) ≤ wo

k(i), then such i-th class k customer will
eventually abandon the network, and otherwise, he will receive service of class k. Similarly,
for each k ∈ K and i = 1, 2, . . ., the subsequent offered waiting time ws

k(i) is such amount
of time for the i-th customer arriving at class k from outside or from other classes due to
class change after t = 0.

Specifically, ws
k(i) is Gs

k(i)-measurable for each i = 1, 2, . . . and k ∈ K, where

Gs
k(i)

≡ σ{uk(m + 1), vs
k(m), γs

k(m), m ≤ i − 1} ∨
∨

l∈K,l �=k

σ{ul(m), vs
l (m), γs

l (m), m ≥ 1}

∨
∨
p∈K

σ{vo
p(m), γo

p(m), φp(m),m ≥ 1} ∨ σ{O(0)}.(12)

Mutual independence assumption on the primitives
Finally in this subsection, we impose the following mutual independence assumption on

the primitive variables introduce so far, which is fundamental to our argument in the rest
of the paper:
The families of variables

{Rv(0),Rγ(0), O(0)}, {Ru
k(0) = uk(1)}, k ∈ A,

u∗
k′ , k′ ∈ A, vo,∗

1 , · · · , vo,∗
K ,

vs
1, · · · , vs

K , γs
1 , · · · , γs

K , φ1, · · · , φK(13)

are mutually independent, where

vo,∗
k ≡ (vo

k(i), i ≥ 2), k ∈ K,

u∗
k′ ≡ (uk′(i), i ≥ 2), k′ ∈ A, vs

l ≡ (vs
l (i), i ≥ 1), l ∈ K,

γs
p ≡ (γs

p(i), i ≥ 1), p ∈ K, φq ≡ (φq(i), i ≥ 1), q ∈ K.

2.2 Performance measure processes and their equation As the performance mea-
sures for our multiclass queueing network with abandonment, we define the following pro-
cesses:
The K-dimensional (column) vector-valued process

Z(t) = (Zk(t), k ∈ K), t ≥ 0,
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to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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Note that under our assumptions on the primitives, simultaneous (exogenous or internal)
arrivals of customers from different classes are allowed. So, to determine the components of
the process O(·) without ambiguity, a rule is needed for the specification of the ordering of
such customers. Following page 41 of Williams [26], we henceforth take a deterministic tie
breaking rule to treat that case. For example, we adopt the convention that for customers
with simultaneous arrivals, a customer of higher numbered class is ordered ahead of a
customer of lower numbered class in the queue of each station.

Offered waiting times
To determine whether each customer will abandon the network or not either on his

arrival to a class or at initial instant, we assign to him the offered waiting time as follows.
For each k ∈ K and i = 1, 2, . . ., the original offered waiting time wo

k(i) is the amount of time
the i-th customer of class k initially in the system would have to wait in queue (i.e., waiting
line) until getting into service if his abandonment time were infinite, with the convention
that wo

k(i) ≡ 0 for i ≥ Zk(0)+1. Thus, if γo
k(i) ≤ wo

k(i), then such i-th class k customer will
eventually abandon the network, and otherwise, he will receive service of class k. Similarly,
for each k ∈ K and i = 1, 2, . . ., the subsequent offered waiting time ws

k(i) is such amount
of time for the i-th customer arriving at class k from outside or from other classes due to
class change after t = 0.

Specifically, ws
k(i) is Gs

k(i)-measurable for each i = 1, 2, . . . and k ∈ K, where

Gs
k(i)

≡ σ{uk(m + 1), vs
k(m), γs

k(m), m ≤ i − 1} ∨
∨

l∈K,l �=k

σ{ul(m), vs
l (m), γs

l (m), m ≥ 1}

∨
∨
p∈K

σ{vo
p(m), γo

p(m), φp(m),m ≥ 1} ∨ σ{O(0)}.(12)

Mutual independence assumption on the primitives
Finally in this subsection, we impose the following mutual independence assumption on

the primitive variables introduce so far, which is fundamental to our argument in the rest
of the paper:
The families of variables

{Rv(0),Rγ(0), O(0)}, {Ru
k(0) = uk(1)}, k ∈ A,

u∗
k′ , k′ ∈ A, vo,∗

1 , · · · , vo,∗
K ,

vs
1, · · · , vs

K , γs
1 , · · · , γs

K , φ1, · · · , φK(13)

are mutually independent, where

vo,∗
k ≡ (vo

k(i), i ≥ 2), k ∈ K,

u∗
k′ ≡ (uk′(i), i ≥ 2), k′ ∈ A, vs

l ≡ (vs
l (i), i ≥ 1), l ∈ K,

γs
p ≡ (γs

p(i), i ≥ 1), p ∈ K, φq ≡ (φq(i), i ≥ 1), q ∈ K.

2.2 Performance measure processes and their equation As the performance mea-
sures for our multiclass queueing network with abandonment, we define the following pro-
cesses:
The K-dimensional (column) vector-valued process

Z(t) = (Zk(t), k ∈ K), t ≥ 0,

DIFFUSION APPROXIMATIONS  

with Zk(t) in (9) is referred to as the queue length process. For each j ∈ J, let

Wj(t), t ≥ 0,

denote the total amount of immediate work (measured in units of service time) embodied
by the customers in the station j at time t. Set

W (t) = (Wj(t), j ∈ J), t ≥ 0,

which is referred to as the workload process. Also, for each j ∈ J,

Yj(t), t ≥ 0,

denotes the cumulative amount of time that the server at station j is idle during the time
interval (0, t], and set

Y (t) = (Yj(t), j ∈ J)

that is referred to as the cumulative idle time process. To describe the dynamics of Z(·),
W (·) and Y (·), we also introduce the following processes.

For each k ∈ K and t ≥ 0, Ak(t) denotes the total number of the (exogenous and
internal) arrivals of class k customers during (0, t], Dk(t) denotes the total number of the
service completions of class k customers during (0, t], Ik(t) denotes the total number of
the abandonments of class k customers during (0, t], and Tk(t) denotes the total amount
of time that the server has processed customers of class k during (0, t]. Furthermore, let
A+

k (t) denote the number of customers who arrive at class k during (0, t] and will eventually
receive service (and not abandon), and let Z+

k (t) denote the number of class k customers
who are either being under service or waiting in queue at time t and going to receive service.

We represent those processes in (column) vector form as

A(t) = (Ak(t), k ∈ K),

A+(t) = (A+
k (t), k ∈ K),

D(t) = (Dk(t), k ∈ K),
I(t) = (Ik(t), k ∈ K),
T (t) = (Tk(t), k ∈ K),

Z+(t) = (Z+
k (t), k ∈ K), t ≥ 0.

Let

(14) X(t) ≡ (A(t), A+(t), D(t), I(t), T (t),W (t), Y (t), Z(t), Z+(t)), t ≥ 0,

and the process X(·) is called the performance measure process for our multiclass queueing
network with abandonment. Then the dynamical equation for the components of X(t), t ≥ 0,
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stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows

2000 Mathematics Subject Classification. 60K25, 60F17, 90B22, 60J25, 93E15 .
Key words and phrases. diffusion approximation, multiclass feedforward queueing network, customer

abandonment, state-space collapse.
∗School of Science and Technology, Kwansei Gakuin University.

223



　　　　　　　　　　　　　　　KATSUDA

is represented as follows:

A(t) = E(t) + F (t)(15)

with F (t) =
K∑

k=1

Φk(Dk(t)),(16)

Z(t) = Z(0) + A(t) − D(t) − I(t),(17)

Z+(t) = Z+(0) + A+(t) − D(t)(18)

with Z+
k (0) ≡

Zk(0)∑
i=1

1{wo
k(i)<γo

k(i)}(19)

and A+
k (t) ≡

Ak(t)∑
i=1

1{ws
k(i)<γs

k(i)}, k ∈ K,(20)

W (t) = W (0) + CVs(A+(t)) − CT (t)(21)

with W (0) = CVo(Z+(0)),(22)
CT (t) + Y (t) = t,(23) ∫ ∞

0

Wj(s)dYj(s) = 0, ∀j ∈ J,(24)

for all t ≥ 0, where C = [Cjk, j ∈ J, k ∈ K] is the J × K matrix with

Cjk =

{
1, if j = s(k):
0, otherwise.

Associated with the abandonment-count process Ik(·), k ∈ K, we now define the process
Nk(·), k ∈ K, by

(25) Nk(t) ≡ Z−
k (0) + A−

k (t), t ≥ 0,

where

Z−
k (0) ≡

Zk(0)∑
i=1

1{γo
k(i)≤wo

k(i)} = Zk(0) − Z+
k (0),(26)

A−
k (t) ≡

Ak(t)∑
i=1

1{γs
k(i)≤ws

k(i)} = Ak(t) − A+
k (t).(27)

We observe that under the FCFS service discipline, for each k ∈ K, t ≥ 0 and ε > 0,

(28) Nk(ζs(k)(t) − ε) ≤ Ik(t) ≤ Nk(t)

with

(29) ζj(t) ≡ inf{s ≥ 0 : s + Wj(s) > t}, j ∈ J,

and

(30) Z−
k (t) ≤ Ik(t + Ws(k)(t)) − Ik(t)

with

(31) Z−
k (t) ≡ Zk(t) − Z+

k (t).
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K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
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is represented as follows:

A(t) = E(t) + F (t)(15)

with F (t) =
K∑

k=1

Φk(Dk(t)),(16)

Z(t) = Z(0) + A(t) − D(t) − I(t),(17)

Z+(t) = Z+(0) + A+(t) − D(t)(18)

with Z+
k (0) ≡

Zk(0)∑
i=1

1{wo
k(i)<γo

k(i)}(19)

and A+
k (t) ≡

Ak(t)∑
i=1

1{ws
k(i)<γs

k(i)}, k ∈ K,(20)

W (t) = W (0) + CVs(A+(t)) − CT (t)(21)

with W (0) = CVo(Z+(0)),(22)
CT (t) + Y (t) = t,(23) ∫ ∞

0

Wj(s)dYj(s) = 0, ∀j ∈ J,(24)

for all t ≥ 0, where C = [Cjk, j ∈ J, k ∈ K] is the J × K matrix with

Cjk =

{
1, if j = s(k):
0, otherwise.

Associated with the abandonment-count process Ik(·), k ∈ K, we now define the process
Nk(·), k ∈ K, by

(25) Nk(t) ≡ Z−
k (0) + A−

k (t), t ≥ 0,

where

Z−
k (0) ≡

Zk(0)∑
i=1

1{γo
k(i)≤wo

k(i)} = Zk(0) − Z+
k (0),(26)

A−
k (t) ≡

Ak(t)∑
i=1

1{γs
k(i)≤ws

k(i)} = Ak(t) − A+
k (t).(27)

We observe that under the FCFS service discipline, for each k ∈ K, t ≥ 0 and ε > 0,

(28) Nk(ζs(k)(t) − ε) ≤ Ik(t) ≤ Nk(t)

with

(29) ζj(t) ≡ inf{s ≥ 0 : s + Wj(s) > t}, j ∈ J,

and

(30) Z−
k (t) ≤ Ik(t + Ws(k)(t)) − Ik(t)

with

(31) Z−
k (t) ≡ Zk(t) − Z+

k (t).
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2.3 Markovian description of a multiclass queueing network with abandonment
In the following we introduce the Markovian description process for a multiclass queueing
network with abandonment in a similar way to Katsuda [15]. The process will be constructed
from the primitive variables and the associated processes introduced so far. Conversely those
primitives can also be represented by the description process.

Let
V (t) ≡ (Vk(t), k ∈ K)

where Vk(t) ≡ (Vk,i(t), i = 1, 2, . . .) with

Vk,1(t) ≡ Rv
k(t),

for 2 ≤ i ≤ Z+
k (t),

Vk,i(t) ≡

{
vo

k(Dk(t) + i), if Dk(t) + i ≤ Z+
k (0),

vs
k(Dk(t) + i − Z+

k (0)), otherwise,

and for i ≥ Z+
k (t) + 1,

Vk,i(t) ≡ 0.

We define the stochastic process Ξ = (Ξ(t), t ≥ 0) by

(32) Ξ(t) ≡ (O(t),Ru(t), V (t),Rγ(t))

where

O(t) = (Oj(t), j ∈ J) = ((Oj,i(t), i = 1, 2, . . .), j ∈ J),
Ru(t) = (Ru

k(t), k ∈ A),
Rγ(t) = (Rγ

k(t), k ∈ K) = ((Rγ
k,i(t), i ≥ 1), k ∈ K).

Then Ξ = (Ξ(t), t ≥ 0) is a piecewise deterministic Markov process (PDMP). Generally the
PDMP is a strong Markov process. (Cf. Davis [10]).

Let
FΞ

t ≡ σ(Ξ(s); 0 ≤ s ≤ t), t ≥ 0.

Then (FΞ
t )t≥0 is right continuous, i.e., ∩∞

n=1FΞ
t+ 1

n

= FΞ
t for each t ≥ 0. As stated in the

next proposition, the performance measure processes X(·) is (FΞ
t )t≥0-adapted. In other

words, the process Ξ(·) describes the dynamics of our multiclass queueing network with
abandonment. For this reason, the process Ξ(·) is called the Markovian description process
for the network.

We denote the probability law of Markov process Ξ(t), t ≥ 0, starting with the value
ξ ∈ S by

(33) Pξ(E), E ∈ FΞ
∞

(
≡

∨
t≥0

FΞ
t

)
, ξ ∈ S,

such that Pξ(Ξ(0) = ξ) = 1, where S denotes the state space of the process Ξ(·). For each
E ∈ FΞ

∞, Pξ(E) is B(S)-measurable w.r.t. ξ.
Now let {θt}t≥0 denote the family of shift transformations associated with the process

Ξ(t), t ≥ 0. Namely,
Ξ(t) ◦ θs = Ξ(t + s)

for each s, t ≥ 0. Corresponding to Proposition 2.1 of Katsuda [15], we have the following
proposition on the shift-transformed performance measure process. (Since the proof is done
in a similar way, we omit it).
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ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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Proposition 2.1.
The performance measure process

X(·) = (A(·), A+(·), D(·), I(·), T (·),W (·), Y (·), Z(·), Z+(·))

is (FΞ
t )t≥0-adapted. Thus X(·) ◦ θt, t ≥ 0, is well-defined and each component of the shift

transformed process is given by the following:

A(t) ◦ θs = A(s + t) − A(s),(34)

A+(t) ◦ θs = A+(s + t) − A+(s),(35)
D(t) ◦ θs = D(s + t) − D(s),(36)
I(t) ◦ θs = I(s + t) − I(s),(37)
T (t) ◦ θs = T (s + t) − T (s),(38)
W (t) ◦ θs = W (s + t),(39)
Y (t) ◦ θs = Y (s + t) − Y (s),(40)
Z(t) ◦ θs = Z(s + t),(41)

Z+(t) ◦ θs = Z+(s + t),(42)

for any s, t ≥ 0.

The quantity Z−
k (t), defined by (31), is the number of class k customers who are in the

system at time t and will eventually abandon it. According to (41) and (42),

(43) Z−
k (t) = Z−

k (0) ◦ θt

for each t ≥ 0.
The condition characterizing the FCFS discipline with abandonment is represented as

(44) Dk(t + Ws(k)(t)) − Dk(t) + Z−
k (t) = Zk(t)

for each t ≥ 0 and k ∈ K. In virtue of Proposition 2.1, the identity (44) is a consequence of
the operation of shift transformation θt, t ≥ 0, to the initial relation

(45) Dk(Ws(k)(0)) + Z−
k (0) = Zk(0), k ∈ K,

and can be regarded as the extension of the FCFS characterization condition without aban-
donment, i.e.,

Dk(t + Ws(k)(t)) − Dk(t) = Zk(t), t ≥ 0, k ∈ K,

that is equivalent to (2.25) in Bramson [3].

3 Heavy-traffic assumptions and scaling
In the rest of the paper we consider a sequence of multiclass FCFS queueing networks

with abandonments each of which satisfies the feedforward class-routing condition (8). Each
network in the sequence is indexed by r, where r tends to infinity through a sequence of
values in [1,∞). (Note that the index r may possibly take non-integer values). For slight
abuse of notation, denote such r-th network by Xr(·), whose primitive variables are defined
on the probability space (Ωr,Fr, Pr) for each r ≥ 1. The number of classes K, the subset
A of K with exogenous arrivals, and the map s(·) : K −→ J are fixed for all Xr(·), r ≥ 1.
Also the service discipline investigated is FCFS in every network of the sequence. We
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tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.
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Proposition 2.1.
The performance measure process

X(·) = (A(·), A+(·), D(·), I(·), T (·),W (·), Y (·), Z(·), Z+(·))

is (FΞ
t )t≥0-adapted. Thus X(·) ◦ θt, t ≥ 0, is well-defined and each component of the shift

transformed process is given by the following:

A(t) ◦ θs = A(s + t) − A(s),(34)

A+(t) ◦ θs = A+(s + t) − A+(s),(35)
D(t) ◦ θs = D(s + t) − D(s),(36)
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Z+(t) ◦ θs = Z+(s + t),(42)

for any s, t ≥ 0.

The quantity Z−
k (t), defined by (31), is the number of class k customers who are in the

system at time t and will eventually abandon it. According to (41) and (42),

(43) Z−
k (t) = Z−

k (0) ◦ θt

for each t ≥ 0.
The condition characterizing the FCFS discipline with abandonment is represented as

(44) Dk(t + Ws(k)(t)) − Dk(t) + Z−
k (t) = Zk(t)

for each t ≥ 0 and k ∈ K. In virtue of Proposition 2.1, the identity (44) is a consequence of
the operation of shift transformation θt, t ≥ 0, to the initial relation

(45) Dk(Ws(k)(0)) + Z−
k (0) = Zk(0), k ∈ K,

and can be regarded as the extension of the FCFS characterization condition without aban-
donment, i.e.,

Dk(t + Ws(k)(t)) − Dk(t) = Zk(t), t ≥ 0, k ∈ K,

that is equivalent to (2.25) in Bramson [3].

3 Heavy-traffic assumptions and scaling
In the rest of the paper we consider a sequence of multiclass FCFS queueing networks

with abandonments each of which satisfies the feedforward class-routing condition (8). Each
network in the sequence is indexed by r, where r tends to infinity through a sequence of
values in [1,∞). (Note that the index r may possibly take non-integer values). For slight
abuse of notation, denote such r-th network by Xr(·), whose primitive variables are defined
on the probability space (Ωr,Fr, Pr) for each r ≥ 1. The number of classes K, the subset
A of K with exogenous arrivals, and the map s(·) : K −→ J are fixed for all Xr(·), r ≥ 1.
Also the service discipline investigated is FCFS in every network of the sequence. We
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put a superscript r on each of the stochastic processes, primitive variables and constants
associated with them introduced so far, in order to indicate the associated network in the
sequence. For example, Zr(·), Ar(·), A−,r(·), vs,r

k (i), γo,r(i), αr
k, etc.

On the sequence of the parameters associated with the primitive variables in Xr(·), r ≥ 1,
we impose the following limit conditions:

αr
k −→ αk(> 0) as r → ∞, ∀k ∈ A,(46)

mr
k −→ mk(> 0) as r → ∞, ∀k ∈ K,(47)

ar
k −→ ak(> 0) as r → ∞, ∀k ∈ A,(48)

br
k −→ bk(> 0) as r → ∞, ∀k ∈ K,(49)

P r
kl −→ Pkl as r → ∞, ∀k ∈ K, l ∈ K ∪ {0},(50)

where P = [Pkl]k,l∈K is a substochastic matrix such that its spectral radius is less than
unity and for each l ∈ K − A, there exist some k ∈ A and m ∈ N such that

(51) Pm
kl > 0

where Pm ≡ [Pm
kl ] with Pm denoting the m-th power of P .

We define λr = (λr
k, k ∈ K) to be the unique solution to the traffic equation:

(52) λr = αr + P̃ rλr,

that is,
λr = Qrαr

with

(53) Qr ≡ (I − P̃ r)−1.

For each r and k ∈ K, λr
k is referred to as the nominal total arrival rate to class k in the

r-th network. It is readily seen that λ = limr→∞ λr satisfies

(54) λk > 0

for each k ∈ K, because of (51).
We also define

(55) ρr ≡ CMrλr = (ρr
j , j ∈ J)

with Mr ≡ diag(mr
k, k ∈ K), which is referred to as the traffic intensity vector.

We impose the limit condition on the sequence {ρr}r:

(56) r(ρr − e) −→ ϑ

as r → ∞, where ϑ is some constant vector in RJ . The condition (56) is referred to as the
heavy-traffic condition.

In addition, to obtain the proper limit for appropriately scaled abandonment-count
processes (cf. (74) below) as r → ∞ under the heavy-traffic condition, we assume the
following scaling condition of abandonment distribution F γ,r

k (x) = Pr(γs,r
k (1) ≤ x), x ≥

0, k ∈ K, r ≥ 0:

General hazard-type scaling of abandonment distribution. (Cf. Katsuda [17]).
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tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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For each k ∈ K and x /∈ Disc(Hk),

(57) rF γ,r
k (rxr) −→ Hk(x) as r → ∞,

whenever xr → x as r → ∞, where Hk(x), x ≥ 0, is a non-decreasing function and Disc(Hk)
is the set of discontinuities for Hk(·).

We impose the following uniform integrability condition:

{ur
k(2)2}r≥1 is uniformly integrable,(58)

{vs,r
l (1)2}r≥1 is uniformly integrable,(59)

for each k ∈ A and l ∈ K. We will also assume the following three conditions on the initial
primitive variables, the first two of which correspond to (3.5) in [3] and (82), (83) in [26]:

For each k ∈ A, l ∈ K and T > 0,

ur
k(1)
r

−→ 0 in pr.,(60)

vo,r
l (1)

r
−→ 0 in pr.,(61)

max
0≤m<rT

∣∣∣{V̂o,r
l (Z

+,r

l (0))
}
◦ θrm

∣∣∣ −→ 0 in pr.,(62)

as r goes to infinity, where

V̂o,r(t) ≡ r−1(Vo,r(�r2t�) − mr · �r2t�),(63)

Z
+,r

(t) ≡ r−2Z+,r(r2t).(64)

(The convergence (62) is restated as

Pr
(

max
0≤m<rT

∣∣∣1
r
×

Z+,r
l (rm)∑

i=1

(
vo,r

l (i) ◦ θrm − mr
l

)∣∣∣ > ε
)
−→ 0, ∀ε > 0,

)

as r → ∞).

Concerned with the asymptotic behavior of the performance measures for our multiclass
queueing network with abandonment under the heavy-traffic condition, we perform the
diffusive and fluid scaling on the associated stochastic processes as follows:
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approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
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cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.
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tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
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For each k ∈ K and x /∈ Disc(Hk),
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whenever xr → x as r → ∞, where Hk(x), x ≥ 0, is a non-decreasing function and Disc(Hk)
is the set of discontinuities for Hk(·).

We impose the following uniform integrability condition:

{ur
k(2)2}r≥1 is uniformly integrable,(58)

{vs,r
l (1)2}r≥1 is uniformly integrable,(59)

for each k ∈ A and l ∈ K. We will also assume the following three conditions on the initial
primitive variables, the first two of which correspond to (3.5) in [3] and (82), (83) in [26]:

For each k ∈ A, l ∈ K and T > 0,

ur
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−→ 0 in pr.,(60)
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−→ 0 in pr.,(61)

max
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l (0))
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V̂o,r(t) ≡ r−1(Vo,r(�r2t�) − mr · �r2t�),(63)

Z
+,r
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Pr
(

max
0≤m<rT
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r
×

Z+,r
l (rm)∑

i=1

(
vo,r

l (i) ◦ θrm − mr
l

)∣∣∣ > ε
)
−→ 0, ∀ε > 0,

)

as r → ∞).

Concerned with the asymptotic behavior of the performance measures for our multiclass
queueing network with abandonment under the heavy-traffic condition, we perform the
diffusive and fluid scaling on the associated stochastic processes as follows:

DIFFUSION APPROXIMATIONS  

Diffusion scaling.

Ẑr(t) = r−1Zr(r2t),(65)

Ẑ−,r(t) = r−1Z−,r(r2t),(66)

Ŵ r(t) = r−1W r(r2t),(67)

Ŷ r(t) = r−1Y r(r2t),(68)

Êr(t) = r−1(Er(r2t) − αrr2t),(69)

V̂s,r(t) = r−1(Vs,r(�r2t�) − mr · �r2t�),(70)

Âr(t) = r−1(Ar(r2t) − λrr2t),(71)

Â−,r(t) = r−1A−,r(r2t),(72)

D̂r(t) = r−1(Dr(r2t) − λrr2t),(73)

Îr(t) = r−1Ir(r2t),(74)

N̂r(t) = r−1Nr(r2t),(75)

Ŝr(t) = r−1(Sr(r2t) − µrr2t),(76)

Φ̂k,r(t) = r−1(Φk,r(�r2t�) − P r
k·�r2t�).(77)

Fluid scaling.

Z
r
(t) = r−2Zr(r2t),(78)

E
r
(t) = r−2Er(r2t),(79)

A
r
(t) = r−2Ar(r2t),(80)

A
+,r

(t) = r−2A+,r(r2t),(81)

D
r
(t) = r−2Dr(r2t),(82)

I
r
(t) = r−2Ir(r2t),(83)

S
r
(t) = r−2Sr(r2t),(84)

T
r
(t) = r−2T r(r2t).(85)
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V̂s,r(·) =⇒ V∗(·)(87)

Φ̂k,r(·) =⇒ Φk,∗(·), k ∈ K,(88)

Ŝr(·) =⇒ S∗(·),(89)

S
r

l (·) =⇒ µlι(·), l ∈ K,(90)
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stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
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cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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as r → ∞, where

E∗(t) =
√

Π · BE(t),

V∗(t) =
√

Σ · BV(t),

Φk,∗(t) = (Φk,∗
1 (t), . . . , Φk,∗

K (t)),

Φk,∗
l (t) =

K∑
m=1

(√
Υk

)
lm

· Bk
m(t), k, l ∈ K,

ι(t) ≡ t

with BE(·) and BV(·) K-dimensional standard Brownian motions,

(B1(·), . . . , BK(·)) = (B1
1(·), . . . , B1

K(·), . . . , BK
1 (·), . . . , BK

K (·))

a K2-dimensional standard Brownian motion,

Π = diag(α3
1a1, . . . , α

3
KaK),

Σ = diag(b1, . . . , bK),

and Υk in (6) and (7) for each k ∈ K. (These standard Brownian motions are mutually
independent).

4 Main result; diffusion approximation theorem
To derive the diffusion approximation theorem for our multiclass feedforward queueing

network with abandonment under the FCFS discipline, the following four main assumptions,
i.e., (A.1)-(A.4), are imposed in addition to the conditions on primitive variables assumed
so far:

(A.1) For some proper r.v. W ∗(0),

Ŵ r(0) =⇒ W ∗(0) in RJ

as r → ∞.

(A.2) For each k ∈ K,

sup
0≤t≤W r

s(k)(0)

r−1|Dr
k(t) − λr

kt| −→ 0 in pr.

as r → ∞.

(A.3) The sequence {Ẑr(0)}r≥1 is tight in RK , i.e.,

lim
M→∞

lim
r→∞

Pr
(
|Ẑr(0)| > M

)
= 0.

(A.4) (Assumption 7.1 in Williams [26]).
The matrix R = (I + G)−1 is completely-S, where

G ≡ CMQP̃Λ = lim
r→∞

CMrQrP̃ rΛr

and Mr ≡ diag(mr
k, k ∈ K), Λr ≡ diag(λr

k, k ∈ K), r ≥ 1, and M = limr→∞ Mr, etc. (Of
course, it is implicitly assumed that I + G is invertible. For the definition of completely-S
condition, see Definition 6.2 in Williams [26], for example).

DIFFUSION APPROXIMATIONS FOR MULTICLASS FEEDFORWARD
QUEUEING NETWORKS WITH ABANDONMENTS UNDER FCFS

SERVICE DISCIPLINES

TOSHIYUKI KATSUDA ∗

Received February 26, 2016 ; revised August 6, 2016

Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
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count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
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cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.
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In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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(B1(·), . . . , BK(·)) = (B1
1(·), . . . , B1

K(·), . . . , BK
1 (·), . . . , BK

K (·))

a K2-dimensional standard Brownian motion,

Π = diag(α3
1a1, . . . , α

3
KaK),

Σ = diag(b1, . . . , bK),

and Υk in (6) and (7) for each k ∈ K. (These standard Brownian motions are mutually
independent).

4 Main result; diffusion approximation theorem
To derive the diffusion approximation theorem for our multiclass feedforward queueing

network with abandonment under the FCFS discipline, the following four main assumptions,
i.e., (A.1)-(A.4), are imposed in addition to the conditions on primitive variables assumed
so far:

(A.1) For some proper r.v. W ∗(0),

Ŵ r(0) =⇒ W ∗(0) in RJ

as r → ∞.

(A.2) For each k ∈ K,

sup
0≤t≤W r

s(k)(0)

r−1|Dr
k(t) − λr

kt| −→ 0 in pr.

as r → ∞.

(A.3) The sequence {Ẑr(0)}r≥1 is tight in RK , i.e.,

lim
M→∞

lim
r→∞

Pr
(
|Ẑr(0)| > M

)
= 0.

(A.4) (Assumption 7.1 in Williams [26]).
The matrix R = (I + G)−1 is completely-S, where

G ≡ CMQP̃Λ = lim
r→∞

CMrQrP̃ rΛr

and Mr ≡ diag(mr
k, k ∈ K), Λr ≡ diag(λr

k, k ∈ K), r ≥ 1, and M = limr→∞ Mr, etc. (Of
course, it is implicitly assumed that I + G is invertible. For the definition of completely-S
condition, see Definition 6.2 in Williams [26], for example).

DIFFUSION APPROXIMATIONS

Condition (A.2) corresponds to the initial condition on strong state-space collapse for a
more general multiclass FCFS queueing network without abandonment. (Cf. Bramson [3],
Williams [26]). While condition (A.3) is implied by (A.1) and (A.2) for such network without
abandonment, we have to assume it in our network with abandonment. As established
in [26], assumption (A.4) is satisfied under the asymptotically Kelly-type condition, i.e.,
mk = ml if s(k) = s(l). The completely-S condition on R in (A.4) is a necessary and
sufficient condition for the existence and uniqueness (in law) of a semimartingale reflecting
Brownian motion (SRBM) with the reflection matrix R and the data on the covariance,
drift and initial measure of the Brownian motion in the SRBM. (Cf. Definition 6.1 in [26]
and the references in its comment).

The following theorem is the main result in this paper. It is on the weak convergence
for the sequence of scaled performance measure processes

{(Ŵ r(·), Ŷ r(·), Ẑr(·))}r≥1.

In the statement of the theorem, we use the following symbol:

(91) Γ ≡ RC
{

ΛΓV + MQ
(
ΓE +

K∑
k=1

λkΓk
Φ

)
Q̃M

}
C̃R̃,

According to (54), we see that Γ is strictly positive definite. We also let

(92) H∗(w) ≡ CMQΛ · H(w), w ∈ RJ ,

with H(w) ≡ (Hk(ws(k)), k ∈ K), Hk(·), k ∈ K, in (57).

Theorem 4.1. (Diffusion approximation for a multiclass feedforward queueing network
with abandonment under the FCFS discipline).

Under the main assumptions (A.1), (A.2) and (A.3), and also the conditions imposed on
the primitive variables and processes so far, we have the weak convergence

(93) (Ŵ r(·), Ŷ r(·), Ẑr(·)) =⇒ (W ∗(·), Y ∗(·), Z∗(·)) in D([0,∞),R2J+K)

as r → ∞, where W ∗(·) is the unique solution to the following J-dimensional reflected
stochastic differential equation:

W ∗(t) = X∗(t) + RY ∗(t),(94)

X∗(t) = W ∗(0) +
√

ΓB∗(t) + ϑ∗t −
∫ t

0

H∗(W ∗(u))du,(95)

where B∗(·) is a J-dimensional standard Brownian motion, ϑ∗ ≡ Rϑ and ν(·) = P(W ∗(0) ∈
·). Furthermore,

Z∗(t) = ΛC̃W ∗(t), t ≥ 0.

5 Proof of Theorem 4.1; propositions and lemmas
This section is devoted to the proof of the diffusion approximation theorem stated in

the last section. We begin with the following stochastic boundedness of scaled queue length
and workload in a multiclass feedforward queueing network with abandonment under any
work-conserving service discipline.
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heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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5.1 Stochastic boundedness of diffusion-scaled queue length and workload In
this subsection we present two propositions on the stochastic boundedness of diffusion-
scaled queue length and workload in our multiclass feedforward queueing network with
abandonment. Each of them plays a key role in the proof of our main theorem, specifically
in proving the C-tightness of diffusion-scaled abandonment-count process and deriving state-
space collapse in the network.

Proposition 5.1.
For a sequence of multiclass feedforward queueing networks with abandonments, {Xr}r≥1,

satisfying the assumptions stated so far, the sequence {Ẑr(·)}r≥1 is stochastically bounded,
i.e.,

lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

|Ẑr(t)| > M
)

= 0

for each T > 0.

Proof.
Let

f̂r(t) ≡ CMrQrẐr(t) = (f̂r
j (t), j ∈ J)

where
f̂r

j (t) = f̂r
j1(t) + f̂r

j2(t)

with

f̂r
j1(t) =

∑
k∈C(j)

mr
k

∑
l∈C(j)

Qr
klẐ

r
l (t),

f̂r
j2(t) =

∑
k∈C(j)

mr
k

∑
l∈C(1)∪···∪C(j−1)

Qr
klẐ

r
l (t)

for each j ∈ J, where we have used the feedforward class-routing condition (8). (We set
f̂r
12(·) ≡ 0).

From

Zr(t) = Zr(0) + Er(t) +
K∑

l=1

Φl,r(Sr
l (T r

l (t))) − Sr(T r(t)) − Ir(t)

with Sr(T r(t)) ≡ (Sr
k(T r

k (t)), k ∈ K), we have the following scaled identity in vector form:

Ẑr(t) =Ẑr(0) + Êr(t) + αrrt +
∑
l∈K

Φ̂l,r(S
r

l (T
r

l (t))) − (I − P̃ r)Ŝr(T
r
(t))

− (I − P̃ r)
(µrT r)(r2t)

r
− Îr(t)(96)

with the diffusion and fluid scalings given above. Multiplying (96) by CMrQr from the
left, we have

f̂r(t) = f̂r(0) + CMrQr
{

Êr(t) +
∑
l∈K

Φ̂l,r(S
r

l (T
r

l (t)))
}

− CMrŜr(T
r
(t)) − CMrQr Îr(t) + r(ρr − e)t + Ŷ r(t).(97)

Since

(98)
∫ ∞

0

f̂r
1 (s)dŶ r

1 (s) =
∫ ∞

0

f̂r
11(s)dŶ r

1 (s) = 0,
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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5.1 Stochastic boundedness of diffusion-scaled queue length and workload In
this subsection we present two propositions on the stochastic boundedness of diffusion-
scaled queue length and workload in our multiclass feedforward queueing network with
abandonment. Each of them plays a key role in the proof of our main theorem, specifically
in proving the C-tightness of diffusion-scaled abandonment-count process and deriving state-
space collapse in the network.

Proposition 5.1.
For a sequence of multiclass feedforward queueing networks with abandonments, {Xr}r≥1,

satisfying the assumptions stated so far, the sequence {Ẑr(·)}r≥1 is stochastically bounded,
i.e.,

lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

|Ẑr(t)| > M
)

= 0

for each T > 0.

Proof.
Let

f̂r(t) ≡ CMrQrẐr(t) = (f̂r
j (t), j ∈ J)

where
f̂r

j (t) = f̂r
j1(t) + f̂r

j2(t)

with

f̂r
j1(t) =

∑
k∈C(j)

mr
k

∑
l∈C(j)

Qr
klẐ

r
l (t),

f̂r
j2(t) =

∑
k∈C(j)

mr
k

∑
l∈C(1)∪···∪C(j−1)

Qr
klẐ

r
l (t)

for each j ∈ J, where we have used the feedforward class-routing condition (8). (We set
f̂r
12(·) ≡ 0).

From

Zr(t) = Zr(0) + Er(t) +
K∑

l=1

Φl,r(Sr
l (T r

l (t))) − Sr(T r(t)) − Ir(t)

with Sr(T r(t)) ≡ (Sr
k(T r

k (t)), k ∈ K), we have the following scaled identity in vector form:

Ẑr(t) =Ẑr(0) + Êr(t) + αrrt +
∑
l∈K

Φ̂l,r(S
r

l (T
r

l (t))) − (I − P̃ r)Ŝr(T
r
(t))

− (I − P̃ r)
(µrT r)(r2t)

r
− Îr(t)(96)

with the diffusion and fluid scalings given above. Multiplying (96) by CMrQr from the
left, we have

f̂r(t) = f̂r(0) + CMrQr
{

Êr(t) +
∑
l∈K

Φ̂l,r(S
r

l (T
r

l (t)))
}

− CMrŜr(T
r
(t)) − CMrQr Îr(t) + r(ρr − e)t + Ŷ r(t).(97)

Since

(98)
∫ ∞

0

f̂r
1 (s)dŶ r

1 (s) =
∫ ∞

0

f̂r
11(s)dŶ r

1 (s) = 0,
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from (97) we have

(99) f̂r
1 (t) = ϕ

(
X r

1 (·) −
∑

k∈C(1)

mr
k

∑
l∈C(1)

Qr
klÎ

r
l (·)

)
(t)

where ϕ is the one-dimensional reflection map, i.e.,

(100) ϕ(x(·))(t) = x(t) + sup
0≤s≤t

(
−x(s)

)+
, x ∈ D([0,∞),R1), t ≥ 0,

and

X r
1 (t) ≡ f̂r

1 (0) +
∑

k∈C(1)

mr
k

∑
l∈C(1)

Qr
kl

{
Êr

l (t) +
∑
p∈K

Φ̂p,r
l (S

r

p(T
r

p(t)))
}

−
∑

k∈C(1)

mr
kŜr

k(T
r

k(t)) + r(ρr
1 − 1)t, t ≥ 0.(101)

Since each component in Îr(·) is nondecreasing, we have

f̂r
1 (t)

= X r
1 (t) −

∑
k∈C(1)

mr
k

∑
l∈C(1)

Qr
klÎ

r
l (t) + sup

0≤s≤t

(
−X r

1 (s) +
∑

k∈C(1)

mr
k

∑
l∈C(1)

Qr
klÎ

r
l (s)

)+

≤ X r
1 (t) + sup

0≤s≤t
(−X r

1 (s))+

= ϕ(X r
1 (·))(t).(102)

Thus, according to the Lipschitz continuity of the map ϕ, (A.3), the heavy-traffic condition
(56), and the convergences (86)-(90), (47) and (50), we obtain

(103) lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

Ẑr
k(t) > M

)
= 0

for each k ∈ C(1) and T > 0.
Suppose that (103) holds for each k ∈ C(1)∪ · · · ∪C(j − 1) with some 2 ≤ j ≤ J . Then,

since ∫ ∞

0

f̂r
j1(s) dŶ r

j (s) = 0,

we have

(104) f̂r
j1(t) = ϕ

(
−f̂r

j2(·) + X r
j (·) −

∑
k∈C(j)

mr
k

∑
l∈C(1)∪···∪C(j)

Qr
klÎ

r
l (·)

)
(t)

where

X r
j (t) ≡ f̂r

j (0) +
∑

k∈C(j)

mr
k

∑
l∈C(1)∪···∪C(j)

Qr
kl

{
Êr

l (t) +
∑
p∈K

Φ̂p,r
l (S

r

p(T
r

p(t)))
}

−
∑

k∈C(j)

mr
kŜr

k(T
r

k(t)) + r(ρr
j − 1)t, t ≥ 0.(105)

Thus, similar to the above reasoning, the inequality

(106) f̂r
j1(t) ≤ ϕ(−f̂r

j2(·) + X r
j (·))(t)
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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holds so that

(107) lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

Ẑr
k(t) > M

)
= 0,

is derived for each k ∈ C(j) and T > 0, using (103) for each k ∈ C(1) ∪ · · ·C(j − 1).
Consequently we have the desired result inductively.

Using Proposition 5.1, we also have the corresponding result for diffusion-scaled workload
in the next proposition.

Proposition 5.2.
For {Xr}r≥1 in Proposition 5.1, the sequence {Ŵ r(·)}r≥1 is stochastically bounded, i.e.,

lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

|Ŵ r(t)| > M
)

= 0

for each T > 0.

Proof.
¿From (21), (23), (67) and (68), we have

(108) Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t)) + CMr(Âr(t) − Â−,r(t)) + r(ρr − e)t + Ŷ r(t)

with V̂s,r(·) in (70) and A
+,r

(t) in (81).
¿From (65), (69), (71), (73), (74), (77) and (82), we see that

Âr(t) = Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ rD̂r(t)

= Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r
(
Ẑr(0) − Ẑr(t) − Îr(t) + Âr(t)

)
.

Solving it for Âr(t), we have

(109) Âr(t) = Qr{Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r
(
Ẑr(0) − Ẑr(t) − Îr(t)

)
}.

Substituting (109) into (108), we have

Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t))

+ CMrQr
{
Êr(t) +

∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r(Ẑr(0) − Ẑr(t))
}

+ r(ρr − e)t − CMrÂ−,r(t) − CMrQrP̃ r Îr(t) + Ŷ r(t).

Let

Yr(t) ≡ Ŵ r(0) + CV̂s,r(A
+,r

(t))

+ CMrQr
{
Êr(t) +

∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r(Ẑr(0) − Ẑr(t))
}

+ r(ρr − e)t.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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holds so that

(107) lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

Ẑr
k(t) > M

)
= 0,

is derived for each k ∈ C(j) and T > 0, using (103) for each k ∈ C(1) ∪ · · ·C(j − 1).
Consequently we have the desired result inductively.

Using Proposition 5.1, we also have the corresponding result for diffusion-scaled workload
in the next proposition.

Proposition 5.2.
For {Xr}r≥1 in Proposition 5.1, the sequence {Ŵ r(·)}r≥1 is stochastically bounded, i.e.,

lim
M→∞

lim
r→∞

Pr
(

sup
0≤t≤T

|Ŵ r(t)| > M
)

= 0

for each T > 0.

Proof.
¿From (21), (23), (67) and (68), we have

(108) Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t)) + CMr(Âr(t) − Â−,r(t)) + r(ρr − e)t + Ŷ r(t)

with V̂s,r(·) in (70) and A
+,r

(t) in (81).
¿From (65), (69), (71), (73), (74), (77) and (82), we see that

Âr(t) = Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ rD̂r(t)

= Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r
(
Ẑr(0) − Ẑr(t) − Îr(t) + Âr(t)

)
.

Solving it for Âr(t), we have

(109) Âr(t) = Qr{Êr(t) +
∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r
(
Ẑr(0) − Ẑr(t) − Îr(t)

)
}.

Substituting (109) into (108), we have

Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t))

+ CMrQr
{
Êr(t) +

∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r(Ẑr(0) − Ẑr(t))
}

+ r(ρr − e)t − CMrÂ−,r(t) − CMrQrP̃ r Îr(t) + Ŷ r(t).

Let

Yr(t) ≡ Ŵ r(0) + CV̂s,r(A
+,r

(t))

+ CMrQr
{
Êr(t) +

∑
l∈K

Φ̂l,r(D
r

l (t)) + P̃ r(Ẑr(0) − Ẑr(t))
}

+ r(ρr − e)t.
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Then, since

(110)
∫ ∞

0

Ŵ r
j (s)dŶ r

j (s) = 0, ∀j ∈ J,

we have that for each j ∈ J,

Ŵ r
j (t) = ϕ

(
Yr

j (·) −
∑

k∈C(j)

mr
kÂ−,r

k (·) −
∑

k∈C(j)

mr
k

∑
l∈K

(QrP̃ r)klÎ
r
l (·)

)
(t)

= Yr
j (t) −

∑
k∈C(j)

mr
kÂ−,r

k (t) −
∑

k∈C(j)

mr
k

∑
l∈K

(QrP̃ r)klĜ
r
l (t)

+ sup
0≤s≤t

(
−Yr

j (s) +
∑

k∈C(j)

mr
kÂ−,r

k (s) +
∑

k∈C(j)

mr
k

∑
l∈K

(QrP̃ r)klÎ
r
l (s)

)+

≤ Yr
j (t) + sup

0≤s≤t

(
−Yr

j (s)
)+

= ϕ
(
Yr

j (·)
)
(t)

with ϕ(·) in (100), where the inequality follows from the non-decreasing property of each
component in Â−,r(·) and Îr(·). Thus, using the Lipschitz continuity of ϕ, Proposition 5.1,
and (A.1), we have the desired result.

Remark 5.1.
The conclusions of Propositions 5.1 and 5.2 are valid under any work-conserving (or

non-idling) service discipline, which is embodied as (98) and (110). We note that if the
stochastic boundedness condition on scaled queue length is verified for a more general multi-
class queueing network, then that condition on scaled workload does hold for such network,
which will be seen by mimicking the proof of Proposition 5.2.

5.2 C-tightness of diffusion-scaled abandonment-count process In this subsec-
tion, we show the C-tightness of the sequence of scaled abandonment-count processes
{Îr

k(·)}r≥1, k ∈ K, which will be seen to follow from that of the sequence {N̂r
k (·)}r≥1, k ∈ K,

as follows.

Proposition 5.3.
For each k ∈ K, the sequence {Îr

k(·)}r is C-tight in D([0,∞),R1).

Proof.
Similar to (29), let

ζr
j (t) ≡ inf{s ≥ 0 : s + W r

j (s) > t}, t ≥ 0, j ∈ J,

and ζ
r

j(t) ≡ r−2ζr
j (r2t). Then we have that for each T > 0 and j ∈ J,

(111) sup
0≤t≤T

|ζr

j(t) − t| −→ 0 in pr.

as r → ∞, which follows from the inequalities

ζr
j (t) + W r

j (ζr
j (t)) ≥ t and ζr

j (t) ≤ t,
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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and Proposition 5.2.
¿From (28), the inequality

(112) N̂r
k (ζ

r

s(k)(t) −
1
r3

) ≤ Îr
k(t) ≤ N̂r

k (t)

follows, so that according to (111), the proof of C-tightness for {Îr
k(·)}r, k ∈ K, is reduced

to that for {N̂r
k (·)}r, k ∈ K, which is done in the next lemma.

Lemma 5.1.
For each k ∈ K, the sequence {N̂r

k (·)}r is C-tight in D([0,∞),R1).

Proof.
Assumptions (A.1) and (A.2) yield that for each k ∈ K,

Ẑ+,r
k (0) =

1
r
Dr

k(W r
s(k)(0))

=⇒ λkW ∗
s(k)(0)

as r goes to infinity, so that the tightness of {Ẑ−,r
k (0)}r follows from (A.3). Thus we are

left to show the C-tightness of {Â−,r
k (·)}r, because of the identity

N̂r
k (t) = Ẑ−,r

k (0) + Â−,r
k (t), t ≥ 0.

¿From (27) and (75), it follows that

Â−,r
k (t) =

1
r

Ar
k(r2t)∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)
+

1
r

Ar
k(r2t)∑
i=1

F γ,r
k (ws,r

k (i))

= M̂γ,r
k (A

r

k(t)) + Ĉr
k(A

r

k(t))(113)

where

M̂γ,r
k (t) ≡ 1

r

�r2t�∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)
,(114)

Ĉr
k(t) ≡ 1

r

�r2t�∑
i=1

F γ,r
k (ws,r

k (i)).(115)

Observe that M̂γ,r
k (·) is a purely-discontinuous martingale since ws,r

k (i) is Gs,r
k (i)-measurable

and γs,r
k (i) is independent of Gs,r

k (i) for each i = 1, 2, · · · , where Gs,r
k (i) is given in the form

(12). Then its optional quadratic variation process
[
M̂γ,r

k

]
(·) is given by

[M̂γ,r
k ](t) =

∑
0<s≤t

|∆M̂γ,r
k (s)|2

=
1
r2

�r2t�∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)2
.(116)

(Cf. (1.8.3) of Liptser and Shiryayev [20]).
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and complex manufacturing systems. Many of those systems have stations which process
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ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
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and Proposition 5.2.
¿From (28), the inequality

(112) N̂r
k (ζ

r

s(k)(t) −
1
r3

) ≤ Îr
k(t) ≤ N̂r

k (t)

follows, so that according to (111), the proof of C-tightness for {Îr
k(·)}r, k ∈ K, is reduced

to that for {N̂r
k (·)}r, k ∈ K, which is done in the next lemma.

Lemma 5.1.
For each k ∈ K, the sequence {N̂r

k (·)}r is C-tight in D([0,∞),R1).

Proof.
Assumptions (A.1) and (A.2) yield that for each k ∈ K,

Ẑ+,r
k (0) =

1
r
Dr

k(W r
s(k)(0))

=⇒ λkW ∗
s(k)(0)

as r goes to infinity, so that the tightness of {Ẑ−,r
k (0)}r follows from (A.3). Thus we are

left to show the C-tightness of {Â−,r
k (·)}r, because of the identity

N̂r
k (t) = Ẑ−,r

k (0) + Â−,r
k (t), t ≥ 0.

¿From (27) and (75), it follows that

Â−,r
k (t) =

1
r

Ar
k(r2t)∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)
+

1
r

Ar
k(r2t)∑
i=1

F γ,r
k (ws,r

k (i))

= M̂γ,r
k (A

r

k(t)) + Ĉr
k(A

r

k(t))(113)

where

M̂γ,r
k (t) ≡ 1

r

�r2t�∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)
,(114)

Ĉr
k(t) ≡ 1

r

�r2t�∑
i=1

F γ,r
k (ws,r

k (i)).(115)

Observe that M̂γ,r
k (·) is a purely-discontinuous martingale since ws,r

k (i) is Gs,r
k (i)-measurable

and γs,r
k (i) is independent of Gs,r

k (i) for each i = 1, 2, · · · , where Gs,r
k (i) is given in the form

(12). Then its optional quadratic variation process
[
M̂γ,r

k

]
(·) is given by

[M̂γ,r
k ](t) =

∑
0<s≤t

|∆M̂γ,r
k (s)|2

=
1
r2

�r2t�∑
i=1

(
1{γs,r

k (i)≤ws,r
k (i)} − F γ,r

k (ws,r
k (i))

)2
.(116)

(Cf. (1.8.3) of Liptser and Shiryayev [20]).

DIFFUSION APPROXIMATIONS  

We now show that

(117) M̂γ,r
k (·) =⇒ 0 in D([0,∞),R1),

as r → ∞ in a similar way to the proof of Lemma 4.3 in Dai and He [7] as follows.
Observe that for each t ≥ 0,

Er([M̂γ,r
k ](t)) =

1
r2

�r2t�∑
i=1

Er(F γ,r
k (ws,r

k (i)) − F γ,r
k (ws,r

k (i))2)

≤ t Er( sup
1≤i≤�r2t�

F γ,r
k (ws,r

k (i)))

where the equality follows from the Gs,r
k (i)-measurability of ws,r

k (i) and the independence
of γs,r

k (i) and Gs,r
k (i).

Since Ar
k(s) ≥ Er

k(s) for each s ≥ 0 and E
r

k(·) =⇒ αkι(·) as r → ∞, we can take an
appropriate constant t∗ > 0 such that

(118) lim
r→∞

Pr(Ar
k(r2t∗) ≤ �r2t�) = 0.

Thus we have

lim
r→∞

Er
[

sup
1≤i≤�r2t�

F γ,r
k (ws,r

k (i))
]

≤ lim
r→∞

Er
[

sup
1≤i≤�r2t�

F γ,r
k (ws,r

k (i)); Ar
k(r2t∗) > �r2t�

]

≤ lim
r→∞

Er
[

sup
1≤i≤Ar

k(r2t∗)

F γ,r
k (ws,r

k (i))
]

≤ lim
r→∞

Er
[
F γ,r

k ( sup
0≤u≤t∗

W r
s(k)(r

2u))
]

≤ lim
r→∞

Er
[
F γ,r

k ( sup
0≤u≤t∗

W r
s(k)(r

2u)); sup
0≤u≤t∗

Ŵ r
s(k)(u) ≤ M

]

+ lim
r→∞

Pr
(

sup
0≤u≤t∗

Ŵ r
s(k)(u) > M

)
.(119)

According to Proposition 5.2, limM→∞ (the second term in (119)) = 0, while the first term
in (119) is majorized by

lim
r→∞

F γ,r
k (rM) = lim

r→∞

1
r
· rF γ,r

k (rM)

= 0

for each fixed M > 0, because of (57). Therefore we have that for each t ≥ 0,

lim
r→∞

Er([M̂γ,r
k ](t)) = 0

so that the convergence (117) is established, according to Theorem 7.1.4 in Ethier and Kurtz
[11].

Let Br
k(t) ≡ Er

k(t) +
∑K

l=1 Sr
l (t), t ≥ 0. Then, since Ar

k(t) ≤ Br
k(t) for each t ≥ 0 and

(120) B
r

k(·) ≡ r−2Br
k(r2·) =⇒ αkι(·) +

K∑
l=1

µlι(·)

DIFFUSION APPROXIMATIONS FOR MULTICLASS FEEDFORWARD
QUEUEING NETWORKS WITH ABANDONMENTS UNDER FCFS

SERVICE DISCIPLINES

TOSHIYUKI KATSUDA ∗

Received February 26, 2016 ; revised August 6, 2016

Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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as r → ∞, we have

(121) M̂γ,r
k (A

r

k(·)) =⇒ 0 in D([0,∞),R1),

as r → ∞.
Thus the proof of the C-tightness of {Â−,r

k (·)}r is reduced to that of the C-tightness of
{Ĉr

k(A
r

k(·))}r, and so it is enough to show the following two conditions:

(122) lim
M→∞

lim
r→∞

Pr(Ĉr
k(A

r

k(T )) > M) = 0

for each T > 0, and

(123) lim
δ→0

lim
r→∞

Pr(wT (Ĉr
k(A

r

k(·)), δ) > ε) = 0

for each ε > 0 and T > 0, where

(124) wT (x(·), δ) ≡ sup
0≤s,t≤T
|s−t|≤δ

|x(s) − x(t)|, x(·) ∈ D([0,∞),Rd), δ > 0, T > 0, d ∈ N.

(Cf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
Observe that

Pr(Ĉr
k(A

r

k(T )) > M) ≤Pr(Ĉr
k(A

r

k(T )) > M, sup
0≤t≤T

Ŵ r(t) ≤ L)

+ Pr( sup
0≤t≤T

Ŵ r(t) > L).(125)

Then, limL→∞ limr→∞(the second term in (125))= 0 according to Proposition 5.2, and the
first term in (125) is majorized by

Pr(A
r

k(T ) · rF γ,r
k (rL) > M) ≤ Pr(B

r

k(T ) · rF γ,r
k (rL) > M)

so that limM→∞ limr→∞(the first term in (125))= 0 for each fixed L > 0, according to (57)
and (120). Thus we have (122).

Furthermore, observe that

Pr(wT (Ĉr
k(A

r

k(·)), δ) > ε)

≤ Pr( sup
0≤s,t≤T
|s−t|≤δ

|Ĉr
k(A

r

k(s)) − Ĉr
k(A

r

k(t))| > ε, sup
0≤t≤T

Ŵ r(t) ≤ L)

+ Pr( sup
0≤t≤T

Ŵ r(t) > L).(126)

Then, the same as above, limL→∞ limr→∞(the second term in (126))= 0, and the first term
in (126) is less than or equal to

Pr
(
rF γ,r

k (rL) × wT (A
r

k(·), δ) > ε
)
.

Therefore, noting
wT (A

r

k(·), δ) ≤ wT (E
r

k(·), δ) +
∑
l∈K

wT (S
r

l (·), δ),

(123) is seen to be satisfied, according to (57).
Consequently we have the C-tightness of {Â−,r

k (·)}r and so the conclusion of the lemma
has been proved.
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heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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|s−t|≤δ

|x(s) − x(t)|, x(·) ∈ D([0,∞),Rd), δ > 0, T > 0, d ∈ N.

(Cf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
Observe that
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+ Pr( sup
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Then, limL→∞ limr→∞(the second term in (125))= 0 according to Proposition 5.2, and the
first term in (125) is majorized by

Pr(A
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k (rL) > M) ≤ Pr(B
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k(T ) · rF γ,r
k (rL) > M)

so that limM→∞ limr→∞(the first term in (125))= 0 for each fixed L > 0, according to (57)
and (120). Thus we have (122).

Furthermore, observe that
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≤ Pr( sup
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|s−t|≤δ
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+ Pr( sup
0≤t≤T
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Then, the same as above, limL→∞ limr→∞(the second term in (126))= 0, and the first term
in (126) is less than or equal to

Pr
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rF γ,r
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r

k(·), δ) > ε
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.

Therefore, noting
wT (A
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k(·), δ) ≤ wT (E
r

k(·), δ) +
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wT (S
r

l (·), δ),

(123) is seen to be satisfied, according to (57).
Consequently we have the C-tightness of {Â−,r

k (·)}r and so the conclusion of the lemma
has been proved.

DIFFUSION APPROXIMATIONS

5.3 State-space collapse in multiclass feedforward queueing networks with
abandonments under FCFS service disciplines In this subsection, under the assump-
tion (A.2), we prove the following proposition on multiplicative strong state-space collapse
and state-space collapse in a multiclass feedforward queueing network with abandonment
under the FCFS service discipline.

Proposition 5.4. (Multiplicative strong state-space collapse and state-space collapse).
Suppose that in addition to the assumptions in Sect. 3, conditions (A.1), (A.2) and (A.3)

hold. Then we have the following convergences:
For each k ∈ K and T > 0,

(127)
sup0≤t≤T sup

0≤s≤cW r
s(k)(t)

| r−1Dr
k(r2t + rs) − r−1Dr

k(r2t) − λr
ks |

sup0≤t≤T Ŵ r
s(k)(t) ∨ 1

−→ 0 in pr.

as r → ∞, and also,

(128) sup
0≤t≤T

∣∣Ẑr
k(t) − λr

kŴ r
s(k)(t)

∣∣ −→ 0 in pr.

as r → ∞.

To demonstrate the proposition, we need to modify slightly the proof of Theorem 1 in
Bramson [3] by incorporating the customer abandonment to it. Specifically, to the statement
of Proposition 5.1 in [3], we have to add the identity on the weak law of large numbers for
Ir,m(·) that is defined in the same way as in [3] as follows.

For the performance measure process Xr(·), r ≥ 1, in (14), let

(129) Xr,m(t) ≡
{ 1

xr,0
Xr(xr,0t)

}
◦ θrm

for m = 0, 1, 2, . . ., where xr,0 ≡ |W r(0)| ∨ |Zr(0)| ∨ r and {θt, t ≥ 0} is the shift transfor-
mation associated with Markov description process Ξr(·). For example, using Proposition
2.1, we have

Zr,m(t) =
1

xr,m
Zr(xr,mt + rm),

Ir,m(t) =
1

xr,m
(Ir(xr,mt + rm) − Ir(rm)),

where xr,m ≡ xr,0 ◦ θrm = |W r(rm)| ∨ |Zr(rm)| ∨ r for m = 0, 1, 2, . . ..

Proposition 5.5. (Weak law of large numbers for Ir,m(·) ).

For each ε > 0, T > 0, L > 0 and k ∈ K,

lim
r→∞

Pr
(

max
0≤m<rT

Ir,m
k (L) > ε

)
= 0.

Since Ir
k(t) ≤ Nr

k (t) for each t ≥ 0, the above proposition is a consequence of the
following proposition.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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Proposition 5.6.
For each ε > 0, T > 0, L > 0 and k ∈ K,

lim
r→∞

Pr
(

max
0≤m<rT

Nr,m
k (L) > ε

)
= 0,

where Nr,m
k (·) is defined as in (129).

Before giving the proof of Proposition 5.6, we define the following variables which cor-
respond to (5.25) in Bramson [3]:

umax,T,r
k ≡ max{ur

k(i) : Ur
k (i − 1) ≤ r2T, i = 1, 2, . . .},(130)

vmax,T,r
l ≡ max{vo,r

l (i) : Vo,r
l (i − 1) ≤ r2T, i = 1, 2, . . . , Z+,r

l (0)}
∨ max{vs,r

l (i) : Vo,r
l (Z+,r

l (0)) + Vs,r
l (i − 1) ≤ r2T, i = 1, 2, . . .}(131)

with maxφ ≡ 0, for each k ∈ A, l ∈ K and T > 0. Then we have the inequalities

ur
k(1) ◦ θrm ≤ umax,T,r

k ,(132)

vo,r
l (1) ◦ θrm ≤ vmax,T,r

l(133)

for each m = 0, 1, · · · , �rT � − 1, T > 0, k ∈ A and l ∈ K. Indeed, for each m,

Ur
k (Er

k(rm)) ≤ rm < Ur
k (Er

k(rm) + 1),
ur

k(1) ◦ θrm = Ru,r
k (0) ◦ θrm

= Ru,r
k (rm)

= Ur
k (Er

k(rm) + 1) − rm,

from which the inequality (132) follows.
The next lemma corresponds to Lemma 5.1 in [3].

Lemma 5.2.
For each k ∈ A, l ∈ K and T > 0,

1
r
umax,T,r

k −→ 0 in pr.,(134)

1
r
vmax,T,r

l −→ 0 in pr.,(135)

as r goes to infinity.

Proof.
We have only to prove the latter convergence (135), because the derivation of the former

(134) is the same as in Lemma 5.1 in [3]. First we observe that for each δ and B1 with
0 < δ < B1,

Pr
(1
r
vmax,T,r

l > ε
)

≤ Pr
(1

r
vmax,T,r

l > ε,Vo,r
l (Z+,r

l (0)) + Vs,r
l (�r2B1�) > r2T,Z+,r

l (0) < r2δ
)

+ Pr
(
Vo,r

l (Z+,r
l (0)) + Vs,r

l (�r2B1�) ≤ r2T,Z+,r
l (0) < r2δ

)

+ 2Pr
(
Z+,r

l (0) ≥ r2δ
)
.(136)
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows

2000 Mathematics Subject Classification. 60K25, 60F17, 90B22, 60J25, 93E15 .
Key words and phrases. diffusion approximation, multiclass feedforward queueing network, customer

abandonment, state-space collapse.
∗School of Science and Technology, Kwansei Gakuin University.

240



　　　　　　　　　　　　　　　　　　KATSUDA

Proposition 5.6.
For each ε > 0, T > 0, L > 0 and k ∈ K,

lim
r→∞

Pr
(

max
0≤m<rT

Nr,m
k (L) > ε

)
= 0,

where Nr,m
k (·) is defined as in (129).

Before giving the proof of Proposition 5.6, we define the following variables which cor-
respond to (5.25) in Bramson [3]:

umax,T,r
k ≡ max{ur

k(i) : Ur
k (i − 1) ≤ r2T, i = 1, 2, . . .},(130)

vmax,T,r
l ≡ max{vo,r

l (i) : Vo,r
l (i − 1) ≤ r2T, i = 1, 2, . . . , Z+,r

l (0)}
∨ max{vs,r

l (i) : Vo,r
l (Z+,r

l (0)) + Vs,r
l (i − 1) ≤ r2T, i = 1, 2, . . .}(131)

with maxφ ≡ 0, for each k ∈ A, l ∈ K and T > 0. Then we have the inequalities

ur
k(1) ◦ θrm ≤ umax,T,r

k ,(132)

vo,r
l (1) ◦ θrm ≤ vmax,T,r

l(133)

for each m = 0, 1, · · · , �rT � − 1, T > 0, k ∈ A and l ∈ K. Indeed, for each m,

Ur
k (Er

k(rm)) ≤ rm < Ur
k (Er

k(rm) + 1),
ur

k(1) ◦ θrm = Ru,r
k (0) ◦ θrm

= Ru,r
k (rm)

= Ur
k (Er

k(rm) + 1) − rm,

from which the inequality (132) follows.
The next lemma corresponds to Lemma 5.1 in [3].

Lemma 5.2.
For each k ∈ A, l ∈ K and T > 0,

1
r
umax,T,r

k −→ 0 in pr.,(134)

1
r
vmax,T,r

l −→ 0 in pr.,(135)

as r goes to infinity.

Proof.
We have only to prove the latter convergence (135), because the derivation of the former

(134) is the same as in Lemma 5.1 in [3]. First we observe that for each δ and B1 with
0 < δ < B1,

Pr
(1
r
vmax,T,r

l > ε
)

≤ Pr
(1

r
vmax,T,r

l > ε,Vo,r
l (Z+,r

l (0)) + Vs,r
l (�r2B1�) > r2T,Z+,r

l (0) < r2δ
)

+ Pr
(
Vo,r

l (Z+,r
l (0)) + Vs,r

l (�r2B1�) ≤ r2T,Z+,r
l (0) < r2δ

)

+ 2Pr
(
Z+,r

l (0) ≥ r2δ
)
.(136)
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The second term in (136) tends to zero as r goes to infinity, since

(137) Pr
(
Vo,r

l (�r2δ�) + Vs,r
l (�r2B1�) ≤ r2T

)
−→ 0

as r tends to infinity for an appropriate constant B1 > 0, according to the weak law of large
numbers. We also have

(138) Pr
(
Z+,r

l (0) ≥ r2δ
)
−→ 0

as r tends to infinity, according to assumption (A.3).
Furthermore, the first term in (136) is majorized by

Pr
(1

r
× max

1≤i≤�r2δ�
vo,r

l (i) ∨ max
1≤i≤�r2B1�

vs,r
l (i) > ε

)

≤ Pr
(1

r
vo,r

l (1) > ε
)

+ (�r2δ� + �r2B1�) ·
1

(rε)2
η(rε)

−→ 0(139)

as r goes to infinity, where

η(R) ≡ sup
r

Er
[
vo,r

l (2)2; vo,r
l (2) > R

]
, R > 0,

and the convergence to zero follows from assumptions (61) and (59). So the proof is com-
pleted.

Proof of Proposition 5.6.

First we observe that according to (25) and Proposition 2.1,

Nr,m
k (t) =

{ 1
xr,0

Z−,r
k (0)

}
◦ θrm +

{ 1
xr0

A−,r
k (xr,0t)

}
◦ θrm.

≤ 1
r
Z−,r

k (rm) +
{ 1

xr,0
A−,r

k (xr,0t)
}
◦ θrm,(140)

and also that

(141) max
0≤m<rT

1
r
Z−,r

k (rm) ≤ sup
0≤t≤T

Ẑ−,r
k (t).

Using the inequality (30), we see that for each t ≥ 0,

Ẑ−,r
k (t) ≤ Îr

k(t + r−1Ŵ r
s(k)(t)) − Îr

k(t).

Thus, using Propositions 5.2 and 5.3, we have

(142) Ẑ−,r
k (·) =⇒ 0

as r → ∞, which yields

lim
r→∞

Pr
(

max
0≤m<rT

1
r
Z−,r

k (rm) >
ε

2

)
= 0,

DIFFUSION APPROXIMATIONS FOR MULTICLASS FEEDFORWARD
QUEUEING NETWORKS WITH ABANDONMENTS UNDER FCFS

SERVICE DISCIPLINES

TOSHIYUKI KATSUDA ∗

Received February 26, 2016 ; revised August 6, 2016

Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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according to (141). So, in virtue of (140), it suffices to show that for each k ∈ K,

(143) lim
r→∞

Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2

)
= 0

in order to obtain the conclusion of the lemma.

Now we have that for each δ > 0 and M > 0,

Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2

)

≤ Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2
,
|umax,T,r|

r
≤ δ,

max
p∈K

max
0≤m<rT

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm ≤ δ, sup

0≤t≤T+L
|Ŵ r(t)| ≤ M, sup

0≤t≤T
|Ẑr(t)| ≤ M

)

+ Pr
( |umax,T,r|

r
> δ

)
+ Pr

(
max
p∈K

max
0≤m<rT

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm > δ

)

+ Pr
(

sup
0≤t≤T+L

|Ŵ r(t)| > M
)

+ Pr
(

sup
0≤t≤T

|Ẑr(t)| > M
)(144)

where V̂o,r
p (·), p ∈ K, and Z

+,r

p (·), p ∈ K, are given in (63) and (64), respectively. According
to Lemma 5.2,

lim
r→∞

(the second term in (144)) = 0,

and according to assumption (62),

lim
r→∞

(the third term in (144)) = 0.

Further, according to Propositions 5.1 and 5.2,

lim
M→∞

lim
r→∞

(the fourth term in (144)) = 0

and

lim
M→∞

lim
r→∞

(the fifth term in (144)) = 0.

Observe that in addition to (132) and (133),

|Ẑr(0)| ◦ θrm ≤ sup
0≤t≤T

|Ẑr(t)|,(145)

sup
0≤t≤L

|Ŵ r(t)| ◦ θrm ≤ sup
0≤t≤T+L

|Ŵ r(t)|,(146)
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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according to (141). So, in virtue of (140), it suffices to show that for each k ∈ K,

(143) lim
r→∞

Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2

)
= 0

in order to obtain the conclusion of the lemma.

Now we have that for each δ > 0 and M > 0,

Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2

)

≤ Pr
(

max
0≤m<rT

{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2
,
|umax,T,r|

r
≤ δ,

max
p∈K

max
0≤m<rT

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm ≤ δ, sup

0≤t≤T+L
|Ŵ r(t)| ≤ M, sup

0≤t≤T
|Ẑr(t)| ≤ M

)

+ Pr
( |umax,T,r|

r
> δ

)
+ Pr

(
max
p∈K

max
0≤m<rT

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm > δ

)

+ Pr
(

sup
0≤t≤T+L

|Ŵ r(t)| > M
)

+ Pr
(

sup
0≤t≤T

|Ẑr(t)| > M
)(144)

where V̂o,r
p (·), p ∈ K, and Z

+,r

p (·), p ∈ K, are given in (63) and (64), respectively. According
to Lemma 5.2,

lim
r→∞

(the second term in (144)) = 0,

and according to assumption (62),

lim
r→∞

(the third term in (144)) = 0.

Further, according to Propositions 5.1 and 5.2,

lim
M→∞

lim
r→∞

(the fourth term in (144)) = 0

and

lim
M→∞

lim
r→∞

(the fifth term in (144)) = 0.

Observe that in addition to (132) and (133),

|Ẑr(0)| ◦ θrm ≤ sup
0≤t≤T

|Ẑr(t)|,(145)

sup
0≤t≤L

|Ŵ r(t)| ◦ θrm ≤ sup
0≤t≤T+L

|Ŵ r(t)|,(146)
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for each 0 ≤ m < rT . Then, in use of the Markov property of Ξr(·), we see that

(the first term in (144))

≤ Pr
( ⋃

0≤m<rT

{{ 1
xr,0

A−,r
k (xr,0L)

}
◦ θrm >

ε

2
,
|umax,T,r|

r
≤ δ,

max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ◦ θrm ≤ δ, sup

0≤t≤L
|Ŵ r(t)| ◦ θrm ≤ M, |Ẑr(0)| ◦ θrm ≤ M

})

≤
∑

0≤m<rT

Er
[
Pr(· · · · · · · · · · · · | Fr

rm)
]

=
∑

0≤m<rT

Er
[
Pr

Ξr(rm)

( 1
xr,0

A−,r
k (xr,0L) >

ε

2
,
|ur(1)|

r
≤ δ,

max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ, sup

0≤t≤L
|Ŵ r(t)| ≤ M, |Ẑr(0)| ≤ M

)]

Thus, in order to show (143), it is enough to prove that for each ε > 0,

Pr
∗

( 1
xr,0

A−,r
k (xr,0L) >

ε

2
,
|ur(1)|

r
≤ δ,max

p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

sup
0≤t≤L

|Ŵ r(t)| ≤ M, |Ẑr(0)| ≤ M
)

<
ε

r
(147)

if r is sufficiently large independently of the initial value ∗.
Observe that

1
xr,0

A−,r
k (xr,0L) =

1
xr,0

Ar
k(xr,0L)∑

i=1

1{γs,r
k (i)≤ws,r

k (i)}

and if sup0≤t≤L |Ŵ r(t)| ≤ M , |Ẑr(0)| ≤ M and r > M > 1, then

ws,r
k (i) ≤ sup

0≤t≤xr,0L
W r

s(k)(t) ≤ sup
0≤t≤rML

W r
s(k)(t) ≤ r sup

0≤t≤L
|Ŵ r(t)|

≤ rM

for each i = 1, 2, · · · , Ar
k(xr,0L). Thus, if r > M > 1, then the left-hand side of (147) is

dominated by

Pr
∗

( 1
xr,0

Ar
k(xr,0L)∑

i=1

1{γs,r
k (i)≤rM} >

ε

2
, max

p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

|ur(1)|
r

≤ δ
)

≤ Pr
∗

( 1
xr,0

�cxr,0�∑
i=1

1{γs,r
k (i)≤rM} >

ε

2

)

+ Pr
∗

(
Ar

k(xr,0L) > cxr,0, max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

|ur(1)|
r

≤ δ
)

≡ (i) + (ii),(148)

where c is any positive constant. (The value of c will be appropriately determined below).
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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We first evaluate the term (i) in (148). Note that

1
xr,0

�cxr,0�∑
i=1

1{γs,r
k (i)≤rM}

=
1

xr,0

�cxr,0�∑
i=1

(
1{γs,r

k (i)≤rM} − F γ,r
k (rM)

)
+

1
xr,0

F γ,r
k (rM)�cxr,0�.

Then, since F γ,r
k (rM) → 0 as r → ∞ because of (57), we have that

Pr
∗

( 1
xr,0

F γ,r
k (rM)�cxr,0� >

ε

4

)
= 1{

x−1
r,0F γ,r

k (rM)�cxr,0�>ε/4
} = 0

for sufficiently large r independently of the value ∗.
Further, we have that for each ε > 0,

Pr
∗

(
sup

0≤t≤c

∣∣
�xr,0t�∑

i=1

(
1{γs,r

k (i)≤rM} − F γ,r
k (rM)

)∣∣ > xr,0
ε

4

)

≤ 44

(xr,0ε)4
Er
∗

[{�xr,0c�∑
i=1

(
1{γs,r

k (i)≤rM} − F γ,r
k (rM)

)}4]

≤ 44

(xr,0ε)4
· 3(xr,0c)2 ≤ 768c2

(xr,0)2ε4
≤ 768c2

r2ε4
,

where the first inequality is due to Doob’s submartingale inequality. Therefore, if r is
sufficiently large such that

1
r

<
ε5

768c2
,

then

(149) the term (i) ≤ ε

r
.

We next evaluate the term (ii) in (148). Because of (149), it is enough to show that for
each k ∈ K, there exists some constant c > 0 such that

Pr
∗

(
Ar

k(xr,0L) ≥ cxr,0, max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

|ur(1)|
r

≤ δ
)
≤ ε

r
,(150)

if r is sufficiently large independently of ∗. Because of (15) and (16), we have only to show
that for each k ∈ A and l ∈ K, there exists some constant c, c1, c2, c3 > 0 such that

Pr
∗

(
Er

k(xr,0L) ≥ 1
2
cxr,0,

|ur(1)|
r

≤ δ
)
≤ c1

ε

r
,(151)

Pr
∗

(
F r

l (xr,0L) ≥ 1
2
cxr,0, max

p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ

)
≤ (c2 + c3)

ε

r
,(152)

if r is sufficiently large independently of ∗. Using Lemma 7.2 in the Appendix, we immedi-
ately have (151) with c ≥ 2 supr αr

kL̇+1 and any ε ∈ (0, 1). Further, using Lemmas 7.3 and
7.4, we have (152) with c ≥ 4

∑K
p=1 supr P r

plµp + 1. Therefore (150) has been established so
that the conclusion of the lemma follows.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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We first evaluate the term (i) in (148). Note that

1
xr,0

�cxr,0�∑
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1{γs,r
k (i)≤rM}

=
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(
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k (i)≤rM} − F γ,r
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)
+
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Then, since F γ,r
k (rM) → 0 as r → ∞ because of (57), we have that
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k (rM)�cxr,0� >

ε

4

)
= 1{

x−1
r,0F γ,r

k (rM)�cxr,0�>ε/4
} = 0

for sufficiently large r independently of the value ∗.
Further, we have that for each ε > 0,
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ε
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)
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(xr,0ε)4
· 3(xr,0c)2 ≤ 768c2

(xr,0)2ε4
≤ 768c2

r2ε4
,

where the first inequality is due to Doob’s submartingale inequality. Therefore, if r is
sufficiently large such that

1
r

<
ε5

768c2
,

then

(149) the term (i) ≤ ε

r
.

We next evaluate the term (ii) in (148). Because of (149), it is enough to show that for
each k ∈ K, there exists some constant c > 0 such that

Pr
∗

(
Ar

k(xr,0L) ≥ cxr,0, max
p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ,

|ur(1)|
r

≤ δ
)
≤ ε

r
,(150)

if r is sufficiently large independently of ∗. Because of (15) and (16), we have only to show
that for each k ∈ A and l ∈ K, there exists some constant c, c1, c2, c3 > 0 such that

Pr
∗

(
Er

k(xr,0L) ≥ 1
2
cxr,0,

|ur(1)|
r

≤ δ
)
≤ c1

ε

r
,(151)

Pr
∗

(
F r

l (xr,0L) ≥ 1
2
cxr,0, max

p∈K

∣∣∣V̂o,r
p (Z

+,r

p (0))
∣∣∣ ≤ δ

)
≤ (c2 + c3)

ε

r
,(152)

if r is sufficiently large independently of ∗. Using Lemma 7.2 in the Appendix, we immedi-
ately have (151) with c ≥ 2 supr αr

kL̇+1 and any ε ∈ (0, 1). Further, using Lemmas 7.3 and
7.4, we have (152) with c ≥ 4

∑K
p=1 supr P r

plµp + 1. Therefore (150) has been established so
that the conclusion of the lemma follows.

DIFFUSION APPROXIMATIONS

Proof of Proposition 5.4.

According to Proposition 5.5, the methodology employed in Bramson [3], specifically
the contents of Sect. 5 and Sect. 6 in [3], also applies to the demonstration of multiplicative
strong state-space collapse, i.e., (127) in our multiclass feedforward queueing network with
abandonment under the FCFS service discipline. Thus, using Proposition 5.2, we see that
strong state-space collapse holds, i,e.,

sup
0≤t≤T

sup
0≤s≤cW r

s(k)(t)

| r−1Dr
k(r2t + rs) − r−1Dr

k(r2t) − λr
ks |−→ 0 in pr.

as r → ∞, for each k ∈ K. In particular, we have

(153) sup
0≤t≤T

| r−1Dr
k(r2t + rŴ r

s(k)(t)) − r−1Dr
k(r2t) − λr

kŴ r
s(k)(t) |−→ 0 in pr.

as r → ∞.
On the other hand, because of the FCFS service discipline with abandonment, we have

(154) r−1Dr
k(r2t + rŴ r

s(k)(t)) − r−1Dr
k(r2t) + Ẑ−,r

k (t) = Ẑr
k(t)

for each k ∈ K. Also recall that for each T > 0,

(155) sup
0≤t≤T

Ẑ−,r
k (t) −→ 0 in pr.

as r → ∞, as established in (142). Then, combining (155) with (153) and (154), we have
the condition of state-space collapse (128).

5.4 Proof of the diffusion approximation theorem (i.e., Theorem 4.1) Before
presenting the proof of the theorem, we show the next lemma on the fluid limits of {Ar(·)}r

and {Dr(·)}r, which corresponds to Lemma 8.2 in Williams [26].

Lemma 5.3.
For each k ∈ K and T > 0 ,

sup
0≤t≤T

|Ar

k(t) − λkt| −→ 0 in pr.,

sup
0≤t≤T

|Dr

k(t) − λkt| −→ 0 in pr.,

as r → ∞.

Proof.
¿From (17), (78), (80), (82) and (83), we have

Z
r

k(t) = Z
r

k(0) + A
r

k(t) − D
r

k(t) − I
r

k(t)

for each k ∈ K and t ≥ 0. Because of Propositions 5.1 and 5.3, we see that for each T > 0,

sup
0≤t≤T

Z
r

k(t) −→ 0 in pr.,

sup
0≤t≤T

I
r

k(t) −→ 0 in pr.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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as r → ∞. So we have that for each T > 0,

(156) sup
0≤t≤T

|Ar

k(t) − D
r

k(t)| −→ 0 in pr.

as r → ∞.
Fix any t ≥ 0. Then, according to (120), {Ar

k(t)}r is tight in R1 for each k ∈ K, which
yields that for any subsequence {r′} of {r}, there exists some further subsequence {r′′} of
{r′} such that

A
r′′

k (t) =⇒ ak(t) in R1

as r′′ → ∞, for some r.v. ak(t). Thus we also have

D
r′′

k (t) =⇒ ak(t) in R1

as r′′ → ∞, because of (156). Therefore, from (15), (46) and (86), it follows that

ak(t) = αkt +
K∑

l=1

Plkal(t)

for each k ∈ K, which implies ak(t) = λkt, k ∈ K. Consequently we have proved that

A
r

k(t) =⇒ λkt in R1,

D
r

k(t) =⇒ λkt in R1

as r → ∞, for each t ≥ 0 and k ∈ K. Therefore, in virtue of Polya’s theorem (cf. Problem
5.3.2 in Liptser and Shiryayev [20]), we obtain the conclusion.

The next lemma identifies the weak limit of scaled abandonment-count process as a
functional of the limit of scaled workload process, which is similar in form to the case
of heavy-traffic limit for a many-server queue with abandonment under the hazard-type
scaling of abandonment distribution (cf. Lemma 2.7 in Katsuda [17]), with the difference
of multiplicative constant due to our multiclass setting.

Lemma 5.4.
Suppose that

Ŵ r(·) =⇒ W ∗(·) in D([0,∞),RJ),

as r → ∞. Then we have that

(157) Îr
k(·) =⇒ λk

∫ ·

0

Hk(W ∗
s(k)(u))du in D([0,∞),R1),

as r → ∞, for each k ∈ K.

Proof.
According to (25), (112) and (155), we have that for each k ∈ K,

sup
0≤t≤T

|Îr
k(t) − Â−,r

k (t)| −→ 0 in pr.

as r → ∞. Thus, because of (113) and (121),

(158) sup
0≤t≤T

|Îr
k(t) − Ĉr

k(A
r

k(t))| −→ 0 in pr.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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as r → ∞. So we have that for each T > 0,
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|Ar
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r

k(t)| −→ 0 in pr.

as r → ∞.
Fix any t ≥ 0. Then, according to (120), {Ar

k(t)}r is tight in R1 for each k ∈ K, which
yields that for any subsequence {r′} of {r}, there exists some further subsequence {r′′} of
{r′} such that

A
r′′

k (t) =⇒ ak(t) in R1

as r′′ → ∞, for some r.v. ak(t). Thus we also have

D
r′′

k (t) =⇒ ak(t) in R1

as r′′ → ∞, because of (156). Therefore, from (15), (46) and (86), it follows that

ak(t) = αkt +
K∑

l=1

Plkal(t)

for each k ∈ K, which implies ak(t) = λkt, k ∈ K. Consequently we have proved that

A
r

k(t) =⇒ λkt in R1,

D
r

k(t) =⇒ λkt in R1

as r → ∞, for each t ≥ 0 and k ∈ K. Therefore, in virtue of Polya’s theorem (cf. Problem
5.3.2 in Liptser and Shiryayev [20]), we obtain the conclusion.

The next lemma identifies the weak limit of scaled abandonment-count process as a
functional of the limit of scaled workload process, which is similar in form to the case
of heavy-traffic limit for a many-server queue with abandonment under the hazard-type
scaling of abandonment distribution (cf. Lemma 2.7 in Katsuda [17]), with the difference
of multiplicative constant due to our multiclass setting.

Lemma 5.4.
Suppose that

Ŵ r(·) =⇒ W ∗(·) in D([0,∞),RJ),

as r → ∞. Then we have that

(157) Îr
k(·) =⇒ λk

∫ ·

0

Hk(W ∗
s(k)(u))du in D([0,∞),R1),

as r → ∞, for each k ∈ K.

Proof.
According to (25), (112) and (155), we have that for each k ∈ K,

sup
0≤t≤T

|Îr
k(t) − Â−,r

k (t)| −→ 0 in pr.

as r → ∞. Thus, because of (113) and (121),

(158) sup
0≤t≤T

|Îr
k(t) − Ĉr

k(A
r

k(t))| −→ 0 in pr.
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as r → ∞, with Ĉr
k(·) in (115).

Observing that according to (115),
∫ t

0

rF γ,r
k (rŴ r

s(k)(u−))dA
r

k(u) ≤ Ĉr
k(A

r

k(t)) ≤
∫ t

0

rF γ,r
k (rŴ r

s(k)(u))dA
r

k(u)

for each t ≥ 0, we have the convergence (157) in virtue of (57), (158) and Lemma 5.3 in the
same way as in the proof of Lemma 2.7 in [17].

Proof of Theorem 4.1.

The first half of the proof uses an analogous argument to the proof of Theorem 7.1 in
Williams [26] as follows.
From (21), (67) and (68), we have that for each j ∈ J,

Ŵ r
j (t) = Ŵ r

j (0) +
∑

k∈C(j)

1
r

A+,r
k (r2t)∑

i=1

(vs,r
k (i) − mr

k) +
∑

k∈C(j)

1
r
mr

k(Ar
k(r2t) − A−,r

k (r2t))

− rt + Ŷ r
j (t)

= Ŵ r
j (0) +

∑
k∈C(j)

V̂s,r
k (A

+,r

k (t)) +
∑

k∈C(j)

mr
kÂr

k(t) −
∑

k∈C(j)

mr
kM̂

γ,r
k (A

r

k(t))

−
∑

k∈C(j)

mr
kĈr

k(A
r

k(t)) + r(ρr
j − 1)t + Ŷ r

j (t)(159)

with V̂s,r
k (·) in (70), M̂γ,r

k (·) in (114) and Ĉr
k(·) in (115) for each k ∈ K. In vector form,

(159) is represented as

Ŵ r(t) = Ŵ r(0) + CV̂s,r(A
+,r

(t)) + CMrÂr(t) − CMrM̂γ,r(A
r
(t))

− CMrĈr(A
r
(t)) + r(ρr − e)t + Ŷ r(t).(160)

On the other hand, using (109), we have

CMrÂr(t) = CMrQr
{
Êr(t) +

K∑
l=1

Φ̂l,r(D
r

l (t))
}

− CMrQrP̃ r(Ẑr(t) − Ẑr(0)) − CMrQrP̃ r Îr(t)

= CMrQr
{
Êr(t) +

K∑
l=1

Φ̂l,r(D
r

l (t))
}
− CMrQrP̃ r(�̂r(t) − �̂r(0))

− Gr(Ŵ r(t) − Ŵ r(0)) − CMrQrP̃ r Îr(t)(161)

where

�̂r(t) = (�̂r
k(t), k ∈ K) with �̂r

k(t) ≡ Ẑr
k(t) − λr

kŴ r
s(k)(t), k ∈ K,

Gr ≡ CMrQrP̃ rΛr.

Therefore, substituting (161) into (160) and using assumption (A.4), we have
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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(162) Ŵ r(t) = X̂r(t) + RrŶ r(t)

for sufficiently large r, where

Rr ≡ (1 + Gr)−1,

X̂r(t) ≡ Ŵ r(0) + Rr(ξ̂r(t) + η̂r(t) + ζ̂r(t))(163)

with

ξ̂r(t) ≡ CV̂s,r(A
+,r

(t)) + CMrQr
{
Êr(t) +

K∑
l=1

Φ̂l,r(D
r

l (t))
}

− CM̂γ,r(A
r
(t)),

η̂r(t) ≡ r(ρr − e)t − CMrQrP̃ r Îr(t) − CMrĈr(A
r
(t)),

ζ̂r(t) ≡ CMrQrP̃ r(�̂r(0) − �̂r(t)).

Using (86), (87), (88), (121) and Lemma 5.3, we see that

(164) ξ̂r(·) =⇒ ξ∗(·) in D([0,∞),RJ)

as r goes to infinity, where

(165) ξ∗(t) = CV∗(λt) + CMQ
{
E∗(t) +

K∑
l=1

Φl,∗(λlt)
}
.

Applying the oscillation inequality in Williams [25] to (162) as in (120) of Williams [26],
we have that for wT (x(·), δ) in (124),

Osc(x(·), I) ≡ sup
u,v∈I

|x(u) − x(v)|, I ⊂ R1,

and sufficiently large r,

wT (Ŵ r(·), δ) = sup
u∈[0,T−δ]

Osc
(
Ŵ r(·), [u, u + δ]

)

≤ const · sup
u∈[0,T−δ]

Osc
(
X̂r(·), [u, u + δ]

)

= const · wT (X̂r(·), δ),

so that
wT (Ŵ r(·), δ) ≤ const ·

{
wT (ξ̂r(·), δ) + wT (η̂r(·), δ) + wT (ζ̂r(·), δ)

}

for each T > 0 and δ > 0, because of (163).
The convergence (164) implies

lim
δ→0

lim
r→∞

Pr
(
wT (ξ̂r(·), δ) > ε

)
= 0, ∀ε > 0.

(Cf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
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with

ξ̂r(t) ≡ CV̂s,r(A
+,r

(t)) + CMrQr
{
Êr(t) +

K∑
l=1

Φ̂l,r(D
r

l (t))
}

− CM̂γ,r(A
r
(t)),

η̂r(t) ≡ r(ρr − e)t − CMrQrP̃ r Îr(t) − CMrĈr(A
r
(t)),
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as r goes to infinity, where

(165) ξ∗(t) = CV∗(λt) + CMQ
{
E∗(t) +

K∑
l=1

Φl,∗(λlt)
}
.

Applying the oscillation inequality in Williams [25] to (162) as in (120) of Williams [26],
we have that for wT (x(·), δ) in (124),

Osc(x(·), I) ≡ sup
u,v∈I

|x(u) − x(v)|, I ⊂ R1,

and sufficiently large r,

wT (Ŵ r(·), δ) = sup
u∈[0,T−δ]

Osc
(
Ŵ r(·), [u, u + δ]

)

≤ const · sup
u∈[0,T−δ]

Osc
(
X̂r(·), [u, u + δ]

)

= const · wT (X̂r(·), δ),

so that
wT (Ŵ r(·), δ) ≤ const ·

{
wT (ξ̂r(·), δ) + wT (η̂r(·), δ) + wT (ζ̂r(·), δ)

}

for each T > 0 and δ > 0, because of (163).
The convergence (164) implies

lim
δ→0

lim
r→∞

Pr
(
wT (ξ̂r(·), δ) > ε

)
= 0, ∀ε > 0.

(Cf. Proposition 6.3.26 in Jacod and Shiryaev [14]).
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In addition, from the heavy-traffic condition (56) and the C-tightness of both {Îr
k(·)}r and

{Ĉr
k(A

r

k(·))}r already established, we have

lim
δ→0

lim
r→∞

Pr
(
wT (η̂r(·), δ) > ε

)
= 0, ∀ε > 0.

Therefore, by virtue of the condition of state-space collapse (128), we have

(166) lim
δ→0

lim
r→∞

Pr
(
wT (Ŵ r(·), δ) > ε

)
= 0, ∀ε > 0.

Combining (166) with Proposition 5.2, we obtain the C-tightness of {Ŵ r(·)}r.
Let W ∗(t), t ≥ 0, be any limit process of the sequence {Ŵ r(·)}r, and suppose that a

subsequence {r′} of {r} satisfies

Ŵ r′
(·) =⇒ W ∗(·) in D([0,∞),RJ),

as r′ → ∞. Then, according to Lemma 5.4, we have that for each k ∈ K,

(167) Îr′

k (·) =⇒ λk

∫ ·

0

Hk(W ∗
s(k)(u))du in D([0,∞),R1)

and

(168) Ĉr′

k (A
r′

k (·)) =⇒ λk

∫ ·

0

Hk(W ∗
s(k)(u))du in D([0,∞),R1)

as r′ goes to infinity. Therefore, using (167), (168) and (56), we have

(169) η̂r′
(·) =⇒ η∗(·)

as r′ goes to infinity, where

η∗(t) = ϑt − CMQ
(
λk

∫ t

0

Hk(W ∗
s(k)(u))du, k ∈ K

)
, t ≥ 0.

Consequently, substituting assumption (A.1), (164), (128) and (169) into (163) and using
assumption (A.4), we have

(170) X̂r′
(·) =⇒ X∗(·)

as r′ goes to infinity, where

(171) X∗(t) = W ∗(0) + R(ξ∗(t) + η∗(t)), t ≥ 0.

Therefore, any limit process W ∗(·) of the C-tight sequence {Ŵ r(·)}r is a semimartingale
reflecting Brownian motion (SRBM) with a nonlinear drift term, i.e., (94) and (95). Apply-
ing the Girsanov transformation technique to the localized version of such SRBM (cf. the
proof of Theorem 2.1 in Katsuda [17], for example), we can reduce the uniqueness in law of
W ∗(·) to that of SRBM, so that the desired convergence

(172) (Ŵ r(·), Ŷ r(·)) =⇒ (W ∗(·), Y ∗(·)),

as r → ∞ has been shown. Combining (172) with the result on state-space collapse, i.e.,
Proposition 5.4, we also have the convergence

Ẑr(·) =⇒ Z∗(·)

as r → ∞, where Z∗(·) = (λkW ∗
s(k)(·), k ∈ K), so the proof of the theorem has been

completed.
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count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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6 Final remarks
As an example of our diffusion approximation with the unstable random behavior of

abandonment time near the origin, consider a GI/GI/1+GI queue for which the abandon-
ment time is distributed according to the Gamma distribution

Gp(x) =
∫ x

0

gp(u)du, x ≥ 0, gp(u) = (Γ(p))−1up−1e−u, u ≥ 0,

with p ∈ (0, 1). Then, its hazard-rate function hp(x) = gp(x)/(1 − Gp(x)) is not locally
bounded so that the diffusion approximation result in the literature such as [24] and [21]
is inapplicable. However, in virtue of our general hazard-type scaling, our main result does
hold in ths case.

In this paper we impose the feedforward routing condition on our multiclass queueing
networks (MQNs) and the only place where it is used is the proof of the stochstic bound-
edness of queue length. So, if it is established without such restriction, our main result is
valid for general MQNs with abandonment.

One of the most important studies around diffusion approximations of queueing systems
is the application of such approximations to the validation of steady-state approximations of
those systems. Gamarnik and Zeevi [12] is a seminal work of the study, in which steady-state
approximations for generalized Jackson networks have been validated under the condition
of the existence of moment generating functions for primitive model variables. It is also
noted that such relatively restrictive assumption can be relaxed to moment condition of p-th
order with p ≥ 2 by the work of Budhiraja and Lee [5] in conjunction with the appendix of
Krichagina and Taksar [19]. Furthermore, the author’s works [15, 16] used the Lyapunov
function method of [12] and the framework on the uniform moment bounds of the Markov
state process in [5], respectively, to study such steady-state analysis of a multiclass single-
server queue in heavy traffic under various service disciplines.

In this paper we have proved the diffusion approximation theorem for multiclass feed-
forward queueing networks with abandonments under FCFS service disciplines, and so we
are interested in steady-state approximations of those networks as an application of our
theorem. Restricting our attention to a multiclass single-server queue with ϑ < 0 (in
heavy-traffic condition (56)), we are able to validate such approximation of the queue with
abandonment in a similar fashion to [15] and [16], in which conditions (A.1), (A.2) and
(A.3) of this paper may be verified to hold in stationarity. However, checking the case with
ϑ ≥ 0 remains unresolved and is worth pursuing in future research. More specifically, it is
solved if the following two tasks are done:
(i) To seek a sufficient condition for the stability of multiclass feedforward queueing networks
with abandonments.
To be expected from the literature (cf. Baccelli et al. [1], Dai [6]), the condition is such
that the traffic intensity at each station may possibly be greater than unity in such a way
that its excess over unity can be balanced out by the effect of abandonment;
(ii) To show the tightness of stationary workload and queue length in the queue with
abandonment for the verification of conditions (A.1), (A.2) and (A.3) in stationarity.
As concerns the issue (i), in his recent work [18] the author has given a stability condition for
those networks, which involves the total probability mass of abandonment time in addition
to the model parameters of networks.

7 Appendix
This appendix corresponds to Sect. 5 of Bramson [3] in which hydrodynamically scaled

performance measure processes for multiclass queueing networks are asymptotically esti-
mated as approximately Lipschitz continuous. Different from [3], our argument employs
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capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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6 Final remarks
As an example of our diffusion approximation with the unstable random behavior of

abandonment time near the origin, consider a GI/GI/1+GI queue for which the abandon-
ment time is distributed according to the Gamma distribution

Gp(x) =
∫ x

0

gp(u)du, x ≥ 0, gp(u) = (Γ(p))−1up−1e−u, u ≥ 0,

with p ∈ (0, 1). Then, its hazard-rate function hp(x) = gp(x)/(1 − Gp(x)) is not locally
bounded so that the diffusion approximation result in the literature such as [24] and [21]
is inapplicable. However, in virtue of our general hazard-type scaling, our main result does
hold in ths case.

In this paper we impose the feedforward routing condition on our multiclass queueing
networks (MQNs) and the only place where it is used is the proof of the stochstic bound-
edness of queue length. So, if it is established without such restriction, our main result is
valid for general MQNs with abandonment.

One of the most important studies around diffusion approximations of queueing systems
is the application of such approximations to the validation of steady-state approximations of
those systems. Gamarnik and Zeevi [12] is a seminal work of the study, in which steady-state
approximations for generalized Jackson networks have been validated under the condition
of the existence of moment generating functions for primitive model variables. It is also
noted that such relatively restrictive assumption can be relaxed to moment condition of p-th
order with p ≥ 2 by the work of Budhiraja and Lee [5] in conjunction with the appendix of
Krichagina and Taksar [19]. Furthermore, the author’s works [15, 16] used the Lyapunov
function method of [12] and the framework on the uniform moment bounds of the Markov
state process in [5], respectively, to study such steady-state analysis of a multiclass single-
server queue in heavy traffic under various service disciplines.

In this paper we have proved the diffusion approximation theorem for multiclass feed-
forward queueing networks with abandonments under FCFS service disciplines, and so we
are interested in steady-state approximations of those networks as an application of our
theorem. Restricting our attention to a multiclass single-server queue with ϑ < 0 (in
heavy-traffic condition (56)), we are able to validate such approximation of the queue with
abandonment in a similar fashion to [15] and [16], in which conditions (A.1), (A.2) and
(A.3) of this paper may be verified to hold in stationarity. However, checking the case with
ϑ ≥ 0 remains unresolved and is worth pursuing in future research. More specifically, it is
solved if the following two tasks are done:
(i) To seek a sufficient condition for the stability of multiclass feedforward queueing networks
with abandonments.
To be expected from the literature (cf. Baccelli et al. [1], Dai [6]), the condition is such
that the traffic intensity at each station may possibly be greater than unity in such a way
that its excess over unity can be balanced out by the effect of abandonment;
(ii) To show the tightness of stationary workload and queue length in the queue with
abandonment for the verification of conditions (A.1), (A.2) and (A.3) in stationarity.
As concerns the issue (i), in his recent work [18] the author has given a stability condition for
those networks, which involves the total probability mass of abandonment time in addition
to the model parameters of networks.

7 Appendix
This appendix corresponds to Sect. 5 of Bramson [3] in which hydrodynamically scaled

performance measure processes for multiclass queueing networks are asymptotically esti-
mated as approximately Lipschitz continuous. Different from [3], our argument employs
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such scaling in association with the shift transformation of the description process Ξ(·) in
Sect. 3 and uses its Markov property to obtain such asymptotic estimation of performance
measure processes in our queueing network.

The next lemma corresponds to Proposition 4.2 in Bramson [3] and plays a fundamental
role in proving the rest of the lemmas as in [3].

Lemma 7.1.

Suppose that the sequence of r.v.’s {Xr(i), i ≥ 1} is i.i.d. for each r ≥ 1, and {Xr(1)2}r≥1

is uniformly integrable. Let Sr(i) ≡
∑i

j=1 Xr(j), i ≥ 1, and µr
X ≡ Er[Xr(1)], r ≥ 1. Then,

for each ε > 0,
sup

r
Pr

(
max

1≤i≤n
|Sr(i) − iµr

X | > εn
)

<
ε

n

if n is sufficiently large.

Lemma 7.2.

For each ε > 0 and k ∈ K, there exist constants δ1 > 0 and c1 > 0 such that

(173) Pr
∗

(
sup

0≤t≤xr,0L
|Er

k(t) − αr
kt| > xr,0ε,

|ur(1)|
r

≤ δ1

)
< c1 ·

ε

r

if r is sufficiently large independently of ∗, where Pr
∗(·) is the probability law of Markov

process Ξr(·) starting with the value ∗ for each r ≥ 1. (Cf. (33)).

Proof.
First observe that the inequality

sup
0≤t≤xr,0L

|Er
k(t) − αr

kt| ≥ xr,0ε

implies that there exists some t ∈ [0, xr,0L] such that either

(174) Er
k(t) ≥ αr

kt + xr,0ε

or

(175) Er
k(t) ≤ αr

kt − xr,0ε.

The inequality (174) and condition (46) implies that

(176) Ur
k (�αr

kt + xr,0ε�) − �αr
kt + xr,0ε�

1
αr

k

≤ −xr,0ε

2αk

if r is sufficiently large. Similarly, the inequality (175) implies that

(177) Ur
k (�αr

kt − xr,0ε� + 1) − (�αr
kt − xr,0ε� + 1)

1
αr

k

>
xr,0ε

2αk

if r is sufficiently large.
Thus, noting that for each t ∈ [0, xr,0L],

(178) �αr
kt + xr,0ε� < xr,0(αkL + 1)
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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if r is sufficiently large, where we suppose ε ∈ (0, 1
2 ), and using (176), (177) and (178), we

have

Pr
∗

(
sup

0≤t≤xr,0L
|Er

k(t) − αr
kt| ≥ xr,0ε,

|ur(1)|
r

≤ δ
)

≤ Pr
∗

(
max

1≤i≤�xr,0(αkL+1)�

∣∣∣Ur
k (i) − 1

αr
k

i
∣∣∣ >

xr,0ε

2αk
,
|ur(1)|

r
≤ δ

)
.(179)

Suppose that the constant δ1 > 0 satisfies the inequality

δ1 ≤ ε

4αk
− 2

αkr

for sufficiently large r satisfying ε
4αk

− 2
αkr > 0. Then, when |ur(1)|

r ≤ δ1, we have that for
each i ≥ 1,

∣∣∣Ur
k (i) − 1

αr
k

i
∣∣∣ ≤ ur

k(1) +
1
αr

k

+
∣∣∣

i∑
j=2

(
ur

k(j) − 1
αr

k

)∣∣∣

≤ δ1r +
2
αk

+
∣∣∣

i∑
j=2

(
ur

k(j) − 1
αr

k

)∣∣∣

≤ xr,0ε

4αk
+

∣∣∣
i∑

j=2

(
ur

k(j) − 1
αr

k

)∣∣∣,

where we set
∑i

j=2 · · · ≡ 0 when i = 1. Therefore, applying Lemma 7.1 and observing that
xr,0 is a function of ∗ on the event inside P∗, we have that the display (179) with δ = δ1 is
dominated by

Pr
∗

(
max

2≤i≤�xr,0(αkL+1)�

∣∣∣
i∑

j=2

(
ur

k(j) − 1
αr

k

)∣∣∣ >
xr,0ε

4αk

)

≤ xr,0ε

4αk
× 1

(�xr,0(αkL + 1)� − 1)2

≤ xr,0ε

αk
× 1

{xr,0(αkL + 1)}2

≤ 1
αk(αkL + 1)2

× ε

r
,

if r is sufficiently large. Letting c1 ≡ 1
αk(αkL+1)2 , we have the conclusion of the lemma.

The next lemma corresponds to Lemma 5.2 in Bramson [3], and it will be used in the
proof of Lemma 7.4 below.

Lemma 7.3.
For each ε > 0 and k ∈ K, there exist constants δ > 0 and c2 > 0 such that

Pr
∗

(
sup

t1,t2∈[0,xr,0L]

(
|Dr

k(t2) − Dr
k(t1)| − µk|t2 − t1|

)
≥ xr,0ε, |V̂o,r

k (Z
+,r

k (0))| < δ
)

< c2 ·
ε

r
,(180)
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ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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if r is sufficiently large, where we suppose ε ∈ (0, 1
2 ), and using (176), (177) and (178), we

have

Pr
∗
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sup

0≤t≤xr,0L
|Er

k(t) − αr
kt| ≥ xr,0ε,
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)
.(179)

Suppose that the constant δ1 > 0 satisfies the inequality

δ1 ≤ ε

4αk
− 2

αkr

for sufficiently large r satisfying ε
4αk

− 2
αkr > 0. Then, when |ur(1)|

r ≤ δ1, we have that for
each i ≥ 1,
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)∣∣∣,

where we set
∑i

j=2 · · · ≡ 0 when i = 1. Therefore, applying Lemma 7.1 and observing that
xr,0 is a function of ∗ on the event inside P∗, we have that the display (179) with δ = δ1 is
dominated by
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∗

(
max

2≤i≤�xr,0(αkL+1)�
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(
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)
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if r is sufficiently large. Letting c1 ≡ 1
αk(αkL+1)2 , we have the conclusion of the lemma.

The next lemma corresponds to Lemma 5.2 in Bramson [3], and it will be used in the
proof of Lemma 7.4 below.

Lemma 7.3.
For each ε > 0 and k ∈ K, there exist constants δ > 0 and c2 > 0 such that

Pr
∗

(
sup

t1,t2∈[0,xr,0L]

(
|Dr

k(t2) − Dr
k(t1)| − µk|t2 − t1|

)
≥ xr,0ε, |V̂o,r

k (Z
+,r

k (0))| < δ
)

< c2 ·
ε

r
,(180)
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if r is sufficiently large independently of ∗. In particular,

(181) Pr
∗

(
Dr

k(xr,0L) ≥ 2µkxr,0L, |V̂o,r
k (Z

+,r

k (0))| < δ
)

< c2 ·
ε

r
,

if r is sufficiently large independently of ∗.
Proof.

Let
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k(s) ≡ max{n ∈ N : Vr

k(n) ≤ s}, s ≥ 0, k ∈ K,

where
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k (Z+,r
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k ((n − Z+,r
k (0))+).

Then
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Thus, it suffices to show
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if r is sufficiently large independently of ∗. In the same way as in the derivation of (179),
the left-hand side of (183) is majorized by
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tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.
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In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
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if r is sufficiently large, where the second inequality is a consequence of the application
of Lemma 7.1 and the third inequality follows from Z+,r

k (0) ≤ xr,0. Consequently the
conclusion (180) follows with c2 = 1

2µ3
kL2 .

Substituting t1 = 0 and t2 = xr,0L into (180) and letting ε ∈ (0, µkL), we immediately
have (181).

Lemma 7.4.
For each ε > 0 and k ∈ K, there exist constants δ > 0 and c3 > 0 such that
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Proof.
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stochastic differential equation with a nonlinear drift term as the limit of abandonment-
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reflecting Brownian motion via the Girsanov transformation technique.
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to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
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tries, in which impatient customers faced with some waiting time leave the system without
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the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
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if r is sufficiently large, where the second inequality is a consequence of the application
of Lemma 7.1 and the third inequality follows from Z+,r
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if r is sufficiently large independently of ∗, where the third inequality follows from the
application of Lemma 7.1.

Consequently we have the conclusion of the lemma with c3 ≡ Kc2 + (minl∈K µl · L)−2.
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Abstract. We consider multiclass feedforward queueing networks with abandon-
ments under FCFS (first-come, first-served) service disciplines and prove a diffusion
approximation theorem for the queue lengths and workloads in those networks under
heavy traffic. The diffusion limit is the unique solution to a multidimensional reflected
stochastic differential equation with a nonlinear drift term as the limit of abandonment-
count process. The desired convergence is shown by taking the following steps: first,
obtaining the stochastic boundedness of (scaled) workload in use of the feedforward
property of class routing; second, proving the C-tightness of abandonment-count pro-
cess; third, establishing the condition of state-space collapse; fourth, showing the C-
tightness of workload. In the final step we prove the uniqueness (in law) of the solution
to the limit equation for workload by reducing it to the uniqueness of a semimartingale
reflecting Brownian motion via the Girsanov transformation technique.

1 Introduction.
In this paper we are concerned with multiclass feedforward queueing networks with cus-

tomer abandonments in heavy traffic. Generally queueing network models have been used
to analyze systems arising in a wide range of computer systems, communication networks
and complex manufacturing systems. Many of those systems have stations which process
more than one class of customers (or jobs) and also have complex structures of class rout-
ings after the processing of customers. So the model of multiclass queueing networks has
been developed for the analysis of such systems. In particular, the heavy load of those
networks is a compelling problem to solve, and thus the diffusion (or heavy-traffic) approx-
imation of such networks has been wanted and pursued. At the same time, because it is
natural to suppose that no customer has infinite patience in waiting for service in a queue,
the phenomenon of customer abandonment is ubiquitous in various queue models for real
applications such as telephone call centers, transmission channels and manufacturing indus-
tries, in which impatient customers faced with some waiting time leave the system without
receiving service. For example, in the context of wireless communication networks, data
packets are lost unless they are transmitted by some deadline.

In multiclass queueing networks (MQNs) under study, customers are categorized into
K(≥ 1) classes and the network is composed of J(≥ 1) service stations with unlimited
capacity where J ≤ K. Customers of each class k ∈ K(≡ {1, . . . ,K}) arrive from outside
the network and they will receive service exclusively at station j = s(k) where s(·) maps K
onto J(≡ {1, 2, . . . , J}) in a many-to-one fashion. In such networks customers change their
classes on their service completions. In particular, we restrict our attention to multiclass
feedforward queueing networks in which at the class change of a customer he either flows
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Abstract. We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces are classifiable or not (up to homeomorphisms) by the
C∗-algebras and their K-theory.

1 Introduction We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces in some cases are classifiable or not (up to homeomorphism
classes or manifold classes with some operations like jointed sums) by the C∗-algebras or
their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Note that a contractible space may or may not be compact. For instance, the Euclidean
space Rn as well as any convex subspace are all contractible by convexity. Note also that a
contractible space is path-connected by definition.

We may say that a topological space X is identically contractible if X is contractible
by a continuous path of homeomorphisms (ft)0≤t<1 of X and f1 = idp.

A C∗-algebra A is said to be contractible (to zero) if the identity map idA : A → A
is homotopic to the zero map id0 = 0 : A → A by a (norm or uniform) continuous path of
∗-homomorphisms (ϕt) of A (to A) for t ∈ [0, 1] = I such that ϕ0 = idA and ϕ1 = id0 and
the map Φ(t, a) = ϕt(a) is continuous on the product space I ×A. We may call the map Φ
a (norm or uniform) C∗-homotopy for A.

We also say that a C∗-algebra A is identically contractible (to zero) if A is contractible
(to zero) by a continuous path of ∗-isomorphisms (ϕt)0≤t<1 of A and ϕ1 = id0.

We say that a C∗-algebra A is contractible to C if the identity map idA : A → A is
homotopic to a 1-dimensional representation (or character) χ : A → C1 in A by a continuous
path of ∗-homomorphisms of A.

We also say that a C∗-algebra A is identically contractible to C if A is contractible
to C by a continuous path of ∗-isomorphisms (ϕt)0≤t<1 of A and ϕ1 = χ.

Note that a non-trivial C∗-algebra contractible to C is not simple.
Furthermore, we say that a C∗-algebra A (especially when A = C(X) or C0(X)) is

weakly contractible (to zero), weakly identically contractible (to zero), weakly con-
tractible to C, and weakly identically contractible to C, respectively, if A is contractible
(to zero), identically contractible (to zero), contractible to C, and identically contractible
to C, by a pointwise continuous C∗-homotopy Φ for A (with respect to X), respectively. In
these cases, we may call such a homotopy Φ either a weak homotopy, a weakly continuous
path, or a pointwise continuous path for A.

A homotopy (ft) for a space X induces directly a homotopy (ϕt) for C(X) (or C0(X))
as the composition as ϕt(g) = g ◦ ft ∈ C(X), which we call the induced homotopy.

Indeed, as a summary, with (1) below certainly known ([2]),

Proposition 2.1. (1) A unital C∗-algebra is not contractible. Equivalently, if a C∗-algebra
is contractible, then it is non-unital.

(2) If a compact Hausdorff space X is contractible (in X) by a homotopy, then C(X) is
contractible to C by the induced homotopy.

(3) Similarly, if a compact Hausdorff space X is identically contractible by a homotopy,
then C(X) is identically contractible to C by the induced homotopy. The converse in this
case also holds.

(4) Moreover, if a non-compact, locally compact Hausdorff space X is contractible (in
X) by a homotopy, then C0(X) is weakly contractible to C by the induced homotopy.

(5) Similarly, if a non-compact, locally compact Hausdorff space X is identically con-
tractible by a homotopy, then C0(X) is weakly identically contractible to C by the induced
homotopy. The converse in this case also holds.

Proof. For (1). Note that ∗-homomorphisms ϕt of a unital C∗-algebra A (to A) are always
unital, which can not be homotopic to the zero map on A. Because the constant map
1 = ϕt(1) ∈ A on [0, 1) converges continuously to 1 ∈ A at 1 ∈ [0, 1].

For (2). Let (ft) be a continuous path between idX and idp for some p ∈ X. Define a
continuous path of ∗-homomorphisms of C(X) by ϕt(g) = g ◦ft for g ∈ C(X) and t ∈ [0, 1].
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For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Note that a contractible space may or may not be compact. For instance, the Euclidean
space Rn as well as any convex subspace are all contractible by convexity. Note also that a
contractible space is path-connected by definition.

We may say that a topological space X is identically contractible if X is contractible
by a continuous path of homeomorphisms (ft)0≤t<1 of X and f1 = idp.

A C∗-algebra A is said to be contractible (to zero) if the identity map idA : A → A
is homotopic to the zero map id0 = 0 : A → A by a (norm or uniform) continuous path of
∗-homomorphisms (ϕt) of A (to A) for t ∈ [0, 1] = I such that ϕ0 = idA and ϕ1 = id0 and
the map Φ(t, a) = ϕt(a) is continuous on the product space I ×A. We may call the map Φ
a (norm or uniform) C∗-homotopy for A.

We also say that a C∗-algebra A is identically contractible (to zero) if A is contractible
(to zero) by a continuous path of ∗-isomorphisms (ϕt)0≤t<1 of A and ϕ1 = id0.

We say that a C∗-algebra A is contractible to C if the identity map idA : A → A is
homotopic to a 1-dimensional representation (or character) χ : A → C1 in A by a continuous
path of ∗-homomorphisms of A.

We also say that a C∗-algebra A is identically contractible to C if A is contractible
to C by a continuous path of ∗-isomorphisms (ϕt)0≤t<1 of A and ϕ1 = χ.

Note that a non-trivial C∗-algebra contractible to C is not simple.
Furthermore, we say that a C∗-algebra A (especially when A = C(X) or C0(X)) is

weakly contractible (to zero), weakly identically contractible (to zero), weakly con-
tractible to C, and weakly identically contractible to C, respectively, if A is contractible
(to zero), identically contractible (to zero), contractible to C, and identically contractible
to C, by a pointwise continuous C∗-homotopy Φ for A (with respect to X), respectively. In
these cases, we may call such a homotopy Φ either a weak homotopy, a weakly continuous
path, or a pointwise continuous path for A.

A homotopy (ft) for a space X induces directly a homotopy (ϕt) for C(X) (or C0(X))
as the composition as ϕt(g) = g ◦ ft ∈ C(X), which we call the induced homotopy.

Indeed, as a summary, with (1) below certainly known ([2]),

Proposition 2.1. (1) A unital C∗-algebra is not contractible. Equivalently, if a C∗-algebra
is contractible, then it is non-unital.

(2) If a compact Hausdorff space X is contractible (in X) by a homotopy, then C(X) is
contractible to C by the induced homotopy.

(3) Similarly, if a compact Hausdorff space X is identically contractible by a homotopy,
then C(X) is identically contractible to C by the induced homotopy. The converse in this
case also holds.

(4) Moreover, if a non-compact, locally compact Hausdorff space X is contractible (in
X) by a homotopy, then C0(X) is weakly contractible to C by the induced homotopy.

(5) Similarly, if a non-compact, locally compact Hausdorff space X is identically con-
tractible by a homotopy, then C0(X) is weakly identically contractible to C by the induced
homotopy. The converse in this case also holds.

Proof. For (1). Note that ∗-homomorphisms ϕt of a unital C∗-algebra A (to A) are always
unital, which can not be homotopic to the zero map on A. Because the constant map
1 = ϕt(1) ∈ A on [0, 1) converges continuously to 1 ∈ A at 1 ∈ [0, 1].

For (2). Let (ft) be a continuous path between idX and idp for some p ∈ X. Define a
continuous path of ∗-homomorphisms of C(X) by ϕt(g) = g ◦ft for g ∈ C(X) and t ∈ [0, 1].
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Indeed,

ϕt(λg + h) = (λg + h) ◦ ft = (λg ◦ ft) + (h ◦ ft) = λϕt(g) + ϕt(h),
ϕt(g · h) = (g · h) ◦ ft = (g ◦ ft) · (h ◦ ft) = ϕt(g) · ϕt(h),

ϕt(g)∗ = (g ◦ ft)∗ = g ◦ ft = g∗ ◦ ft = ϕt(g∗)

for g, h ∈ C(X) and λ ∈ C, where the overline is the complex conjugate. Note that ϕ0(g) =
g ◦ idX = g and ϕ1(g)(x) = (g◦ idp)(x) = g(p) for any x ∈ X, so that ϕ1(g) = g(p)1 ≡ χp(g)
the character as the evaluation map at p ∈ X. Note also that the following norm estimate
holds:

‖Φ(t, g) − Φ(s, h)‖ = ‖ϕt(g) − ϕs(h)‖
≤ ‖ϕt(g) − ϕs(g)‖ + ‖ϕs(g) − ϕs(h)‖
≤ ‖g ◦ ft − g ◦ fs‖ + ‖g − h‖,

which can be small enough when (t, g) and (s, h) are close enough on [0, 1] × A. Because
X is compact, so that a continuous function g ∈ C(X) is uniformly continuous on X. In
particualr, when s = 1, note that

‖g ◦ ft − g ◦ f1‖ = sup
x∈X

|g(ft(x)) − g(p)|,

which goes to zero as t → 1.
For (3). The same as above shows that if X is identically contractible, then C(X) is

identically contractible to C.
Conversely, let (ϕt)0≤t<1 be a continuous path of ∗-isomorphisms of C(X) between

ϕ0 = idC(X) and a character ϕ1 = χp for some p ∈ X, by the Gelfand transform (see [4]).
In fact, it is a well known fact that the space C(X)∧ of all 1-dimensional represetations
of C(X) is identifed with the space X. Define a continuous path of homeomorphisms
ft : X → X, induced from the following diagram to make it commutaive:

C(X) ∼= ϕt(C(X))
χx−−−−→ C

ϕt

�
∥∥∥

C(X)
χft(x)−−−−→ C,

since χx ◦ ϕt for any x is written as χy for some y ∈ X, and set y = ft(x). Note that
χft(x) → χfs(y) as (t, x) → (s, y) ∈ I × X in weak ∗-topology, if and only if for any
g ∈ C(X),

|χfs(y)(g) − χft(x)(g)| = |(χy ◦ ϕs)g − (χx ◦ ϕt)(g)|
= |ϕs(g)(y) − ϕt(g)(x)|,

which certainly goes to zero as (t, x) → (s, y), by continuity for the homotopy (ϕt). Note
also that

(g ◦ ft)(x) = χft(x)(g) = ϕt(g)(x).

For (4) and (5). Even if X is a non-compact, Hausforff space, the proof for this case is
the similar as given above. Note that the space C0(X)∧ of all 1-dimensional representations
of C0(X) is identified with X. Note also that for any x ∈ X,

|[Φ(t, g) − Φ(s, h)](x)| = |[ϕt(g) − ϕs(h)](x)|
≤ |[ϕt(g) − ϕs(g)](x)| + |[ϕs(g) − ϕs(h)](x)|
≤ |(g(ft(x)) − g(fs(x))| + ‖g − h‖,
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by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
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homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
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which can be small enough when (t, g) and (s, h) are close enough on [0, 1]×A. In particualr,
when s = 1, note that

|[g ◦ ft − g ◦ f1](x)| = |g(ft(x)) − g(p)|,

which goes to zero as t → 1. Note that the uniform continuity for Φ is not expected from
the assumption because the norm for the difference above can be non-zero constant, but the
difference converges to zero pointwise (see the examples below). It is always assumed from
the assumption in this case that only the pointwise continuity for Φ holds, which implies
that the estimate above evaluated at x ∈ X goes to zero, pointwise on X.

Remark. More generally, when (ϕt) is a continuous path of ∗-homomorphisms of C(X)
between idC(X) and χp for some p ∈ X, each image ϕt(C(X)) as a quotient of C(X) is a
commutative C∗-subalgebra of C(X), so that ϕt(C(X)) is isomorphic to C(Xt) for some
compact Hausdorff space Xt, which can be viewed as a closed subspace of X, from which,
one can define a continuous path of continuous maps ft : Xt → Xt in X, induced from the
following diagram to make it commutative (only on Xt):

ϕt(C(X)) ∼= C(Xt)
χx−−−−→ C

ϕt

�
∥∥∥

C(X) ⊃ ϕt(C(X))
χft(x)−−−−→ C.

If each ft extends to X, then the extension of (ft) to X gives a continuous path of continuous
maps of X between idX and idp.

Furthermore, since a compact Hausdorff space X is normal, there is a continuous exten-
sion to X of a 1-dimensional closed interval valued, continuous function on a closed subset
such as Xt of X, by Tietze-Urysohn extension theorem in general topology.

Example 2.2. • The C∗-algebra C(I) on the closed interval I = [0, 1] is unital (so that
not contractible) but weakly identically contractible to C, by the C∗-homotopy induced by
a homotopy in [0, 1].

If we define ϕt(g)(x) = g((1 − t)x) ∈ C for g ∈ C(I) and t, x ∈ I. Then (ϕt) is a
continuous path of ∗-isomorphisms of A = C(I) between idA and χ0, so that A is weakly
identically contractible to C. Also, define ht(x) = (1− t)x ∈ [0, 1− t] ≈ [0, 1] for t, x ∈ I, so
that ϕt(A) ∼= A for t ∈ [0, 1). Then (ht) is a continuous path of homeomorphisms of [0, 1]
such that f0 = idX and id0, so that [0, 1] is identically contractible (to 0).

• The (interval) C∗-algebra IA = C(I, A) over a C∗-algebra A, of all A-valued, con-
tinuous functions on I, viewed as the C∗-tensor product C(I) ⊗ A, is weakly identicallty
contractible to C. In particular, IC = C(I). If A is unital, then C(I)⊗A is unital and not
contractible.

Note that ‖f ⊗ a‖ = ‖f‖‖a‖ for f ⊗ a ∈ IC ⊗ A. Hence, the (norm) homotopy (ϕt) for
IC to C is extended trivially as ϕt(f ⊗ a) = ϕt(f) ⊗ a.

• The C∗-algebra C0([0, 1)) on the half open interval [0, 1) (non-compact), viweded as
the cone CC ∼= C0([0, 1), C) ∼= C0([0, 1)) ⊗ C over C, is non-unital and weakly identically
contractible to C by the induced C∗-homotopy by a homotopy in [0, 1) (and is certainly
contractible, but soon later discussed in the example given below).

Indeed, if we define ψt(g)(x) = g( x
1−t ) for g ∈ C0([0, 1)), t ∈ [0, 1), and x ∈ [0, 1−t), and

ψ1(g)(x) = g(0). Then (ψt) is a weakly continuous path of ∗-isomorphisms of A = C0([0, 1))
between idA and χ0, so that A is weakly identically contractible to C. Also, define ht(x) =

x
1−t ∈ [0, 1) for t ∈ [0, 1) and x ∈ [0, 1 − t) ≈ [0, 1), and h1(x) = 0, so that ψt(A) ∼= A for
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which can be small enough when (t, g) and (s, h) are close enough on [0, 1]×A. In particualr,
when s = 1, note that

|[g ◦ ft − g ◦ f1](x)| = |g(ft(x)) − g(p)|,

which goes to zero as t → 1. Note that the uniform continuity for Φ is not expected from
the assumption because the norm for the difference above can be non-zero constant, but the
difference converges to zero pointwise (see the examples below). It is always assumed from
the assumption in this case that only the pointwise continuity for Φ holds, which implies
that the estimate above evaluated at x ∈ X goes to zero, pointwise on X.

Remark. More generally, when (ϕt) is a continuous path of ∗-homomorphisms of C(X)
between idC(X) and χp for some p ∈ X, each image ϕt(C(X)) as a quotient of C(X) is a
commutative C∗-subalgebra of C(X), so that ϕt(C(X)) is isomorphic to C(Xt) for some
compact Hausdorff space Xt, which can be viewed as a closed subspace of X, from which,
one can define a continuous path of continuous maps ft : Xt → Xt in X, induced from the
following diagram to make it commutative (only on Xt):

ϕt(C(X)) ∼= C(Xt)
χx−−−−→ C

ϕt

�
∥∥∥

C(X) ⊃ ϕt(C(X))
χft(x)−−−−→ C.

If each ft extends to X, then the extension of (ft) to X gives a continuous path of continuous
maps of X between idX and idp.

Furthermore, since a compact Hausdorff space X is normal, there is a continuous exten-
sion to X of a 1-dimensional closed interval valued, continuous function on a closed subset
such as Xt of X, by Tietze-Urysohn extension theorem in general topology.

Example 2.2. • The C∗-algebra C(I) on the closed interval I = [0, 1] is unital (so that
not contractible) but weakly identically contractible to C, by the C∗-homotopy induced by
a homotopy in [0, 1].

If we define ϕt(g)(x) = g((1 − t)x) ∈ C for g ∈ C(I) and t, x ∈ I. Then (ϕt) is a
continuous path of ∗-isomorphisms of A = C(I) between idA and χ0, so that A is weakly
identically contractible to C. Also, define ht(x) = (1− t)x ∈ [0, 1− t] ≈ [0, 1] for t, x ∈ I, so
that ϕt(A) ∼= A for t ∈ [0, 1). Then (ht) is a continuous path of homeomorphisms of [0, 1]
such that f0 = idX and id0, so that [0, 1] is identically contractible (to 0).

• The (interval) C∗-algebra IA = C(I, A) over a C∗-algebra A, of all A-valued, con-
tinuous functions on I, viewed as the C∗-tensor product C(I) ⊗ A, is weakly identicallty
contractible to C. In particular, IC = C(I). If A is unital, then C(I)⊗A is unital and not
contractible.

Note that ‖f ⊗ a‖ = ‖f‖‖a‖ for f ⊗ a ∈ IC ⊗ A. Hence, the (norm) homotopy (ϕt) for
IC to C is extended trivially as ϕt(f ⊗ a) = ϕt(f) ⊗ a.

• The C∗-algebra C0([0, 1)) on the half open interval [0, 1) (non-compact), viweded as
the cone CC ∼= C0([0, 1), C) ∼= C0([0, 1)) ⊗ C over C, is non-unital and weakly identically
contractible to C by the induced C∗-homotopy by a homotopy in [0, 1) (and is certainly
contractible, but soon later discussed in the example given below).

Indeed, if we define ψt(g)(x) = g( x
1−t ) for g ∈ C0([0, 1)), t ∈ [0, 1), and x ∈ [0, 1−t), and

ψ1(g)(x) = g(0). Then (ψt) is a weakly continuous path of ∗-isomorphisms of A = C0([0, 1))
between idA and χ0, so that A is weakly identically contractible to C. Also, define ht(x) =

x
1−t ∈ [0, 1) for t ∈ [0, 1) and x ∈ [0, 1 − t) ≈ [0, 1), and h1(x) = 0, so that ψt(A) ∼= A for

Classification of contractible spaces

t ∈ [0, 1). Then (ht) is a continuous path of homeomorphisms of [0, 1) such that f0 = idX

and f1 = id0, so that [0, 1) is identically contractible (to 0).
Furthermore, now let g(x) = x for x ∈ [0, 1

2 ] and g(x) = 1 − x for x ∈ [ 12 , 1) and
g ∈ C0([0, 1)). Then the norm ‖ψt(g)‖ = ‖g‖ = 1, but χ0(g) = g(0) = 0.

If a (compact or non-compact) space X is contractible to a point p ∈ X, then we define
Ip to be the closed ideal of all continuous functions of (C(X) or C0(X)) on X vanishing at
the point p. Note that Ip is isomorphic to C0(X \ {p}).

As a generalization from the case of C0([0, 1)) as a closed ideal of C([0, 1]),

Proposition 2.3. If a compact Hausdorff space X is contractible to a point p ∈ X, then
the closed ideal Ip = C0(X \ {0}) is contractible to zero.

As well, in this case, Ip ⊗ A for any C∗-algebra A is contractible to zero.

Proof. As shown above, it follows that C(X) is contractible to C (at p ∈ X). Therefore, Ip

is contractible to zero (at p ∈ X).
Since Ip is contractible, so is Ip ⊗ A by the same reason as in the example above.

Remark. Even if a non-compact, Hausdorff space X is contractible to a point p ∈ X,
the closed ideal Ip is not necessarily contractible. For instance, let X = [0, 1). Then X
is contractible to {0}, but I0 = C0((0, 1)) is not contractible. However, I0 in this case
is weakly contractible to C since (0, 1) is contractible and non compact. Note also that
(0, 1)+ ≈ T the one-dimensional torus, which is not contractible.

We now define that a non-compact topological space X is extended contracible (in
the one-point compactification X+ = X ∪{∞} of X) if the identity map idX+ : X+ → X+

is homotopic to the constant map id∞ on X+, which sends elements of X+ to the point ∞.
We write F+ for the corresponding homotopy on I×X+ and call it the extended homotopy
for X+.

Possibly, the most important thing to notice at this moment is that

Proposition 2.4. (1) Let X be a non-compact, locally compact Hausdorff space. Then X
is extended contractible in X+ in our sense if and only if X+ is contractible.

(2) If X is extended contractible in X+ in our sense, in other words, if X is a one-point
un-compactification of a contractible space, then C0(X) is contractible to zero.

(3) The direct product of finitely many, extended contractible, non-compact locally com-
pact Hausdorff spaces is also extended contractible.

Proof. By definition, the first statement (1) holds.
The second statement (2) follows from that C0(X) ∼= I∞ in C(X+).
For the third (3), if X1, · · · , Xn are extended contractible, non-compact locally compact

Hausdorff spaces, then (Πn
i=1Xi)+ is contractible because the coordinante homotopy in X+

i

extends in (Πn
i=1Xi)+ as a product of the homotopies

Example 2.5. • Let A = C0([0, 1)). Then A is contractible (to zero) as in the references
([2], [4], and [8]).

Indeed, define ϕt(g)(x) = g(t + x(1 − t)) ∈ C for x ∈ [0, 1) and t ∈ [0, 1]. Then
ϕ0(g)(x) = g(x) and ϕ1(g)(x) = g(1) = 0, and ϕt for t ∈ [0, 1) are ∗-isomorphisms of
A. Also the space [0, 1) is contractible (but to 1 �∈ [0, 1), however in [0, 1]), because the
maps on [0, 1) defined by ft(x) = t + x(1 − t) ∈ [t, 1) ≈ [0, 1) give a continuous path of
homeomorphisms of [0, 1) such that f0 = idX and f1 = id1.

Therefore, [0, 1) is extended contractible in [0, 1)+ = [0, 1] and C0([0, 1)) is identically
contractible.
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their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Remark. Note that a contractible space in the 1-dimensional closed interval I = [0, 1]
is always identically contractible. Moreover, any 1-dimensional contractible space in I is
homeomorphic to either I = [0, 1], I1 = [0, 1), or I0,1 = (0, 1). Furthermore, I = [0, 1] is a 1-
dimensional compact manifold with boundary ∂I = {0, 1}, and I1 = [0, 1) is a 1-dimensional
non-compact manifold with boundary ∂I1 = {0}, and I0,1 = (0, 1) is a 1-dimensional non-
compact (or open) manifold without boundary.

On the other hand, an extended contractible space may or may not be connected.

Example 2.6. Let X = [0, 1
2 ) ∪ ( 1

2 , 1] be a union of half open intervals. Then X is non-
connected and is viewed as the one-point un-compactification of [0, 1] a contractible space.
Hence C0(X) is contractible to zero. Note that C0(X) ∼= C0([0, 1

2 ]) ⊕ C0((1
2 , 1]) with both

components contractible to zero.

Just as the 1-dimensional case of connected sums of topological manifolds, one can
define (but) a non-connected sum of two contractible spaces X and Y in [0, 1], denoted
as X#pY , for a point p viewed in the interiors X◦ and Y ◦ of X and Y respectively, where
X is viewed in the line of a Euclidean space and the boundary ∂X is X \ X◦. More
precisely, X#pY is defined by removing a point in the interiors X◦ and Y ◦ of X and Y
respectively, each identified with a point p, to make disjoint unions X \ {p} = X1

p � X2
p

and Y \ {p} = Y 1
p � Y 2

p and by gluing X1
p and Y 1

p together with p and gluing X2
p and Y 2

p

together with p to make two lines X1
p ∪ {p} ∪ Y 1

p and X2
p ∪ {p} ∪ Y 2

p , where each p in these
unions are assumed to be distinct. By definition, the non-connected sum X#pY is a disjoint
union of two contractible line segments Lj (j = 1, 2) in [0, 1], so that X#pY = L1 � L2.
Note that X#pY is not contractible, and C(X#pY ) ∼= C(L1) ⊕ C(L2), and C0(X#pY ) ∼=
C0(L1) ⊕ C0(L2) where L1 or L2 may be compact and that X#pY is compact if and only
if X and Y are compact.

Example 2.7. We have [0, 1]#p[0, 1] ≈ [0, 1] � [0, 1] ≡ �2[0, 1], and [0, 1)#p[0, 1) ≈ [0, 1] �
(0, 1), and (0, 1)#p(0, 1) ≈ �2(0, 1), and [0, 1]#p[0, 1) ≈ [0, 1] � [0, 1), and [0, 1]#p(0, 1) ≈
�2[0, 1), and [0, 1)#p(0, 1) ≈ [0, 1)#p(0, 1).

Note that only the case X = [0, 1]#p(0, 1) ≈ �2[0, 1) is extended contractible, with
X+ ≈ [0, 1].

Moreover, we can define inductively a successive non-connected sum of n contractible
spaces X1, · · · , Xn in [0, 1] as

#n
pi

Xi ≡ (· · · ((X1#p1X2)#p2X3) · · ·#pn−1Xn,

where each point pk is identified with both a point of the interior of #k−1
pi

Xi and a point
of the interior of Xk+1. The operation taking a non-connected sum is associative. Namely,
for example, (X1#p1X2)#p2X3 ≈ X1#p1(X2#p2X3), where for this we may assume that
p2 ∈ X2. Note that the points p1 and p2 and the points pk in more general may or may not
be the same. Even if pi = pj in [0, 1] with i �= j, the attached points corresponding to pi

and pj are assumed to be distinct. Therefore, we always have

#n
pi

Xi ≈ L1 � L2 � · · · � Ln ≡ �n
i Li,

where each Li is a contractible space in [0, 1].

Proposition 2.8. Let X1, · · · , Xn be contractible spaces in [0, 1]. Then a disconnected sum
#n

pi
Xi is a non-contractible, locally compact Hausforff space, and is compact if and only if

each Xi is compact. We have ∂(#n
pi

Xi) = ∪i∂Xi.
A non-compact #n

pi
Xi is extended contractible if and only if #n

pi
Xi is homeomorphic to

the disjoint union �n[0, 1). Hence, C0(�n[0, 1)) ∼= ⊕nC0([0, 1)) is contractible to zero.
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spaces X1, · · · , Xn in [0, 1] as

#n
pi
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where each point pk is identified with both a point of the interior of #k−1
pi

Xi and a point
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and pj are assumed to be distinct. Therefore, we always have

#n
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i Li,

where each Li is a contractible space in [0, 1].

Proposition 2.8. Let X1, · · · , Xn be contractible spaces in [0, 1]. Then a disconnected sum
#n

pi
Xi is a non-contractible, locally compact Hausforff space, and is compact if and only if

each Xi is compact. We have ∂(#n
pi

Xi) = ∪i∂Xi.
A non-compact #n

pi
Xi is extended contractible if and only if #n

pi
Xi is homeomorphic to

the disjoint union �n[0, 1). Hence, C0(�n[0, 1)) ∼= ⊕nC0([0, 1)) is contractible to zero.

 TAKAHIRO SUDO

Classification of contractible spaces

Proof. The first part is clear.
For the second, note that if a non-compact #n

pi
Xi contains a Xi, homeomorphic to (0, 1),

then the one-point compactification (#n
pi

Xi)+ contains a circle embedded as a subset, so
that it can not be contractible.

Recall that the connected sum M#N of two topological manifolds M and N of dimension
d ≥ 2 is obtained by removing the d-dimensional closed unit ball B viewed in M and N
and attaching M \ B and N \ B together with the boundary ∂B of B along. Note that
∂B is not contractible. Hence M#N is always not contractible even when M and N are
contractible.

On the other hand, one can also define a pointed jointed sum of two spaces X and Y ,
denoted as X �p Y , for a point p viewed in X and Y . More precisely, X#pY is defined by
joining X and Y at p in the disjoint union X�Y . By definition, if X and Y are contractible,
then the pointed jointed sum X �p Y is contractible.

Moreover, we can define inductively a successive pointed jointed sum of n spaces
X1, · · · , Xn as

�n
pi

Xi ≡ (· · · ((X1 �p1 X2) �p2 X3) · · · �pn−1 Xn,

where each point pk is identified with both a point of �k−1
pi

Xi and a point of Xk+1. By
definition, if X1, · · · , Xn are contractible, then a successive pointed jointed sum �n

pi
Xi is

contractible. To have associativity for successive pointed jointed sums, such as

(X1 �p1 X2) �p2 X3 ≈ X1 �p1 (X2 �p2 X3),

we may assume that each pi is in Xi. We assume this associativity in what follows.
Note that homeomorphism classes of pointed jointed sums do depend on both the way of
arrangement (or permutation with respect to i) of Xi and the choice (distinct or not) of
the points pi in general. For instance,

([0, 1] � 1
3

(0, 1)) � 1
2

[0, 1] �≈ ((0, 1) � 1
3

[0, 1]) � 1
2

[0, 1].

Proof. Indeed, consider the interval [13 , 1
2 ] viewed in the middle intervals. The jointed points

1
3 and 1

2 emit three intervals closed or open at the other end points respectively (2 closed
and 1 open at 1

3 and 1
2 and 2 open and 1 closed at 1

3 and 3 closed at 1
2 ), whose respective

parts in the jointed sums are not homeomorphic respectively.

Proposition 2.9. Let X1, · · · , Xn be contractible spaces. A pointed jointed sum �n
pi

Xi is
a contractible, locally compact Hausforff space, and is compact if and only if each Xi is
compact, and ∂(�n

pi
Xi) = ∪i∂Xi.

A non-compact �n
pi

Xi is extended contractible if and only if its boundary has only one
point.

Moreover, if each Xi is identically contractible, then �n
pi

Xi is identically contractible.

Proof. Note that for a non-compact �n
pi

Xi, if ∂(�n
pi

Xi) has more than one point, then the
one-point compactfication (�n

pi
Xi)+ contains a circle embedded as a subset and thus the

compactification is not contractible.
Since each Xi is identically contractible by a homotopy, so is the jointed sum �n

pi
Xi by

taking the (simultaneous) homotopy induced by the homotopies of Xi

Let M and N be topological manifolds of dimension d ≥ 1 (or greater than d). We
define a d-dimensional balled jointed sum of M and N to be obtained by identifying the
d-dimensional closed unit balls B viewed in M and N , and to be denoted by M �B N .
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two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Note that the 1-dimensional closed unit ball is the closed interval [−1, 1]. Also, a pointed
jointed sum may be defined to be a zero-dimensional jointed sum. Moreover, one can
define inductively a successive d-dimensional (or at most) balled jointed sum of topological
manifolds M1, · · · ,Mn of dimension d (or greater than d) by

�n
Bi

Mi ≡ (· · · ((M1 �B1 M2) �B2 M3) · · · ) �Bn−1 Mn,

where each Bi is a d-dimensional (or at most) closed unit ball viewed in Mi and Mi+1. Note
that the dimension d may not be constant as dim Bi = di for i. By definition, if M1, · · · ,Mn

are contractible, then �n
Bi

Mi is also contractible, but only a space, not a manifold in general.
To have associativity for successive balled jointed sums, such as

(M1 �B1 M2) �B2 M3 ≈ M1 �B1 (M2 �B2 M3),

we may assume that each Bi is in Mi. We assume this associativity in what follows.
Note that homeomorphism classes of balled jointed sums do depend on both the way of
arrangement (or permutation with respect to i) of Mi and the choice (distinct or not) of
the balls Bi in general.

As a collection, we obtain

Table 1: Classification for contractible spaces and examples by C∗-algebras

C∗-algebras \ Spaces Compact Non-compact, contractible
Contractible No Extended contractible:

to zero I1 = [0, 1), Id
1 = ΠdI1,

(non-unital) (�n−1
pi

I) �pn−1 I1,
(�n−1

Bi
Id) �Bn−1 Id

1

Non-contractible Contractible: Non-extended contractible:
to zero I = [0, 1], Id I0,1 = (0, 1), Id

0,1 ≈ Rd,
(unital or non-unital) �n

pi
I, �n

Bi
Id �n+m+l

pi
Xi,

�n+m+l
Bi

Xd
i (m + l ≥ 2)

(Xi = I, I1, I0,1 n,m, l copies)

Remark. There are non-contractible spaces whose C∗-algebras are contractible to zero, such
as disjoint unions of extended contractible, non-compact locally compact Hausdorff spaces
like �n[0, 1).

It follows from the Table 1 that

Corollary 2.10. The being or not being contractible to zero for C∗-algebras (together with
unitalness or non-unitalness for C∗-algebras) classifies contractible spaces to be compact or
non-compact and to be extended contractible or not.

Remark. Note that compactness and non-compactness for spaces just correspond to unital-
ness and non-unitalness for C∗-algebras, respectively.

Now let X be a topological space. Denote by ∂X the boundary of X, which is equal to
X \ (X)◦, where X is the closure of X in a suitable topology (or a suitable compactification
of X along ∂X) and (X)◦ is the interior of X, where note that we mostly deal with topo-
logical spaces X viewed as (homeomorphically bounded) subsets with relative topology in
Euclidean spaces and take their closures X in there. We may say that ∂X \ X = X \ X is
the attached boundary of X and X is the flat compactification of X.
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we may assume that each Bi is in Mi. We assume this associativity in what follows.
Note that homeomorphism classes of balled jointed sums do depend on both the way of
arrangement (or permutation with respect to i) of Mi and the choice (distinct or not) of
the balls Bi in general.

As a collection, we obtain

Table 1: Classification for contractible spaces and examples by C∗-algebras

C∗-algebras \ Spaces Compact Non-compact, contractible
Contractible No Extended contractible:

to zero I1 = [0, 1), Id
1 = ΠdI1,

(non-unital) (�n−1
pi

I) �pn−1 I1,
(�n−1

Bi
Id) �Bn−1 Id

1

Non-contractible Contractible: Non-extended contractible:
to zero I = [0, 1], Id I0,1 = (0, 1), Id

0,1 ≈ Rd,
(unital or non-unital) �n

pi
I, �n

Bi
Id �n+m+l

pi
Xi,

�n+m+l
Bi

Xd
i (m + l ≥ 2)

(Xi = I, I1, I0,1 n,m, l copies)

Remark. There are non-contractible spaces whose C∗-algebras are contractible to zero, such
as disjoint unions of extended contractible, non-compact locally compact Hausdorff spaces
like �n[0, 1).

It follows from the Table 1 that

Corollary 2.10. The being or not being contractible to zero for C∗-algebras (together with
unitalness or non-unitalness for C∗-algebras) classifies contractible spaces to be compact or
non-compact and to be extended contractible or not.

Remark. Note that compactness and non-compactness for spaces just correspond to unital-
ness and non-unitalness for C∗-algebras, respectively.

Now let X be a topological space. Denote by ∂X the boundary of X, which is equal to
X \ (X)◦, where X is the closure of X in a suitable topology (or a suitable compactification
of X along ∂X) and (X)◦ is the interior of X, where note that we mostly deal with topo-
logical spaces X viewed as (homeomorphically bounded) subsets with relative topology in
Euclidean spaces and take their closures X in there. We may say that ∂X \ X = X \ X is
the attached boundary of X and X is the flat compactification of X.

Classification of contractible spaces

Example 2.11. Let I = [0, 1]. Then ∂I = {0, 1} and ∂I \ I = ∅, and also ∂(Id) \ Id = ∅.
Let I1 = [0, 1). Then I1 = [0, 1], ∂I1 = {0, 1} and ∂I1 \ I1 = I1 \ I1 = {1}.
Let I0,1 = (0, 1). Then I0,1 = [0, 1], ∂I0,1 = {0, 1} and ∂I0,1 \ I0,1 = {0, 1}.
We have I2

1 = [0, 1]2, and ∂(I2
1 ) \ I2

1 = ({1} × [0, 1]) ∪ ([0, 1] × {1}) ≈ [0, 1], which is
contractible and has covering dimension one.

We have I2
0,1 = [0, 1]2, and ∂(I2

0,1) \ I2
0,1 ≈ S1 the 1-dimensional sphere, which is not

contractible and has covering dimension one.

Table 2: Classification for examples of contractible spaces by boundaries

Attached boundaries Contractible spaces
No Compact: I = [0, 1], Id, �n

pi
I, �n

Bi
Id

One point Non-compact: I1 = [0, 1),
(�n−1

pi
I) �pn−1 I1 (n ≥ 2)

Contractible, dimension d − 1 Non-compact: Id
1 , (�n−1

Bi
Id) �Bn−1 Id

1

Two points Non-compact: I0,1 = (0, 1),
m + 2l points �n+m+l

pi
Xi, �n+m+l

Bi
Xi (m + 2l ≥ 2)

(Xi = I, I1, I0,1 n,m, l copies, resp)
Non-contractible, dim d − 1 Id

0,1 ≈ Rd (d ≥ 2)
Non-contractible, dim d − 1, �n+m+l

Bi
Xd

i (m + l ≥ 2, d ≥ 2)
m + l components (Xi = I, I1, I0,1 n,m, l copies, resp)

It follows from the Tables 1 and 2 that

Corollary 2.12. The being contractible and being unital or not for C∗-algebras, together
with attached boundaries for spaces as similar invariants, and with dimension and pointed
or balled jointedness for spaces or manifolds classify (up to homeomorphisms in part) 1-
dimensional, contractible manifolds and d-dimensional, jointed sums of d-dimensional con-
tractible, their product manifolds, as in the collection lists above.

Remark. The homeomorphism classes of the spaces �n+m+l
pi

Xi with Xi = I, I1, or I0,1

n,m, l copies respectively do depend on how to take the points pj . For instance, all pj may
be the unique point, like pj = 1

2 . Namely, the homeomorphism classes depend on that pj

are mutually, the same or different and as well their positions, in general. The similar things
hold for �n+m+l

Bi
Xd

i .
It follows from the Table 3 

Corollary 2.13. The being either unital and identically contractible to C or being non-
unital and weakly identically contractible to C for C∗-algebras classifies contractible spaces
to be compact or not to be.

3 K-theory We now consider K-theory (abelian) groups for C∗-algebras.
It is known that if a C∗-algebra A is contractible to zero, then the K-theory groups

K0(A) and K1(A) both are zero, Note that the K-theory groups are homotopy invariant.
In fact, the zero C∗-algebra {0} has K0 zero and the unitization {0}+ = C has K1 zero, so
that the zero C∗-algebra has K1 zero.

In particular,

(at the top of the next page) that
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Abstract. We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces are classifiable or not (up to homeomorphisms) by the
C∗-algebras and their K-theory.

1 Introduction We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces in some cases are classifiable or not (up to homeomorphism
classes or manifold classes with some operations like jointed sums) by the C∗-algebras or
their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Table 3: Classification for identically contractible spaces and examples by C∗-algebras

C∗-algebras \ Spaces Compact Non-compact, contractible
Unital, identically Contractible: No
contractible to C Id, �n

pi
Id, �n

Bi
Id

Non-unital, No Extended: Id
1 ,

weakly identically (�n−1
pi

Id) �pn−1 Id
1 , (�n−1

Bi
Id) �Bn−1 Id

1

contractible to C Non-extended: Id
0,1,

�n+m+l
pi

Xi, �n+m+l
Bi

Xd
i (m + 2l ≥ 2)

(Xi = I, I0, I0,1 n,m, l copies)

Example 3.1. Since C0([0, 1)) = CC the cone over C is contractible, it follows that
K0(C0([0, 1))) ∼= 0 and K1(C0([0, 1))) ∼= 0. The same holds by replacing [0, 1) with
(�n−1

pi
I) �pn−1 I1 and also by CC with CA ∼= C0([0, 1)) ⊗ A for any C∗-algebra A.

As a contrast, with (1) below certainly known ([8]),

Proposition 3.2. (1) Let X be a contractible, compact space. Then

K0(C(X)) ∼= Z and K1(C(X)) ∼= 0.

(2) For a non-comapct space X, we have

K0(C0(X)) ∼= K0(C(X+))/Z and K1(C0(X)) ∼= K1(C(X+)).

(3) If a non-compact space X is extended contractible, then we have

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= 0.

Proof. The first statement (1) holds because Kj(C(X)) ∼= Kj(C) for j = 0, 1.
For the second (2), there is the short exact sequence of C∗-algebras:

0 → C0(X) → C(X+) → C → 0

that splits, where the section from C to C(X+) is given by sending 1 ∈ C to 1 ∈ C(X+).
The associated six-term exact sequence of K-theory groups implies that

Kj(C(X+)) ∼= Kj(C0(X)) ⊕ Kj(C)

for j = 0, 1, with K0(C) ∼= C and K1(C) = 0.
The third (3) follows from (1) and (2) above.

Example 3.3. We have K0(C([0, 1])) ∼= Z and K0(C([0, 1])) ∼= 0. Since a compact, pointed
or balled, jointed sums J = �n

pi
I or J = �n

Bi
Id contractible, thus K0(C(J)) ∼= Z and

K1(C(J)) ∼= 0.
There is the following short exact sequence of C∗-algebras:

0 → C0((0, 1)) → C0([0, 1)) → C → 0,

which is not splitting, but the six-term exact sequence of K-theory groups, associated,
becomes:

K0(C0((0, 1))) −−−−→ 0 −−−−→ Z

∂

�
�∂

0 ←−−−− 0 ←−−−− K1(C0((0, 1)))
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classes or manifold classes with some operations like jointed sums) by the C∗-algebras or
their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Table 3: Classification for identically contractible spaces and examples by C∗-algebras

C∗-algebras \ Spaces Compact Non-compact, contractible
Unital, identically Contractible: No
contractible to C Id, �n

pi
Id, �n

Bi
Id

Non-unital, No Extended: Id
1 ,

weakly identically (�n−1
pi

Id) �pn−1 Id
1 , (�n−1

Bi
Id) �Bn−1 Id

1

contractible to C Non-extended: Id
0,1,

�n+m+l
pi

Xi, �n+m+l
Bi

Xd
i (m + 2l ≥ 2)

(Xi = I, I0, I0,1 n,m, l copies)

Example 3.1. Since C0([0, 1)) = CC the cone over C is contractible, it follows that
K0(C0([0, 1))) ∼= 0 and K1(C0([0, 1))) ∼= 0. The same holds by replacing [0, 1) with
(�n−1

pi
I) �pn−1 I1 and also by CC with CA ∼= C0([0, 1)) ⊗ A for any C∗-algebra A.

As a contrast, with (1) below certainly known ([8]),

Proposition 3.2. (1) Let X be a contractible, compact space. Then

K0(C(X)) ∼= Z and K1(C(X)) ∼= 0.

(2) For a non-comapct space X, we have

K0(C0(X)) ∼= K0(C(X+))/Z and K1(C0(X)) ∼= K1(C(X+)).

(3) If a non-compact space X is extended contractible, then we have

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= 0.

Proof. The first statement (1) holds because Kj(C(X)) ∼= Kj(C) for j = 0, 1.
For the second (2), there is the short exact sequence of C∗-algebras:

0 → C0(X) → C(X+) → C → 0

that splits, where the section from C to C(X+) is given by sending 1 ∈ C to 1 ∈ C(X+).
The associated six-term exact sequence of K-theory groups implies that

Kj(C(X+)) ∼= Kj(C0(X)) ⊕ Kj(C)

for j = 0, 1, with K0(C) ∼= C and K1(C) = 0.
The third (3) follows from (1) and (2) above.

Example 3.3. We have K0(C([0, 1])) ∼= Z and K0(C([0, 1])) ∼= 0. Since a compact, pointed
or balled, jointed sums J = �n

pi
I or J = �n

Bi
Id contractible, thus K0(C(J)) ∼= Z and

K1(C(J)) ∼= 0.
There is the following short exact sequence of C∗-algebras:

0 → C0((0, 1)) → C0([0, 1)) → C → 0,

which is not splitting, but the six-term exact sequence of K-theory groups, associated,
becomes:

K0(C0((0, 1))) −−−−→ 0 −−−−→ Z

∂

�
�∂

0 ←−−−− 0 ←−−−− K1(C0((0, 1)))

Classification of contractible spaces  

with the maps ∂ as the up and down arrows in the left and right, respectively, the index
map and the exponential map (as a dual of the index map), and hence K0(C0((0, 1))) ∼= 0
and K1(C0((0, 1))) ∼= Z.

The converses of (1) and (3) in the proposition above do not hold for contractible spaces.

Example 3.4. Let X = R2n be the 2n-dimensional Euclidean space, for n ≥ 1, which is
contractible but non-compact. Then

K0(C0(R2n)) ∼= K0(C) ∼= Z and K1(C0(R2n)) ∼= K1(C) ∼= 0

by Bott periodicity of K-theory groups. Also, X+ is homeomorphic to S2n the 2n-dimensional
sphere, which is not contractible, because K0(C(S2n)) ∼= Z2 and K1(C(S2n)) ∼= 0, so that
X is not extended contractible.

Let X = R2n × [0, 1) the product space. Then

Kj(C0(X)) ∼= Kj(C0(R2n) ⊗ C0([0, 1))) ∼= Kj(C0([0, 1))) ∼= 0

for j = 0, 1. Also, X+ is homeomophic to S2n �1 I1, which is not contractible, because
S2n �1 I1 is homotopic to S2n, so that X is not extended contractible.

Proposition 3.5. Let #pi
Xi be the successive non-connected sum of n contractible spaces

X1, · · · , Xn in [0, 1], with #piXi ≈ �n
i=1Li. Then

Kj(C0(#piXi)) ∼= ⊕n
i=1Kj(C0(Li))

for j = 0, 1.

Proposition 3.6. Let X �p Y be the (pointed) jointed sum of two spaces X,Y . If X �p Y
is compact, then

K0(C(X �p Y )) ∼= K0(C0(X \ {p})) ⊕ K0(C0(Y \ {p})) ⊕ Z,

K1(C(X �p Y )) ∼= K1(C0(X \ {p})) ⊕ K1(C0(Y \ {p})),

and if X �p Y is not compact, then

K0(C0(X �p Y )) ∼= K0(C0(X \ {p})) ⊕ K0(C0(Y \ {p})),
K1(C0(X �p Y )) ∼= [K1(C0(X \ {p})) ⊕ K1(C0(Y \ {p}))]/Z.

Proof. There is the following short exact sequence of C∗-algebras:

0 → C0(X \ {p}) ⊕ C0(Y \ {p}) → C0(X �p Y ) → C → 0,

which splits only when X �p Y is compact, where the quotient map is the evaluation map
at p. It follows that if X �p Y is compact, then

Kj(C(X �p Y )) ∼= Kj(C0(X \ {p})) ⊕ Kj(C0(Y \ {p})) ⊕ Kj(C)

for j = 0, 1. If X�p Y is not compact, then the induced quotient map from K0(C0(X�p Y ))
to K0(C) is zero, so that it follows from exactness of the six-term exact sequences of K-
theory groups that

K0(C0(X �p Y )) ∼= K0(C0(X \ {p})) ⊕ K0(C0(Y \ {p}))

and
K1(C0(X �p Y )) ∼= [K1(C0(X \ {p})) ⊕ K1(C0(Y \ {p}))]/K1(C).
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show that contractible spaces in some cases are classifiable or not (up to homeomorphism
classes or manifold classes with some operations like jointed sums) by the C∗-algebras or
their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Moreover

Proposition 3.7. Let �n
pi

Xi be the successive (pointed) jointed sum of n path-connected
spaces X1, · · · , Xn. If �n

pi
Xi is compact, then

K0(C(�n
pi

Xi)) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1})) ⊕ Z,

K1(C(�n
pi

Xi)) ∼= ⊕n
i=1K1(C0(Xi \ {pi−1})).

If �n
pi

Xi is not compact, then

K0(C0(�n
pi

Xi)) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1})),

K1(C0(�n
pi

Xi)) ∼= [⊕n
i=1K1(C0(Xi \ {pi−1}))]/Z.

Proof. There is a homotopy between X = �n
pi

Xi and the jointed sum Y = �n
pXi with the

common point p as in the case where pi = pi+1 (identified) for 1 ≤ i ≤ n − 2. Then there
is the following short exact sequence of C∗-algebras:

0 → ⊕n
i=1C0(Xi \ {pi−1}) → C0(Y ) → C → 0,

which splits only when Y is compact, where the quotient map is the evaluation map at the
common point p and Xi \ {p} ≈ Xi \ {pi−1}. It follows that if Y is compact (if and only if
X is compact), then

Kj(C(Y )) ∼= [⊕n
i=1Kj(C0(Xi \ {pi−1}))] ⊕ Kj(C)

for j = 0, 1. If Y is not compact, then the induced quotient map from K0(C0(Y )) to K0(C)
is zero, so that it follows from exactness of the six-term exact sequences of K-theory groups
that

K0(C0(Y )) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1}))

and K1(C(Y )) ∼= [⊕n
i=1K1(C0(Xi \ {pi−1}))]/K1(C).

As examples,

Example 3.8. Let X = �n
pi

I1 be a (pointed) jointed sum of n copies of I1 = [0, 1) (n ≥ 2).
Then

K0(C0(�n
pi

I1)) ∼= 0 and K1(C0(�n
pi

I1)) ∼= Zn−1.

This also holds for n = 1, with �1I1 = I1 and Z0 = 0.

Proof. There is a homotopy between X and �n
0 I1 the jointed sum of n copies of I1 at the

common zero point 0. Because if I1 = [0, pi) ∪ [pi, 1) and [0, pi) does not contain other pj ,
then it is homotopic to [pi, 1) in X. We continue this process inductively and finitely to
obtain the required homotopy.

When n = 2, X is homotopic to (0, 1) ≈ �2
0I1.

When n = 3, there is the following short exact sequence:

0 → C0((0, 1)) → C0(�3
0I1) → C0(�2

0I1) → 0,

where �2
0I1 in the quotient is homeomoprhic to (0, 1) and closed in �3

0I1, and its complement
is (0, 1) in the ideal. The six-term exact sequence of K-theory groups, associated, becomes:

0 −−−−→ K0(C0(�3
0I1)) −−−−→ 0

∂

�
�∂

Z ←−−−− K1(C0(�3
0I1)) ←−−−− Z.
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their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Moreover

Proposition 3.7. Let �n
pi

Xi be the successive (pointed) jointed sum of n path-connected
spaces X1, · · · , Xn. If �n

pi
Xi is compact, then

K0(C(�n
pi

Xi)) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1})) ⊕ Z,

K1(C(�n
pi

Xi)) ∼= ⊕n
i=1K1(C0(Xi \ {pi−1})).

If �n
pi

Xi is not compact, then

K0(C0(�n
pi

Xi)) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1})),

K1(C0(�n
pi

Xi)) ∼= [⊕n
i=1K1(C0(Xi \ {pi−1}))]/Z.

Proof. There is a homotopy between X = �n
pi

Xi and the jointed sum Y = �n
pXi with the

common point p as in the case where pi = pi+1 (identified) for 1 ≤ i ≤ n − 2. Then there
is the following short exact sequence of C∗-algebras:

0 → ⊕n
i=1C0(Xi \ {pi−1}) → C0(Y ) → C → 0,

which splits only when Y is compact, where the quotient map is the evaluation map at the
common point p and Xi \ {p} ≈ Xi \ {pi−1}. It follows that if Y is compact (if and only if
X is compact), then

Kj(C(Y )) ∼= [⊕n
i=1Kj(C0(Xi \ {pi−1}))] ⊕ Kj(C)

for j = 0, 1. If Y is not compact, then the induced quotient map from K0(C0(Y )) to K0(C)
is zero, so that it follows from exactness of the six-term exact sequences of K-theory groups
that

K0(C0(Y )) ∼= ⊕n
i=1K0(C0(Xi \ {pi−1}))

and K1(C(Y )) ∼= [⊕n
i=1K1(C0(Xi \ {pi−1}))]/K1(C).

As examples,

Example 3.8. Let X = �n
pi

I1 be a (pointed) jointed sum of n copies of I1 = [0, 1) (n ≥ 2).
Then

K0(C0(�n
pi

I1)) ∼= 0 and K1(C0(�n
pi

I1)) ∼= Zn−1.

This also holds for n = 1, with �1I1 = I1 and Z0 = 0.

Proof. There is a homotopy between X and �n
0 I1 the jointed sum of n copies of I1 at the

common zero point 0. Because if I1 = [0, pi) ∪ [pi, 1) and [0, pi) does not contain other pj ,
then it is homotopic to [pi, 1) in X. We continue this process inductively and finitely to
obtain the required homotopy.

When n = 2, X is homotopic to (0, 1) ≈ �2
0I1.

When n = 3, there is the following short exact sequence:

0 → C0((0, 1)) → C0(�3
0I1) → C0(�2

0I1) → 0,

where �2
0I1 in the quotient is homeomoprhic to (0, 1) and closed in �3

0I1, and its complement
is (0, 1) in the ideal. The six-term exact sequence of K-theory groups, associated, becomes:

0 −−−−→ K0(C0(�3
0I1)) −−−−→ 0

∂

�
�∂

Z ←−−−− K1(C0(�3
0I1)) ←−−−− Z.

 TAKAHIRO SUDO
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It follows that K0(C0(�3
0I1)) ∼= 0 and K1(C0(�3

0I1)) ∼= Z2.
By induction, we assume that K0(C0(�n

0 I1)) ∼= 0 and K1(C0(�n
0 I1)) ∼= Zn−1. Then

there is the following short exact sequence:

0 → C0((0, 1)) → C0(�n+1
0 I1) → C0(�n

0 I1) → 0

since �n
0 I1 is closed in �n+1

0 I1 and its complement is (0, 1). The six-term exact sequence of
K-theory groups, associated, becomes:

0 −−−−→ K0(C0(�n+1
0 I1)) −−−−→ 0

∂

�
�∂

Zn−1 ←−−−− K1(C0(�n+1
0 I1)) ←−−−− Z.

It follows that K0(C0(�n+1
0 I1)) ∼= 0 and K1(C0(�n+1

0 I1)) ∼= Zn.
There is also the following short exact sequence:

0 → C0(�nI0,1) → C0(�n
0 I1) → C → 0,

which is not splitting, with C0(�n
0 I1) ∼= ⊕nC0((0, 1)). The six-term exact sequence of

K-theory groups, associated, becomes:

⊕n0 −−−−→ K0(C0(Z)) −−−−→ Z

∂

�
�∂

0 ←−−−− K1(C0(Z)) ←−−−− ⊕nZ

and K0(C0(Z)) ∼= 0 and K1(C0(Z))) ∼= Zn−1.

Example 3.9. Let X = �n
pi

I0,1 be a (pointed) jointed sum of n copies of I0,1 = (0, 1) ≈ R
(n ≥ 2). Then

K0(C0(�n
pi

I0,1)) ∼= 0 and K1(C0(�n
pi

I0,1)) ∼= Z2n−1.

This also holds for n = 1, with �1I0,1 = I0,1.

Proof. There is a homotopy between X and �2n
0 I1 the jointed sum at the common zero

point 0. By Proposition 3.7 above, we obtain the conclusion.

Example 3.10. Let X = �n+m+l
pi

Xi be a (pointed) jointed sum of Xi = I, I1, or I0,1, with
n copies of I, m copies of I1, and l copies of I0,1. Then

K0(C0(�n+m+l
pi

Xi)) ∼= 0 and K1(C0(�n+m+l
pi

Xi)) ∼= Zm+2l−1.

Proof. There is a homotopy between X and �m+2l
0 I1 the jointed sum at the common zero

point 0, as considered above. By Proposition 3.7 above, we obtain the conclusion.

As 2-dimensional analogues as examples,

Example 3.11. Let X = �n
pi

(I2)− be a (pointed) jointed sum of n copies of (I2)− the
one-potint uncompactification of the 2-direct product of I = [0, 1]. Then

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= Zn−1.
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Proof. To determine Kj(C0(X)), it is enough to compute Kj(C0((I2)− \ {pi})). Then one
can show that the space (I2)− \ {pi} is homotopic to (0, 1). Because pi is different from
the removed point (say qi) of each I2 to make (I2)−, and that I2 is homotopic to a 1-
dimensional closed interval with end points identified with pi and qi, so that (I2)− \ {pi} is
homotopic to the interior of the interval.

Quite similarly, as higher-dimensional analogues as examples,

Example 3.12. Let m be a positive integer with m ≥ 2. Let X = �n
pi

(Im)− be a (pointed)
jointed sum of n copies of (Im)− the one-potint uncompactification of the m-direct product
of I = [0, 1]. Then

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= Zn−1.

Moreover,

Example 3.13. Let X = �n
pi

R2 be a (pointed) jointed sum of n copies of R2. Then

K0(C0(X)) ∼= Zn and K1(C0(X)) ∼= Zn−1.

Proof. Note that R2 is viewed as (S2)−, so that (S2)− \ {pi} is homeomorphic to S1 × R,
where the removed two points from S2 may be assumed to be north and south poles in S2.
Then we have Kj(C0(S1 × R)) ∼= Kj+1(C(S1)) ∼= Z for j = 0, 1 (mod 2).

Similarly,

Example 3.14. Let X = �n
pi

R2m be a (pointed) jointed sum of n copies of R2m. Then

K0(C0(X)) ∼= Zn and K1(C0(X)) ∼= Zn−1.

Proof. Note that R2m is viewed as (S2m)−, so that (S2m)− \ {pi} is homeomorphic to
S2m−1 × R, where we may assume that the removed two points from S2m are north and
south poles in S2m. Then we have Kj(C0(S2m−1 ×R)) ∼= Kj+1(C(S2m−1)) ∼= Z for j = 0, 1
(mod 2).

On the other hand,

Example 3.15. Let X = �n
pi

R2m+1 be a (pointed) jointed sum of n copies of R2m+1. Then

K0(C0(X)) ∼= 0 and K1(C0(X)) ∼= Z2n−1.

Proof. Note that R2m+1 is viewed as (S2m+1)−, so that (S2m+1)− \ {pi} is homeomorphic
to S2m ×R, where we may assume that the removed two points from S2m+1 are north and
south poles in S2m+1. Then we have Kj(C0(S2m × R)) ∼= Kj+1(C(S2m)) for j = 0, 1 (mod
2) and K0(C(S2m)) ∼= Z2 and K1(C(S2m)) ∼= 0.

Furthermore,

Example 3.16. Let X = �n+m
pi

Xi be a (pointed) jointed sum of Xi of n Euclidean spaces
with dimensions even and m Euclidean spaces with dimensions odd. Then

K0(C0(X)) ∼= Zn and K1(C0(X)) ∼= Zn+2m−1.

Next, we consider the balled case.
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pi

R2 be a (pointed) jointed sum of n copies of R2. Then
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pi
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pi

R2m+1 be a (pointed) jointed sum of n copies of R2m+1. Then
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Furthermore,

Example 3.16. Let X = �n+m
pi

Xi be a (pointed) jointed sum of Xi of n Euclidean spaces
with dimensions even and m Euclidean spaces with dimensions odd. Then

K0(C0(X)) ∼= Zn and K1(C0(X)) ∼= Zn+2m−1.

Next, we consider the balled case.

Classification of contractible spaces

Proposition 3.17. Let M�B N be the d-dimensional (balled) jointed sum of two topological
manifolds M,N of dimension d (or greater than d). If M �B N is compact, then

K0(C(M �B N)) ∼= K0(C0(M \ B)) ⊕ K0(C0(N \ B))) ⊕ Z,

K1(C(M �B N)) ∼= K1(C0(M \ B))) ⊕ K1(C0(N \ B))),

and if M �B N is not compact, then

K0(C0(M �B N)) ∼= K0(C0(M \ B))) ⊕ K0(C0(N \ B))),
K1(C0(M �B N)) ∼= [K1(C0(M \ B)) ⊕ K1(C0(N \ B))]/Z.

Proof. The proof is exactly the same as that for Proposition 3.6. Note that Kj(C(B)) ∼=
Kj(C) for j = 0, 1 and the d-dimensional closed ball B is contractible.

Moreover,

Proposition 3.18. Let �n
Bi

Mi be the successive d-dimensional (balled) jointed sum of path-
connected, topological manifolds M1, · · · ,Mn of dimension d (or greater than d). If �n

Bi
Mi

is compact, then

K0(C(�n
Bi

Mi)) ∼= ⊕n
i=1K0(C0(Mi \ Bi−1)) ⊕ Z,

K1(C(�n
Bi

Mi)) ∼= ⊕n
i=1K1(C0(Mi \ Bi−1)).

If �n
Bi

Mi is not compact, then

K0(C0(�n
Bi

Mi)) ∼= ⊕n
i=1K0(C0(Mi \ Bi−1)),

K1(C0(�n
Bi

Mi)) ∼= [⊕n
i=1K1(C0(Mi \ Bi−1))]/Z.

Proof. The proof is exactly the same as that for Proposition 3.7.

Example 3.19. Let M = �n
Bi

Id
1 , with I1 = [0, 1) and n ≥ 2. Then

K0(C0(M)) ∼= 0 and K1(C0(M)) ∼= Zn−1.

If M = Id
1 , then K0(C0(M)) ∼= 0 ∼= K1(C0(M)).

Proof. We compute Kj(C0(Id
1 \Bi)). Since each ball Bi is contractible, there is the following

short exact sequence of C∗-algebras:

0 → C0(Id
1 \ Bi) → C0(Id

1 ) → C → 0.

Since C0(Id
1 ) ∼= ⊗dC0(I1) is a contractible C∗-algebra, hence Kj(C0(Id

1 )) ∼= 0 for j = 0, 1.
Note also that the space Id

1 is extended contractible since (Id
1 )+ is contractible. It follows

from the six-term exact sequence of K-theory groups that

K0(C0(Id
1 \ Bi)) ∼= 0 and K1(C0(Id

1 \ Bi)) ∼= Z.

Example 3.20. Let M = �n
Bi

Id
0,1, with I0,1 = (0, 1). If d is even, then

K0(C0(M)) ∼= Zn and K1(C0(M)) ∼= Zn−1,

and if d is odd, then K0(C0(M)) ∼= 0 K1(C0(M)) ∼= Z2n−1.
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Proof. We compute Kj(C0(Id
0,1 \ Bi)). Since each ball Bi is contractible, there is the fol-

lowing short exact sequence of C∗-algebras:

0 → C0(Id
0,1 \ Bi) → C0(Id

0,1) → C → 0.

Since C0(Id
0,1) ∼= ⊗dC0(R) = SdC, we have K0(SdC) ∼= Z and K0(SdC) ∼= 0 if d is even and

K0(SdC) ∼= 0 and K0(SdC) ∼= Z if d is odd. It follows from the six-term exact sequence of
K-theory groups that if d is even, then

K0(C0(Id
0,1 \ Bi)) ∼= Z and K1(C0(Id

0,1 \ Bi)) ∼= Z,

and if d is odd, then K0(C0(Id
0,1 \ Bi)) ∼= 0 and K1(C0(Id

0,1 \ Bi)) ∼= Z2.

Furthermore, combining Examples 3.19 and 3.20 with Proposition 3.18 we obtain

Example 3.21. Let M = �n+m+l
Bi

Xd
i , where Xi are n, m, l copies of I, I1, I0,1 respectively.

If m + l ≥ 1, then M is non-compact, and if d is even, then

K0(C0(M)) ∼= Zl and K1(C0(M)) ∼= Zm+l−1

and if d is odd, then K0(C0(M)) ∼= 0 and K1(C0(M)) ∼= Zm+2l−1.

Table 4: Classification for contractible spaces by K-theory of C∗-algebras

K-theory of C∗-algebras Contractible spaces
K0 = 0, K1 = 0 Non-compact, extended contractible:

I1, (In)− ≈ In
1 (n ≥ 2),

K0 = Z, K1 = 0 Compact: In

Noncompact, non-extended:
I2n
0,1 ≈ R2n

K0 = Zn, K1 = Zn−1 �n
pi

R2m (pointed),
�n

Bi
I2m
0,1 (balled)

K0 = 0, K1 = Z Noncompact, non-extended:
I2n+1
0,1 ≈ R2n+1,

�2
pI1, �2

p(I
m)− (pointed),

�2
BId

1 (balled)
K0 = 0, K1 = Zn−1 �n

pi
I1, �n

pi
(Im)− (pointed),

�n
Bi

Id
1 (balled)

K0 = 0, K1 = Zm+2l−1, �n+m+l
pi

Xi, �n+m+l
Bi

X2d+1
i ,

(Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
K0 = 0, K1 = Z2n−1 �n

pi
R, �n

pi
R2m+1 (pointed),

�n
Bi

I2m+1
0,1 (balled)

K0 = Zl, K1 = Zm+2l−1, �n+m+l
Bi

X2d
i ,

(Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
K0 = Zn, K1 = Zn+2m−1, �n+m

pi
Xi, �n+m

Bi
Xi (dim mixed),

with Xi = R2ni (1 ≤ i ≤ n),
Xi = R2mi+1 (n + 1 ≤ i ≤ n + m)

It follows from the Table 4 that
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Abstract. We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces are classifiable or not (up to homeomorphisms) by the
C∗-algebras and their K-theory.

1 Introduction We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces in some cases are classifiable or not (up to homeomorphism
classes or manifold classes with some operations like jointed sums) by the C∗-algebras or
their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Proof. We compute Kj(C0(Id
0,1 \ Bi)). Since each ball Bi is contractible, there is the fol-

lowing short exact sequence of C∗-algebras:

0 → C0(Id
0,1 \ Bi) → C0(Id

0,1) → C → 0.

Since C0(Id
0,1) ∼= ⊗dC0(R) = SdC, we have K0(SdC) ∼= Z and K0(SdC) ∼= 0 if d is even and

K0(SdC) ∼= 0 and K0(SdC) ∼= Z if d is odd. It follows from the six-term exact sequence of
K-theory groups that if d is even, then

K0(C0(Id
0,1 \ Bi)) ∼= Z and K1(C0(Id

0,1 \ Bi)) ∼= Z,

and if d is odd, then K0(C0(Id
0,1 \ Bi)) ∼= 0 and K1(C0(Id

0,1 \ Bi)) ∼= Z2.

Furthermore, combining Examples 3.19 and 3.20 with Proposition 3.18 we obtain

Example 3.21. Let M = �n+m+l
Bi

Xd
i , where Xi are n, m, l copies of I, I1, I0,1 respectively.

If m + l ≥ 1, then M is non-compact, and if d is even, then

K0(C0(M)) ∼= Zl and K1(C0(M)) ∼= Zm+l−1

and if d is odd, then K0(C0(M)) ∼= 0 and K1(C0(M)) ∼= Zm+2l−1.

Table 4: Classification for contractible spaces by K-theory of C∗-algebras

K-theory of C∗-algebras Contractible spaces
K0 = 0, K1 = 0 Non-compact, extended contractible:

I1, (In)− ≈ In
1 (n ≥ 2),

K0 = Z, K1 = 0 Compact: In

Noncompact, non-extended:
I2n
0,1 ≈ R2n

K0 = Zn, K1 = Zn−1 �n
pi

R2m (pointed),
�n

Bi
I2m
0,1 (balled)

K0 = 0, K1 = Z Noncompact, non-extended:
I2n+1
0,1 ≈ R2n+1,

�2
pI1, �2

p(I
m)− (pointed),

�2
BId

1 (balled)
K0 = 0, K1 = Zn−1 �n

pi
I1, �n

pi
(Im)− (pointed),

�n
Bi

Id
1 (balled)

K0 = 0, K1 = Zm+2l−1, �n+m+l
pi

Xi, �n+m+l
Bi

X2d+1
i ,

(Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
K0 = 0, K1 = Z2n−1 �n

pi
R, �n

pi
R2m+1 (pointed),

�n
Bi

I2m+1
0,1 (balled)

K0 = Zl, K1 = Zm+2l−1, �n+m+l
Bi

X2d
i ,

(Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
K0 = Zn, K1 = Zn+2m−1, �n+m

pi
Xi, �n+m

Bi
Xi (dim mixed),

with Xi = R2ni (1 ≤ i ≤ n),
Xi = R2mi+1 (n + 1 ≤ i ≤ n + m)

It follows from the Table 4 that

Classification of contractible spaces

Corollary 3.22. The ranks of K-theory groups for C∗-algebras (together with compactness
of spaces and dimension of spaces and that of balls in (generic) jointed sums and with
jointedness (jointed or not) and with arrangement (or permutation) in jointed sums) classify
contractible spaces as in the table (up to homeomorphisms) and to be compact, non-compact
and extended, or non-compact and non-extended.

Remark. Similarly, one can obtain almost the same table for identically contractible spaces.
In the statements above and below, to obtain classification results up to homeomor-

phisms we may assume that pointed or balled jointed sums are generic, i.e., points or balls
involved are mutually distinct.

Recall ([5] or [6]) that the Euler characteristic χ(A) of a C∗-algebra A is defined to be
the (formal) difference:

χ(A) = rankZK0(A) − rankZK1(A) ∈ Z ∪ {±∞} ∪ {∞−∞}

of the Z-ranks of the free abelian direct summands of the K-theory groups of A. In particu-
lar, it is shown that χ(C(X)) = χ(X), where χ(X) is the Euler characteristic of a compact
space (or a finite cell complex) X in homology (or cohomology) for spaces.

What’s more, it is deduced from the table 4 above that

Table 5: Classification for contractible spaces by the Euler characteristic

Euler numbers of C∗-algebras Contractible spaces
Zero: χ = 0 − 0 = 0 Non-compact, extended contractible:

I1, (In)− ≈ Id
1 (n ≥ 2)

Positive: χ = 1 − 0 = 1 > 0 Compact: In

Noncompact, non-extended: (even dim):
I2n
0,1 ≈ R2n,

χ = n − (n − 1) = 1 > 0 �n
pi

R2m (pointed),
�n

Bi
I2m
0,1 (balled)

Negative: χ = 0 − 1 = −1 < 0 Noncompact, non-extended:
(odd dim): I2n+1

0,1 ≈ R2n+1,
2-fold: �2

pI1, �2
p(I

m)− (pointed),
�2

BId
1 (balled)

χ = 0 − (n − 1) = 1 − n < 0 n-fold: �n
pi

I1, �n
pi

(Im)− (pointed),
�n

Bi
Id
1 (balled)

χ = 0 − (m + 2l − 1) �n+m+l
pi

Xi, �n+m+l
Bi

X2d+1
i ,

= 1 − m − 2l < 0 (Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1),
χ = 0 − (2n − 1) n-fold (odd dim): �n

pi
R,

1 − 2n < 0 �n
pi

R2m+1 (pointed),
�n

Bi
I2m+1
0,1 (balled)

χ = l − (m + 2l − 1) �n+m+l
Bi

X2d
i ,

= 1 − m − l < 0 (Xi = I, I1, I0,1 n,m, l copies, m, l ≥ 1)
χ = n − (n + 2m − 1) �n+m

pi
Xi, �n+m

Bi
Xi (dim mixed),

= 1 − 2m < 0 with Xi = R2ni (1 ≤ i ≤ n),
Xi = R2mi+1 (n + 1 ≤ i ≤ n + m)

It follows from the Table 5 that
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1 Introduction We consider contractible spaces and the corresponding C∗-algebras to
show that contractible spaces in some cases are classifiable or not (up to homeomorphism
classes or manifold classes with some operations like jointed sums) by the C∗-algebras or
their K-theory. Note that contractible spaces are homotopically identified with a point.

For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
classification results as collections, and the overview obtained from these tables as maps
would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Corollary 3.23. The numbers or signs (being positive, zero, or negative) of the Euler
characteristic for C∗-algebras (together with compactness, dimension, jointedness of spaces,
and arrangement (or permutation) in (generic) jointed sums) classify contractible spaces
as in the table (up to homeomorphisms) and to be compact, non-compact and extended, or
non-compact and non-extended.

Remark. Our classification tables obtained as collections in this paper would be useful
for further classification of contractible spaces in more general, with more examples as
representatives to be added.

Once more,

Corollary 3.24. Our classfication tables say that contractible spaces restricted to examples
viewed as representatives of equivalence classes by homeomorphisms are classifiable by their
corresponding C∗-algebras and K-theory data, plus, compactness, dimension, pointed or
balled jointedness for spaces, and arrangement (or permutation) in (generic) jointed sums,
as complete invariants.

Remark. The covering dimension for spaces as an invariant can be replaced by the real
rank for C∗-algebras ([3]). Being compact for spaces corresponds to being unital for their
corresponding C∗-algebras. Also, being jointed for spaces corresponds to being jointed for
their corresponding C∗-algebras, and arrangement (or permutation) in jointed sums for
spaces corresponds to that in jointed sums for their corresponding C∗-algebras.

Corollary 3.25. Both the ranks of K-theory groups for C∗-algebras and the Euler char-
acteristic for C∗-algebras can not classify jointedness for spaces, and as well, can not do
pointed or balled jointed sums of contractible spaces, up to arrangement (or permutation),
in general, except that all the components in jointed sums are the same.

However, if restricted to this exceptional case, and further restricted with dimension
fixed in spaces and balls in (generic) jointed sums, the ranks and the Euler characteristic
together with compactness and jointedness for spaces can be complete invariants to classify
the contractible spaces as in the lists above, up to homeomorphisms.

Consequently, we obtain

Corollary 3.26. Let M,N be product manifolds of finitely many 1-dimensional contractible
manifolds. Then the d and d′-dimensional (with d, d′ ≥ 0), jointed sums �n

Bi
M and �m

B′
i
N

are homeomorphic, (which is equivalent to that

C(�n
Bi

M) ∼= C(�m
B′

i
N) or C0(�n

Bi
M) ∼= C0(�m

B′
i
N),

where both M and N are compact or not), if and only if

Kj(C(�n
Bi

M)) ∼= Kj(C(�m
B′

i
N)) or Kj(C0(�n

Bi
M)) ∼= Kj(C0(�m

B′
i
N))

for j = 0, 1, and n = m (jointedness), and dim M = dim N and dimBi = d = d′ = dimB′
i

for every i.
Furthermore, the K-theory group isomorphisms can be replaced by

χ(C(�n
Bi

M)) = χ(C(�m
B′

i
N)) or χ(C0(�n

Bi
M)) = χ(C0(�m

B′
i
N)),

with the same other conditions.

Proof. As a note, suppose that there is a homeomorphism ϕ : X → Y of locally compact
Hausdorff spaces. Then there is a ∗-isomorphism ψ : C0(Y ) → C0(X) defined by ψ(f) =
f ◦ ϕ for f ∈ C0(Y ). The converse also holds by that X is the spectrum of C0(X) by the
Gelfand transform.
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For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Corollary 3.23. The numbers or signs (being positive, zero, or negative) of the Euler
characteristic for C∗-algebras (together with compactness, dimension, jointedness of spaces,
and arrangement (or permutation) in (generic) jointed sums) classify contractible spaces
as in the table (up to homeomorphisms) and to be compact, non-compact and extended, or
non-compact and non-extended.

Remark. Our classification tables obtained as collections in this paper would be useful
for further classification of contractible spaces in more general, with more examples as
representatives to be added.

Once more,

Corollary 3.24. Our classfication tables say that contractible spaces restricted to examples
viewed as representatives of equivalence classes by homeomorphisms are classifiable by their
corresponding C∗-algebras and K-theory data, plus, compactness, dimension, pointed or
balled jointedness for spaces, and arrangement (or permutation) in (generic) jointed sums,
as complete invariants.

Remark. The covering dimension for spaces as an invariant can be replaced by the real
rank for C∗-algebras ([3]). Being compact for spaces corresponds to being unital for their
corresponding C∗-algebras. Also, being jointed for spaces corresponds to being jointed for
their corresponding C∗-algebras, and arrangement (or permutation) in jointed sums for
spaces corresponds to that in jointed sums for their corresponding C∗-algebras.

Corollary 3.25. Both the ranks of K-theory groups for C∗-algebras and the Euler char-
acteristic for C∗-algebras can not classify jointedness for spaces, and as well, can not do
pointed or balled jointed sums of contractible spaces, up to arrangement (or permutation),
in general, except that all the components in jointed sums are the same.

However, if restricted to this exceptional case, and further restricted with dimension
fixed in spaces and balls in (generic) jointed sums, the ranks and the Euler characteristic
together with compactness and jointedness for spaces can be complete invariants to classify
the contractible spaces as in the lists above, up to homeomorphisms.

Consequently, we obtain

Corollary 3.26. Let M,N be product manifolds of finitely many 1-dimensional contractible
manifolds. Then the d and d′-dimensional (with d, d′ ≥ 0), jointed sums �n

Bi
M and �m

B′
i
N

are homeomorphic, (which is equivalent to that

C(�n
Bi

M) ∼= C(�m
B′

i
N) or C0(�n

Bi
M) ∼= C0(�m

B′
i
N),

where both M and N are compact or not), if and only if

Kj(C(�n
Bi

M)) ∼= Kj(C(�m
B′

i
N)) or Kj(C0(�n

Bi
M)) ∼= Kj(C0(�m

B′
i
N))

for j = 0, 1, and n = m (jointedness), and dim M = dim N and dimBi = d = d′ = dimB′
i

for every i.
Furthermore, the K-theory group isomorphisms can be replaced by

χ(C(�n
Bi

M)) = χ(C(�m
B′

i
N)) or χ(C0(�n

Bi
M)) = χ(C0(�m

B′
i
N)),

with the same other conditions.

Proof. As a note, suppose that there is a homeomorphism ϕ : X → Y of locally compact
Hausdorff spaces. Then there is a ∗-isomorphism ψ : C0(Y ) → C0(X) defined by ψ(f) =
f ◦ ϕ for f ∈ C0(Y ). The converse also holds by that X is the spectrum of C0(X) by the
Gelfand transform.

Classification of contractible spaces

4 Noncommutative jointed sums We may say that a jointed sum of two C∗-algebras
A and B with a common quotient D is defined to be the pull back C∗-algebra A ⊕D B as

A ⊕D B = {(a, b) ∈ A ⊕ B |ϕ(a) = ψ(b)} ρ−−−−→ B

π

�
�ψ

A
ϕ−−−−→ D

where ϕ : A → D and ψ : B → D are quotient maps and π : A⊕D B → A and ρ : A⊕DB →
B are natural projections.

The Mayer-Vietoris sequence for K-theory of C∗-algebras (see [1]) is the following six-
term diagram:

K0(A ⊕D B)
(π∗,ρ∗)−−−−−→ K0(A) ⊕ K0(B)

ψ∗−ϕ∗−−−−→ K0(D)�
�

K1(D)
ψ∗−ϕ∗←−−−− K1(A) ⊕ K1(B)

(π∗,ρ∗)←−−−−− K1(A ⊕D B)

In particular, it follows that

Proposition 4.1. Let A and B be contractible C∗-algebras with a common quotient D that
is contractible to C. Then

K0(A ⊕D B) ∼= 0 and K1(A ⊕D B) ∼= Z.

Proof. Indeed, the Mayer-Vietoris sequence becomes in this case:

K0(A ⊕D B)
(π∗,ρ∗)−−−−−→ 0 ⊕ 0

ψ∗−ϕ∗−−−−→ Z�
�

0
ψ∗−ϕ∗←−−−− 0 ⊕ 0

(π∗,ρ∗)←−−−−− K1(A ⊕D B).

Now suppose that the jointed sum C∗-algebra A ⊕D B and a C∗-algebra C have a
common quotient E. Then one can define a successive jointed sum of three C∗-algebras

(A ⊕D B) ⊕E C

as the successive pull back C∗-algebra. Note that the associativity for successive jointed
sums may not hold or not be defined in general. To have the associativity as

(A ⊕D B) ⊕E C ∼= A ⊕D (B ⊕E C)

we further need to assume that E is a common quotient of B, C, and A ⊕D B.

Proposition 4.2. Let (A⊕D B)⊕E C be a successive jointed sum C∗-algebra of contractible
C∗-algebras A, B, C with quotients D and E that are contractible to C. Then

K0((A ⊕D B) ⊕E C) ∼= 0 and K1((A ⊕D B) ⊕E C) ∼= Z2.
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For the classification program in our sense, we introduce several notions for C∗-algebras
and spaces and also do for several examples. As a summary, we obtain several tables as
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would be useful for further study in this topic.

Refer to several textbooks [1], [2], [4], or [8] about C∗-algebras and their K-theory and in
particular, contractible C∗-algebras. Beyond or extending several facts on them, we further
go into studying targeted ones in details in a way this time.

See also [7] for another classification result for some topological manifolds by C∗-algebras
and their K-theory, with the same sprit as in this paper.

Let us begin with some notations as follows.
For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
isomorphisms as well.

2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
such that f0 = idX and f1 = idp and the map F (t, x) = ft(x) is continuous on the product
space I × X. The map F is called a homotopy for X.
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Proof. Indeed, the Mayer-Vietoris sequence becomes in this case:

K0((A ⊕D B) ⊕E C)
(π∗,ρ∗)−−−−−→ 0 ⊕ 0

ψ∗−ϕ∗−−−−→ Z�
�

0
ψ∗−ϕ∗←−−−− Z ⊕ 0

(π∗,ρ∗)←−−−−− K1((A ⊕D B) ⊕E C),

where π : (A ⊕D B) ⊕E C → A ⊕D B and ρ : (A ⊕D B) ⊕E C → C by the same symbols as
for A ⊕D B, for convenience.

Inductively, one can define a successive jointed sum of C∗-algebras A1, · · · , An with
quotients D1, · · · , Dn−1 as

⊕n
Di

Ai ≡ (· · · ((A1 ⊕D1 A2) ⊕D2 A3) · · · ) ⊕Dn−1 An.

Note that the associativity for the successive jointed sums may not hold or not be defined
in general. To have the associativity as in the 3-fold case, we further need to assume that
the quotients are more common to have this as in the 3-fold case.

Proposition 4.3. Let ⊕n
Di

Ai be a successive jointed sum C∗-algebra of contractible C∗-
algebras A1, · · · ,An with quotients D1, · · · , Dn−1 that are contractible to C. Then

K0(⊕n
Di

Ai) ∼= 0 and K1(⊕n
Di

Ai) ∼= Zn−1.

Proof. We use induction by the same way as in the proof above.

Corollary 4.4. The jointed sum of two contractible C∗-algebras with a common quotient
that is contractible to C is not contractible.

As well, the successive jointed sum of n contractible C∗-algebras with successive common
quotients that are contractible to C is not contractible.

Remark. Since a contractible C∗-algebra A has K-theory groups zero, the Künneth formula
in K-theory for C∗-algebras implies that any tensor product of A with any other C∗-algebra
B has K-theory groups zero if A or B is in the bootstrap category.

What’s more. As an interest, we obtain

Proposition 4.5. Let A be a contractible C∗-algebra. Then any C∗-tensor product A ⊗ B
with any C∗-algebra B is contractible.

It follows that Kj(A ⊗ B) ∼= 0 for j = 0, 1.

Proof. There is a continuous homotopy (ϕt) between the identity map idA : A → A and the
zero map 0 : A → A, with ϕ1 = idA and ϕ0 = 0. For any simple tensor a ⊗ b ∈ A ⊗ B, we
define maps ψt : A⊗B → A⊗B by ψt(a⊗b) = ϕt(a)⊗b, which extends to ∗-homomorphism
from A ⊗ B to A ⊗ B. Then (ψt) gives a continuous homotopy between the identity map
idA⊗B : A ⊗ B and the zero map 0 : A ⊗ B → A ⊗ B.

Indeed, any element x ∈ A⊗B is approximated by finite sums of simple tensors, so that
x = limn→∞

∑n
k=1 ak ⊗ bk ≡ limn→∞ sn. Then define

ψt(x) = lim
n→∞

ψt(sn) = lim
n→∞

ψt(
n∑

k=1

ak ⊗ bk) = lim
n→∞

n∑
k=1

ϕt(ak) ⊗ bk,

which is well defined. Then

‖ψt(x) − ψs(x)‖
≤ ‖ψt(x) − ψt(sn)‖ + ‖ψt(sn) − ψs(sn)‖ + ‖ψs(sn) − ψs(x)‖,

which is arbitrary small when n is large enough and |t − s| is small enough.
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Proof. There is a continuous homotopy (ϕt) between the identity map idA : A → A and the
zero map 0 : A → A, with ϕ1 = idA and ϕ0 = 0. For any simple tensor a ⊗ b ∈ A ⊗ B, we
define maps ψt : A⊗B → A⊗B by ψt(a⊗b) = ϕt(a)⊗b, which extends to ∗-homomorphism
from A ⊗ B to A ⊗ B. Then (ψt) gives a continuous homotopy between the identity map
idA⊗B : A ⊗ B and the zero map 0 : A ⊗ B → A ⊗ B.

Indeed, any element x ∈ A⊗B is approximated by finite sums of simple tensors, so that
x = limn→∞
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ψt(x) = lim
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which is arbitrary small when n is large enough and |t − s| is small enough.

Classification of contractible spaces  

Remark. As for examples of noncommutative jointed sums, see the commutative cases in
the previous sections. One (principal case) of noncommutaive cases can be also obtained as
taking tensor products of C∗-algebras Ai with commutative C∗-algebras C0(Xi) and taking
their jointed sums, with quotients (of Ai or C0(Xi)) involved to be assumed. If the K-theory
groups of Ai are computable, then so are the K-theory groups of the jointed sums. As the
other cases, tensor products may be replaced by other operations such as crossed products
of C∗-algebras with suitable actions and free products of C∗-algebras.
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and spaces and also do for several examples. As a summary, we obtain several tables as
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go into studying targeted ones in details in a way this time.
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and their K-theory, with the same sprit as in this paper.
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For a compact Hausdorff sapce X, we denote by C(X) the C∗-algebra of all continu-

ous, complex-valued functions on X with the uniform (or supremum) norm and pointwise
operations.

For a non-compact, locally compact Hausdorff sapce X, we denote by C0(X) the C∗-
algebra of all continuous, complex-valued functions on X, vanishing at infinity. We denote
by X+ = X ∪ {∞} the one-point compactification of X. We may say that a non-compact,
locally compact Hausdorff space X− is the one-point un-compactification of a compact
Hausdorff space X if X− ∪ {∞} = X.

We write A ∼= B if two C∗-algebras A and B are ∗-isomorphic. We write X ≈ Y if
two spaces X and Y are homeomorphic. Use the same symbol ∼= for (K-theory) group
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2 Contractible, spaces and C∗-algebras A topological space X is said to be con-
tractible (in X) if there is a point p in X such that the identity map idX : X → X is
homotopic to the constant map idp on X, which sends elements of X to the point p. Namely,
there is a continuous path of continuous maps (ft) of X (to X) for t ∈ [0, 1] = I the interval
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MULTIPLIERS WITH CLOSED RANGE ON FRÉCHET ALGEBRAS

N. MOHAMMAD AND M. NAEEM AHMAD

Abstract. In this paper, we determine several equivalent conditions pertaining to

closed range multipliers defined on a semisimple Fréchet locally m-convex algebra. More-
over, we give a complete description of the point spectrum and the residual spectrum of
multipliers.

1. Introduction

The investigation of closed range multipliers, in the context of commutative semisimple
Banach algebras was initiated by Glicksberg [8] in 1971, whereby he raised the following
question: If T is a multiplier on a commutative semisimple Banach algebra A, whether a
factorization T = PB, where P is an idempotent and B an invertible multiplier, is necessary
and sufficient to ensure the closedness of TA? This problem was partially resolved by Host
and Parreau [12] for a particular situation of the group algebra L1 (G), where G is a locally
compact abelian group. Various equivalent conditions have been determined in [17] for a
multiplier T defined on a semisimple Banach algebra to have closed range.

It is quite natural to ask whether the above characterization of closed range multipliers
holds for a semisimple Fréchet locally m-convex algebra A. In this paper, we consider this
problem and establish several equivalent conditions pertaining to closed range multipliers
on A. Precisely, we prove that if A has a bounded approximate identity, then TA is a
closed ideal with a bounded approximate identity if and only if T admits a factorization
T = PB with P an idempotent and B an invertible multiplier. Moreover, if A is also a
Fréchet locally C∗-algebra then T has closed range if and only if T 2A = TA. Also, in this
case, T is injective if and only if it is surjective.

Finally, we discuss the spectral properties of multipliers defined on a simisimple com-
mutative Fréchet locally m-convex algebra A. The investigation of spectral properties of
a multiplier T defined on L1 (G) was initiated by Zafran [22]. Successively this problem
was studied by several other authors in the framework of commutative semisimple Banach
algebras. We study this problem in the more abstract situation of (non-normed) topological
algebras. We show that if the maximal ideal space ∆(A) is discrete, then the point spectrum
is completely characterized by σp (T ) = µT (∆ (A)). Under the assumption that socle of A
is dense in A, we establish that the residual spectrum of T is empty.

2. Closed range multipliers

Before investigating certain features of a multiplier with closed range, we need to establish
our preliminaries. A Hausdorff topological algebra A whose topology is generated by a
family {pα : α ∈ Λ} of seminorms is called a locally convex algebra. Moreover, if each
seminorm pα is also submultiplicative, i.e.,

pα (xy) ≤ pα (x) pα (y) , for all x, y ∈ A,
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imate identity; semisimple algebra; multiplier; socle of an algebra; point spectrum; residual spectrum.
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then A is called a locally m-convex algebra. Usually, a complete metrizable locally convex
(resp. locally m-convex) algebra is called a Fréchet locally convex (resp. Fréchet locally
m-convex ) algebra.

Given a semisimple Fréchet locally convex algebra A, then following [13], a mapping
T : A → A is said to be a multiplier if x (Ty) = (Tx)y holds for all x, y ∈ A. We denote
the set of all multipliers on A by M(A). Since A is semisimple, any T ∈ M(A) turns out to
be linear and the identity x (Ty) = T (xy) holds for any x, y ∈ A. Using the closed graph
theorem, the definition of a multiplier, and the semisimplicity of A, one can show that all
multipliers are necessarily continuous and hence bounded (see for instance, [13], Corollary
2.3). Moreover, M(A) is a closed subalgebra of B(A) with respect to the strong operator
topology, where B(A) denotes the algebra of all continuous (or bounded) linear operators
on A. Also, M(A) is commutative (see for instance, [13], Theorem 2.4) and has an identity
element. An application of the identity x (Ty) = T (xy) for all x, y ∈ A, yields that both
TA and kerT are two sided ideals of A, where TA and kerT denote the range and kernel
of T , respectively.

In this work, we want to study closed range multipliers on A. In [12], Host and Parreau
have established that if A = L1(G), where G is a locally compact abelian group, and if T is
a multiplier on L1(G), then TA is closed if and only if T = PB, where P is an idempotent
and T an invertible multiplier. Thus they partially resolved the interesting problem due
to Glicksberg [8] whether the factorization T = PB is necessary and sufficient to ensure
the closedness of TA for any multiplier T on a semisimple commutative Banach algebra
A. Various equivalent conditions have been determined in [1] , [17] and [21] under which
a multiplier T has closed range. Our aim is to consider this problem for a more general
situation in (non-normed) topological algebras.

We recall that an operator T ∈ B(A) has a generalized inverse (abbreviated as g-inverse),
if there is an operator S ∈ B(A) such that T = TST and S = STS. The operator T is also
called relatively regular [10]. We want to make a few observations about these operators.

Remark 1. (i) There is no loss of generality in requiring only that T = TST . In fact, if
T = TST , then S′ = STS will satisfy T = TS′T , as well as S′ = S′TS′.

(ii) If T = TST and S = STS, then TS and ST are idempotents and hence projections
for which TS (A) = T (A) and kerT = kerST . Indeed, (TS)2 = TSTS = TS and (ST )2 =
STST = ST . Moreover, from T (A) = TST (A) ⊆ TS(A) ⊆ T (A) and kerT ⊆ ker(ST ) ⊆
ker(TST ) = kerT , we obtain TS(A) = T (A) and ker(ST ) = (I − ST )A = kerT , where I
denotes the identity element in B(A).

(iii) Generally speaking, a generalized inverse of T is rarely uniquely determined. For
instance, if T = TST , then S can be anything on ker(T ). But there is at most one general-
ized inverse which commutes with the given T ∈ B(A). In fact, if S and S′ are g-inverses
of T , both commuting with T , then TS′ = TSTS′ = ST, and hence S′ = S′TS′ = S′TS =
STS = S.

The following result has been proved in [21].

Theorem 2.1. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A).
Then the following statements are equivalent.

(1) T has a g-inverse S ∈ B(A) such that ST = TS.
(2) T has a g-inverse S ∈ B(A) such that TS ∈ M(A).
(3) T has a g-inverse S ∈ B(A) such that TS commutes with T .
(4) T has a g-inverse S ∈ M(A).
(5) TA ⊕ ker T = A.
(6) T 2A = TA and ker T 2 = kerT .
(7) T = PB = BP , where B ∈ M(A) is invertible and P ∈ M(A) is idempotent.
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multiplier T defined on a semisimple Banach algebra to have closed range.

It is quite natural to ask whether the above characterization of closed range multipliers
holds for a semisimple Fréchet locally m-convex algebra A. In this paper, we consider this
problem and establish several equivalent conditions pertaining to closed range multipliers
on A. Precisely, we prove that if A has a bounded approximate identity, then TA is a
closed ideal with a bounded approximate identity if and only if T admits a factorization
T = PB with P an idempotent and B an invertible multiplier. Moreover, if A is also a
Fréchet locally C∗-algebra then T has closed range if and only if T 2A = TA. Also, in this
case, T is injective if and only if it is surjective.

Finally, we discuss the spectral properties of multipliers defined on a simisimple com-
mutative Fréchet locally m-convex algebra A. The investigation of spectral properties of
a multiplier T defined on L1 (G) was initiated by Zafran [22]. Successively this problem
was studied by several other authors in the framework of commutative semisimple Banach
algebras. We study this problem in the more abstract situation of (non-normed) topological
algebras. We show that if the maximal ideal space ∆(A) is discrete, then the point spectrum
is completely characterized by σp (T ) = µT (∆ (A)). Under the assumption that socle of A
is dense in A, we establish that the residual spectrum of T is empty.

2. Closed range multipliers

Before investigating certain features of a multiplier with closed range, we need to establish
our preliminaries. A Hausdorff topological algebra A whose topology is generated by a
family {pα : α ∈ Λ} of seminorms is called a locally convex algebra. Moreover, if each
seminorm pα is also submultiplicative, i.e.,

pα (xy) ≤ pα (x) pα (y) , for all x, y ∈ A,
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then A is called a locally m-convex algebra. Usually, a complete metrizable locally convex
(resp. locally m-convex) algebra is called a Fréchet locally convex (resp. Fréchet locally
m-convex ) algebra.

Given a semisimple Fréchet locally convex algebra A, then following [13], a mapping
T : A → A is said to be a multiplier if x (Ty) = (Tx)y holds for all x, y ∈ A. We denote
the set of all multipliers on A by M(A). Since A is semisimple, any T ∈ M(A) turns out to
be linear and the identity x (Ty) = T (xy) holds for any x, y ∈ A. Using the closed graph
theorem, the definition of a multiplier, and the semisimplicity of A, one can show that all
multipliers are necessarily continuous and hence bounded (see for instance, [13], Corollary
2.3). Moreover, M(A) is a closed subalgebra of B(A) with respect to the strong operator
topology, where B(A) denotes the algebra of all continuous (or bounded) linear operators
on A. Also, M(A) is commutative (see for instance, [13], Theorem 2.4) and has an identity
element. An application of the identity x (Ty) = T (xy) for all x, y ∈ A, yields that both
TA and kerT are two sided ideals of A, where TA and kerT denote the range and kernel
of T , respectively.

In this work, we want to study closed range multipliers on A. In [12], Host and Parreau
have established that if A = L1(G), where G is a locally compact abelian group, and if T is
a multiplier on L1(G), then TA is closed if and only if T = PB, where P is an idempotent
and T an invertible multiplier. Thus they partially resolved the interesting problem due
to Glicksberg [8] whether the factorization T = PB is necessary and sufficient to ensure
the closedness of TA for any multiplier T on a semisimple commutative Banach algebra
A. Various equivalent conditions have been determined in [1] , [17] and [21] under which
a multiplier T has closed range. Our aim is to consider this problem for a more general
situation in (non-normed) topological algebras.

We recall that an operator T ∈ B(A) has a generalized inverse (abbreviated as g-inverse),
if there is an operator S ∈ B(A) such that T = TST and S = STS. The operator T is also
called relatively regular [10]. We want to make a few observations about these operators.

Remark 1. (i) There is no loss of generality in requiring only that T = TST . In fact, if
T = TST , then S′ = STS will satisfy T = TS′T , as well as S′ = S′TS′.

(ii) If T = TST and S = STS, then TS and ST are idempotents and hence projections
for which TS (A) = T (A) and kerT = kerST . Indeed, (TS)2 = TSTS = TS and (ST )2 =
STST = ST . Moreover, from T (A) = TST (A) ⊆ TS(A) ⊆ T (A) and kerT ⊆ ker(ST ) ⊆
ker(TST ) = kerT , we obtain TS(A) = T (A) and ker(ST ) = (I − ST )A = kerT , where I
denotes the identity element in B(A).

(iii) Generally speaking, a generalized inverse of T is rarely uniquely determined. For
instance, if T = TST , then S can be anything on ker(T ). But there is at most one general-
ized inverse which commutes with the given T ∈ B(A). In fact, if S and S′ are g-inverses
of T , both commuting with T , then TS′ = TSTS′ = ST, and hence S′ = S′TS′ = S′TS =
STS = S.

The following result has been proved in [21].

Theorem 2.1. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A).
Then the following statements are equivalent.

(1) T has a g-inverse S ∈ B(A) such that ST = TS.
(2) T has a g-inverse S ∈ B(A) such that TS ∈ M(A).
(3) T has a g-inverse S ∈ B(A) such that TS commutes with T .
(4) T has a g-inverse S ∈ M(A).
(5) TA ⊕ ker T = A.
(6) T 2A = TA and ker T 2 = kerT .
(7) T = PB = BP , where B ∈ M(A) is invertible and P ∈ M(A) is idempotent.
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(8) T is decomposably regular in M(A), i.e., T = TCT , where C is an invertible multi-
plier.

We see from the preceding theorem that if T∈ M(A) has a commuting g-inverse then
this must be a multiplier. One fact about multipliers on semisimple algebras that we
shall use below is that they satisfy the relation ker T 2 = ker T . In fact, if T 2x = 0 then
0=T 2x2 = T (xTx) = (Tx)2, hence Tx = 0. An immediate consequence of this is that
TA ∩ kerT = {0}.
Corollary 2.2. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A). If
T 2A = TA, then TA is closed.

Proof. For the proof see [21]. �
We remark that the converse of Corollary 2.2 may not be true even in the case of general

Banach algebras. For instance, consider the disc algebra A = A(D) of all complex valued
continuous functions on the closed unit disc D which are analytic in the interior of D.
Let g ∈ A(D) be such that g(z) = z for each z ∈ D, and let Tg be the corresponding
multiplication operator. Clearly, Tg ∈ M(A) and TgA = {f ∈ A : f(0) = 0}, T 2

g A = {f ∈
A : f(0) = f ′(0) = 0}. Obviously TgA is closed, but TgA �= T 2

g A.
Let A be a Fréchet locally m-convex algebra whose topology is generated by a family

{pn : n ∈ N} of submultiplicative seminorms. A net {eα : α ∈ I} in A is called a bounded
approximate identity (abbreviated as bai) if pn (eα) ≤ 1 for all n ∈ N and for all α ∈ I,
lim
α

eαx = lim
α

xeα = x for all x ∈ A. Following Inoue [15], A is called a Fréchet locally

C ∗-algebra if it has an involution ∗ satisfying pn (x∗x) = (pn (x))2 for all n ∈ N and x ∈ A.
It is well-known that every Fréchet locally C*-algebra has a bai (see [15, Theorem 2.6] and
[6, Theorem 4.5]).

Theorem 2.3. Let A be a semisimple Fréchet locally m-convex algebra with a bounded
approximate identity and T ∈ M(A). Then TA is a closed ideal with a bounded approximate
identity if and only if T admits a factorization T = PB, where P is an idempotent multiplier
and B an invertible multiplier.

Proof. Let {eα} be a bounded approximate identity of A. Assume that T ∈ M(A) has a
factorization T = PB, where P ∈ M(A) is idempotent and B ∈ M(A) is invertible. Since
TA = PA, it follows immediately that TA is a closed ideal. Also, the bounded net {Peα}
is subset of TA. Hence xPeα = P (xeα) → Px = x, for all x ∈ TA.

Conversely assume that TA is a closed ideal with a bounded approximate identity. Then
using the generalized version of the Cohen’s factorization theorem ([5], p. 610), for each x ∈
TA, there exist y, z in TA such that x = yz, i.e., TA = (TA)2 which implies T 2A ⊆ TA =
(TA)2. On the other hand, for any x, y ∈ A, we have (Tx)(Ty) = T (xTy) = T 2(xy) ∈ T 2A,
and so (TA)2 ⊆ T 2A. Hence TA = T 2A. The desired factorization T = PB follows from
the preceding theorem. �
Corollary 2.4. Let A be a semisimple Fréchet locally m-convex algebra with a bounded
approximate identity and T ∈ M(A). Then the conditions (1) to (8) of Theorem 2.1 are
equivalent to the following condition: (9) TA is a closed ideal with a bounded approximate
identity.

Note that every Fréchet locally C ∗-algebra is semisimple (cf. [6, Corollary 5.6] and [7,
Lemma 8.14(ii)]). Now we remark that Theorem 3.6 [21] follows immediately as a simple
corollary of the preceding theorem. Precisely, we have:

Corollary 2.5. Let A be a Fréchet locally C ∗-algebra and T ∈ M(A). Then TA is closed
if and only if T 2A = TA.
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Corollary 2.6. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A). If
T 2A = TA, then T is injective if and only if it is surjective.

Proof. Let T be surjective. Since TA ∩ kerT={0}, it follows that kerT = {0}, that is, T
is injective. Conversely, assume that ker T = {0}. Since, by assumption, T 2A = TA, it
follows from Theorem 2.1 that TA⊕kerT = A. Hence TA = A, that is, T is surjective. �

Now we see, by virtue of Corollary 2.4, that if T is a multiplier on a semisimple Fréchet
locally m-convex algebra with a bounded approximate identity such that TA is a closed
ideal with a bounded approximate identity, then T is injective if and only if it is surjective.
In particular, we obtain a result of [20] which states that a closed range multiplier on a
Fréchet locally C ∗-algebra is injective if and only if it is surjective.

3. Spectral Properties of Multipliers

In this section we investigate certain spectral properties of multipliers defined on a
semisimple commutative Fréchet locally m-convex algebra A. Denote the set of all non-zero
continuous multiplicative linear functionals on A by ∆(A). In what follows, we assume that
∆(A) is non-empty and point-separating, without mentioning it explicitly. For any x ∈ A,
define the Gelfand transform x̂ of x by x̂(f) = f(x) for each f ∈ ∆(A). The space ∆(A)
is equipped with the Gelfand topology, i.e., the induced topology inherited from the weak∗

topology of A∗. We shall use the following result of [13] frequently.

Theorem 3.1. There is a continuous function µT : ∆(A) → C corresponding to each T ∈
M(A) defined by µT (f) = f ◦ T (x), where x is chosen such that f(x)=1, satisfying the
relation (T̂ y)(f) = ŷ(f)µT (f), for all y ∈ A and all f ∈ ∆(A).

Now we need to recall the definition of the socle of a semisimple commutative Fréchet
locally m-convex algebra A, an ideal that plays an important role in our subsequent dis-
cussion. A minimal idempotent of A is a non-zero idempotent e such that eAe is a division
algebra. Note that if e is a minimal idempotent element, then eAe = Ce ([3], p. 292). The
set of all minimal idempotents of A is denoted by EA. It is well-known that an ideal J of
A is a minimal ideal if and only if J = eA for some e ∈ EA (see for instance, [4]). The socle
of A, denoted by soc(A), is defined as the sum of all minimal ideals of A, or (0) if there are
none. In what follows, we assume that the ideal soc(A) does exist, without mentioning it
explicitly. The socle of A can be characterized in a simple way as:

soc(A) =

{
n∑

k=1

ekA : ek ∈ EA, n ∈ N

}
= span(EA).

An important class of topological algebras consists of those which have a dense socle. For
instance, consider the algebra A = H(D) of all holomorphic functions defined on the open
disc D = {z ∈ C : |z| < 1} with point-wise addition and scalar multiplication. With the
Cauchy-Hadamard product and the compact-open topology, it is a semisimple commutative
Fréchet locally m-convex algebra possessing an orthogonal basis {en : n ≥ 0}, where en (z) =

zn for z ∈ D. The element e (z) =
∞∑

n=0
zn is the identity element of H(D). Note that enA is

a minimal ideal of A, for all n ∈ N. Moreover, A is the direct sum of these minimal ideals,
i.e., soc(A) is dense in A (see [14], Chapter III, p. 97).

Similarly, the algebra A = s of all complex sequences with coordinate-wise operations
is a semisimple commutative Fréchet locally m-convex algebra with identity and possessing
an orthogonal basis {en : n ≥ 1}(see [14], Example 3.4, Chapter II). In this case, soc(A) is
also dense in A. In fact, the socle is dense in every Hausdorff topological algebra possessing
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Corollary 2.6. Let A be a semisimple Fréchet locally m-convex algebra and T ∈ M(A). If
T 2A = TA, then T is injective if and only if it is surjective.

Proof. Let T be surjective. Since TA ∩ kerT={0}, it follows that kerT = {0}, that is, T
is injective. Conversely, assume that ker T = {0}. Since, by assumption, T 2A = TA, it
follows from Theorem 2.1 that TA⊕kerT = A. Hence TA = A, that is, T is surjective. �
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locally m-convex algebra with a bounded approximate identity such that TA is a closed
ideal with a bounded approximate identity, then T is injective if and only if it is surjective.
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topology of A∗. We shall use the following result of [13] frequently.

Theorem 3.1. There is a continuous function µT : ∆(A) → C corresponding to each T ∈
M(A) defined by µT (f) = f ◦ T (x), where x is chosen such that f(x)=1, satisfying the
relation (T̂ y)(f) = ŷ(f)µT (f), for all y ∈ A and all f ∈ ∆(A).
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set of all minimal idempotents of A is denoted by EA. It is well-known that an ideal J of
A is a minimal ideal if and only if J = eA for some e ∈ EA (see for instance, [4]). The socle
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soc(A) =

{
n∑

k=1

ekA : ek ∈ EA, n ∈ N

}
= span(EA).

An important class of topological algebras consists of those which have a dense socle. For
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zn for z ∈ D. The element e (z) =
∞∑

n=0
zn is the identity element of H(D). Note that enA is

a minimal ideal of A, for all n ∈ N. Moreover, A is the direct sum of these minimal ideals,
i.e., soc(A) is dense in A (see [14], Chapter III, p. 97).

Similarly, the algebra A = s of all complex sequences with coordinate-wise operations
is a semisimple commutative Fréchet locally m-convex algebra with identity and possessing
an orthogonal basis {en : n ≥ 1}(see [14], Example 3.4, Chapter II). In this case, soc(A) is
also dense in A. In fact, the socle is dense in every Hausdorff topological algebra possessing
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an orthogonal basis. Moreover, ∆(A) is homeomorphic with the discrete space of natural
numbers N (see [14], Theorem 3.12, Chapter III). We now prove the following:

Theorem 3.2. Let A be a semisimple commutative Fréchet locally m-convex algebra. If
soc(A) = A, then ∆(A) is discrete.

Proof. First we observe that Â = {â : a ∈ A} separates the points of ∆ (A). In fact, if
f, g ∈ ∆(A) such that f �= g, then there exists x0 ∈ A with f(x0) �= g(x0). Therefore,
it implies that x̂0(f) �= x̂0(g). Hence there is no h ∈ ∆ (A) at which x̂ vanishes for
all x ∈ soc(A). Thus if f0 ∈ ∆(A), then there exists an element x ∈ soc(A) for which
x̂ (f0) = 1. Therefore, {h ∈ ∆(A) : |x̂ (h) − x̂ (f0)| < 1

2} = {f0} is a weak*-neighborhood
of f . This implies that ∆ (A) is discrete. �

We denote by Cc(∆(A)) the algebra of all C-valued continuous functions on ∆(A) en-
dowed with the topology of compact convergence. Now by combining Theorem 3.2 with [9,
Theorem 4.2 ], we get:

Corollary 3.3. Let A be a unital semisimple commutative Fréchet locally m-convex algebra.
If soc(A) = A, then A = Cc(∆(A)), with respect to a topological algebraic isomorphism.

A locally m-convex (resp. Fréchet locally m-convex) algebra A whose topology is gen-
erated by a family {pα : α ∈ Λ} of submultiplicative seminorms is called a uniform locally
m-convex (resp. uniform Fréchet locally m-convex) algebra if pα

(
x2

)
= (pα (x))2, for all

x ∈ A, α ∈ Λ. Every uniform locally m-convex algebra is commutative and semisimple (see
[18, p. 275, Lemma 5.1]). Moreover, from [9, Corollary 5.4(ii)] and Theorem 3.2, we get:

Corollary 3.4. A unital uniform Fréchet locally m-convex algebra with dense socle is a
Banach algebra.

We showed in Section 2 that the converse of Corollary 2.2 may not be true even in the
case of Banach algebras, but it is true for Fréchet locally C ∗-algebras (see Corollary 2.5).
A similar result proved in [2] states that if A is a semisimple commutative Fréchet locally
m-convex algebra and T ∈ M(A), then T 2A is closed if and only if TA ⊕ kerT is closed.
Note that a Fréchet locally m-convex algebra is simply called a Fréchet algebra in [2]. Now
we remark that Theorem 5 [2] follows directly from Theorem 2.1. More precisely, we have:

Corollary 3.5. Let A be a semisimple commutative Fréchet locally m-convex algebra with
T ∈ M(A) and soc(A) = A. Then T is a product of an idempotent multiplier and an
invertible multiplier if and only TA ⊕ kerT = A.

Observe that two conditions on A, it being a commutative algebra and having the dense
socle, in Theorem 5 [2] can be relaxed by virtue of Theorem 2.1.

In the sequel, we denote by σp (T ) and σr (T ) the point spectrum and the residual
spectrum of T, respectively. Recall that A is said to be regular if for each closed subset E
of ∆ (A) in the Gelfand topology and f0 ∈ ∆(A) \E, there exists an element x in A such
that x̂(f0) = 1 and x̂(f) = 0 for all f ∈ E (see for instance, [18], p. 332). We remark
that if ∆ (A) is discrete, then clearly A is regular. We recall that the ascent p(T ) of an
operator T is defined as the smallest non-negative integer p, whenever it exists, such that
kerT p = kerT p+1.

Theorem 3.6. Let A be a semisimple commutative Fréchet locally m-convex algebra and
T∈ M(A). Then

(1) σp (T ) ⊆ µT (∆ (A)) ⊆ σp (T ) ∪ σr (T ).
(2) For any λ ∈ σ (T ) we have p (λI − T ) ≤ 1.
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problem and establish several equivalent conditions pertaining to closed range multipliers
on A. Precisely, we prove that if A has a bounded approximate identity, then TA is a
closed ideal with a bounded approximate identity if and only if T admits a factorization
T = PB with P an idempotent and B an invertible multiplier. Moreover, if A is also a
Fréchet locally C∗-algebra then T has closed range if and only if T 2A = TA. Also, in this
case, T is injective if and only if it is surjective.

Finally, we discuss the spectral properties of multipliers defined on a simisimple com-
mutative Fréchet locally m-convex algebra A. The investigation of spectral properties of
a multiplier T defined on L1 (G) was initiated by Zafran [22]. Successively this problem
was studied by several other authors in the framework of commutative semisimple Banach
algebras. We study this problem in the more abstract situation of (non-normed) topological
algebras. We show that if the maximal ideal space ∆(A) is discrete, then the point spectrum
is completely characterized by σp (T ) = µT (∆ (A)). Under the assumption that socle of A
is dense in A, we establish that the residual spectrum of T is empty.

2. Closed range multipliers

Before investigating certain features of a multiplier with closed range, we need to establish
our preliminaries. A Hausdorff topological algebra A whose topology is generated by a
family {pα : α ∈ Λ} of seminorms is called a locally convex algebra. Moreover, if each
seminorm pα is also submultiplicative, i.e.,

pα (xy) ≤ pα (x) pα (y) , for all x, y ∈ A,
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Proof. (1) Let λ ∈ σp (T ). Then there exists a none-zero element x of A such that
(λI − T ) (x) = 0. Therefore, ( ̂(λI − T )(x)) =

(
λ − µT

)
x̂ = 0̂. Since A is semisimple

and x̂ �= 0̂ there exists f0 ∈ ∆ (A) such that x̂ (f0) �= 0. Thus it follows, from above that(
λ − µT

)
f0 = 0, and so µT (f0) = λ. That is, λ ∈ µT (∆ (A)).

To prove the second inclusion, let T ∗ denote the topological dual of T . Then for each
f ∈ ∆ (A), we have (T ∗f)x = f (Tx) = (T̂ x) (f) = µT (f) x̂ (f) = µT (f) f (x), (using
Theorem 3.1), for all x∈ A . Therefore, T ∗f = µT (f) f, and hence µT (f) is an eigenvalue
of T ∗. Since the inclusion σp (T ∗) ⊆ σp (T )∪ σr (T ) holds by virtue of Theorem 2.16.5 [11],
the desired inclusion follows immediately.

(2) Let x ∈ ker (λI − T )2, where x �= 0. Since (λI − T )2 ∈ M(A) and µ(λI−T )2 =(
λ − µT

)2, it follows that 0 = ( ̂(λI − T )2(x)) (f) =
(
λ − µT

)2 (f) · x̂ (f), for all f ∈ ∆(A)
(using Theorem 3.1). Hence

(
λ − µT

)
(f) · x̂ (f) = 0 for each f ∈ ∆(A). Therefore,

̂(λI − T )(x) = 0̂. Since A is semisimple, (λI − T ) (x) = 0, and so x ∈ ker (λI − T ).
Thus ker (λI − T )2 ⊆ ker (λI − T ). Since the reverse inclusion is trivial, we conclude that
p (λI − T ) ≤ 1. �

Remark 2. To every T ∈ M(A) the corresponding function µT may not be bounded,
in general. However, if M(A) is a Q-algebra, then the function µT is bounded since
µT (∆ (A)) ⊆ σp (T ) ∪ σr (T ) ⊆ σ (T ) and every element in a Q-algebra has compact spec-
trum [19]. Note that it would be interesting to investigating whether property Q on A could
pass onto M(A) and vice versa?

Now we give a complete description of the point spectrum of T ∈ M(A).

Theorem 3.7. Let A be a semisimple commutative Fréchet locally m-convex algebra and
T ∈ M(A). If ∆(A) is discrete, then we have σp (T ) = µT (∆ (A)).

Proof. By virtue of Theorem 3.6, it remains only to show that µT (∆ (A)) ⊆ σp (T ). Let f0

be fixed in ∆ (A). Since, by assumption ∆ (A) is discrete and hence A is regular, there exists
an element x in A such that x̂ (f◦) = 1 and x̂ vanishes identically on the set ∆ (A) \{f0}.
Therefore, ( ̂[µT (f0)I − T ]x)(f) =

(
µT (f0) − µT (f)

)
· x̂ (f) = 0 for each f ∈ ∆(A) and so

[µT (f0) I − T ]x = 0, because A is semisimple. Since x �= 0, we obtain µT (f0) ∈ σp (T ).
Hence σp (T ) = µT (∆ (A)). �

Under the assumption that soc(A) = A, we now give a complete description of the
residual spectrum of T ∈ M(A).

Theorem 3.8. Let A be a semisimple commutative Fréchet locally m-convex algebra with
dense socle. Then σr (T ) = ∅.

Proof. Assume on the contrary that σr (T ) �= ∅. Let λ ∈ σr (T ). Then by Theorem 3.7, λ /∈
σp (T ) implies that λ �= µT (f) for each f ∈ ∆ (A). For any x ∈ EA there exists f0 ∈ ∆(A)
such that x̂(f0) = 1 and x̂ vanishes identically on ∆ (A) \{f0}. Set y =

(
λ − µT (f0)

)−1
x,

then we have [ ̂(λI − T )y] (f) = x̂(f) for all f in ∆ (A) and so (λI − T )y = x, that is,
EA ⊆ (λI − T ) (A) ⊆ A. Since, by hypothesis, we have A = span{EA} which implies
A = (λI − T ) (A) and so λ /∈ σr (T ) , a contradiction. Hence σr (T ) = ∅. �

Finally we give an application of our previous results: Let A denote a Hausdorff topo-
logical algebra with an orthogonal basis {xi}. Then A is commutative ([14], Corollary 1.4,
Chapter III), proper ([14], Proposition 1.6, Chapter III), semisimple ([14], Corollary 2.5,
Chapter III), and has dense socle ([14], Theorem 4.3, Chapter III). Also, each coordinate
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Proof. (1) Let λ ∈ σp (T ). Then there exists a none-zero element x of A such that
(λI − T ) (x) = 0. Therefore, ( ̂(λI − T )(x)) =

(
λ − µT

)
x̂ = 0̂. Since A is semisimple

and x̂ �= 0̂ there exists f0 ∈ ∆ (A) such that x̂ (f0) �= 0. Thus it follows, from above that(
λ − µT

)
f0 = 0, and so µT (f0) = λ. That is, λ ∈ µT (∆ (A)).

To prove the second inclusion, let T ∗ denote the topological dual of T . Then for each
f ∈ ∆ (A), we have (T ∗f)x = f (Tx) = (T̂ x) (f) = µT (f) x̂ (f) = µT (f) f (x), (using
Theorem 3.1), for all x∈ A . Therefore, T ∗f = µT (f) f, and hence µT (f) is an eigenvalue
of T ∗. Since the inclusion σp (T ∗) ⊆ σp (T )∪ σr (T ) holds by virtue of Theorem 2.16.5 [11],
the desired inclusion follows immediately.

(2) Let x ∈ ker (λI − T )2, where x �= 0. Since (λI − T )2 ∈ M(A) and µ(λI−T )2 =(
λ − µT

)2, it follows that 0 = ( ̂(λI − T )2(x)) (f) =
(
λ − µT

)2 (f) · x̂ (f), for all f ∈ ∆(A)
(using Theorem 3.1). Hence

(
λ − µT

)
(f) · x̂ (f) = 0 for each f ∈ ∆(A). Therefore,

̂(λI − T )(x) = 0̂. Since A is semisimple, (λI − T ) (x) = 0, and so x ∈ ker (λI − T ).
Thus ker (λI − T )2 ⊆ ker (λI − T ). Since the reverse inclusion is trivial, we conclude that
p (λI − T ) ≤ 1. �

Remark 2. To every T ∈ M(A) the corresponding function µT may not be bounded,
in general. However, if M(A) is a Q-algebra, then the function µT is bounded since
µT (∆ (A)) ⊆ σp (T ) ∪ σr (T ) ⊆ σ (T ) and every element in a Q-algebra has compact spec-
trum [19]. Note that it would be interesting to investigating whether property Q on A could
pass onto M(A) and vice versa?

Now we give a complete description of the point spectrum of T ∈ M(A).

Theorem 3.7. Let A be a semisimple commutative Fréchet locally m-convex algebra and
T ∈ M(A). If ∆(A) is discrete, then we have σp (T ) = µT (∆ (A)).

Proof. By virtue of Theorem 3.6, it remains only to show that µT (∆ (A)) ⊆ σp (T ). Let f0

be fixed in ∆ (A). Since, by assumption ∆ (A) is discrete and hence A is regular, there exists
an element x in A such that x̂ (f◦) = 1 and x̂ vanishes identically on the set ∆ (A) \{f0}.
Therefore, ( ̂[µT (f0)I − T ]x)(f) =

(
µT (f0) − µT (f)

)
· x̂ (f) = 0 for each f ∈ ∆(A) and so

[µT (f0) I − T ]x = 0, because A is semisimple. Since x �= 0, we obtain µT (f0) ∈ σp (T ).
Hence σp (T ) = µT (∆ (A)). �

Under the assumption that soc(A) = A, we now give a complete description of the
residual spectrum of T ∈ M(A).

Theorem 3.8. Let A be a semisimple commutative Fréchet locally m-convex algebra with
dense socle. Then σr (T ) = ∅.

Proof. Assume on the contrary that σr (T ) �= ∅. Let λ ∈ σr (T ). Then by Theorem 3.7, λ /∈
σp (T ) implies that λ �= µT (f) for each f ∈ ∆ (A). For any x ∈ EA there exists f0 ∈ ∆(A)
such that x̂(f0) = 1 and x̂ vanishes identically on ∆ (A) \{f0}. Set y =

(
λ − µT (f0)

)−1
x,

then we have [ ̂(λI − T )y] (f) = x̂(f) for all f in ∆ (A) and so (λI − T )y = x, that is,
EA ⊆ (λI − T ) (A) ⊆ A. Since, by hypothesis, we have A = span{EA} which implies
A = (λI − T ) (A) and so λ /∈ σr (T ) , a contradiction. Hence σr (T ) = ∅. �

Finally we give an application of our previous results: Let A denote a Hausdorff topo-
logical algebra with an orthogonal basis {xi}. Then A is commutative ([14], Corollary 1.4,
Chapter III), proper ([14], Proposition 1.6, Chapter III), semisimple ([14], Corollary 2.5,
Chapter III), and has dense socle ([14], Theorem 4.3, Chapter III). Also, each coordinate
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functional λi determined by the basis {xi} via x =
∞∑

i=1

λi(x)xi, is continuous, i.e., {xi}

is a Schauder basis ([14] Theorem 1.12, Chapter III). Further, each λi is a multiplicative
linear functional ([14], p. 79). Moreover, ∆(A) is homeomorphic with the discrete space of
natural numbers N ([14] Theorem 3.12, Chapter III). To each T ∈ M(A), there corresponds
a sequence {µT

i } of complex numbers defined by µT
i = µT (λi) for all i ≥ 1, and moreover it

is completely described by: Tx =
∞∑

i=1

λi(x)µT
i xi, for all x ∈ A ([14], p. 225).

Corollary 3.9. Let A be a locally m-convex algebra with an orthogonal basis {xi} and
T ∈ M(A). Then we have σp(T ) = {µT

i : i ≥ 1} and σr(T ) = ∅.
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over, we give a complete description of the point spectrum and the residual spectrum of
multipliers.

1. Introduction

The investigation of closed range multipliers, in the context of commutative semisimple
Banach algebras was initiated by Glicksberg [8] in 1971, whereby he raised the following
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factorization T = PB, where P is an idempotent and B an invertible multiplier, is necessary
and sufficient to ensure the closedness of TA? This problem was partially resolved by Host
and Parreau [12] for a particular situation of the group algebra L1 (G), where G is a locally
compact abelian group. Various equivalent conditions have been determined in [17] for a
multiplier T defined on a semisimple Banach algebra to have closed range.

It is quite natural to ask whether the above characterization of closed range multipliers
holds for a semisimple Fréchet locally m-convex algebra A. In this paper, we consider this
problem and establish several equivalent conditions pertaining to closed range multipliers
on A. Precisely, we prove that if A has a bounded approximate identity, then TA is a
closed ideal with a bounded approximate identity if and only if T admits a factorization
T = PB with P an idempotent and B an invertible multiplier. Moreover, if A is also a
Fréchet locally C∗-algebra then T has closed range if and only if T 2A = TA. Also, in this
case, T is injective if and only if it is surjective.

Finally, we discuss the spectral properties of multipliers defined on a simisimple com-
mutative Fréchet locally m-convex algebra A. The investigation of spectral properties of
a multiplier T defined on L1 (G) was initiated by Zafran [22]. Successively this problem
was studied by several other authors in the framework of commutative semisimple Banach
algebras. We study this problem in the more abstract situation of (non-normed) topological
algebras. We show that if the maximal ideal space ∆(A) is discrete, then the point spectrum
is completely characterized by σp (T ) = µT (∆ (A)). Under the assumption that socle of A
is dense in A, we establish that the residual spectrum of T is empty.

2. Closed range multipliers

Before investigating certain features of a multiplier with closed range, we need to establish
our preliminaries. A Hausdorff topological algebra A whose topology is generated by a
family {pα : α ∈ Λ} of seminorms is called a locally convex algebra. Moreover, if each
seminorm pα is also submultiplicative, i.e.,

pα (xy) ≤ pα (x) pα (y) , for all x, y ∈ A,

1991 Mathematics Subject Classification. Primary 46H05, 46J05, 46L05, 47C05, 47A05; Secondary
47B48, 47A10.

Key words and phrases. Fréchet locally m-convex algebra; Fréchet locally C∗-algebra; bounded approx-
imate identity; semisimple algebra; multiplier; socle of an algebra; point spectrum; residual spectrum.
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Submission to the SCMJ 
 
In September 2012, the way of submission to Scientiae Mathematicae Japonicae 
(SCMJ) was changed.  Submissions should be sent electronically (in PDF file) to the 
editorial office of International Society for Mathematical Sciences (ISMS).  
 
(1) Preparation of files and Submission 

a. Authors who would like to submit their papers to the SCMJ should make 
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty) 
Submissions should be in PDF file compiled from the source files.  Send the 
PDF file to s1bmt@jams.jp . 

b. Prepare a Submission Form and send it to the ISMS.  The required items to 
be contained in the form are:  

  1. Editor’s name whom the author chooses from the Editorial Board 
(http://www.jams.or.jp/hp/submission_f.html )and would like to take in 
charge of the paper for refereeing.  

2. Title of the paper.   
3. Authors’ names.   
4. Corresponding author’s name, e-mail address and postal address (affiliation).  
5. Membership number in case the author is an ISMS member.   
 
Japanese authors should write 3 and 4 both in English and in Japanese.  
 
At http://www.jams.or.jp/hp/submission_f.html, the author can find the 
Submission Form. Fulfill the Form and sent it to the editorial office by pushing 
the button “transmission”.  Or, without using the Form, the author may send 
an e-mail containing the items 1-5 to s1bmt@jams.jp 

 
(2) Registration of Papers 

When the editorial office receives both a PDF file of a submitted paper and a 
Submission Form, we register the paper.  We inform the author of the 
registration number and the received date.  At the same time, we send the PDF 
file to the editor whom the author chooses in the Submission Form and request 
him/her to begin the process of refereeing. (Authors need not send their papers to 
the editor they choose.) 
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(3) Reviewing Process 
a. The editor who receives, from the editorial office, the PDF file and the request 

of starting the reviewing process, he/she will find an appropriate referee for 
the paper.   

b. The referee sends a report to the editor.  When revision of the paper is 
necessary, the editor informs the author of the referee’s opinion. 

c. Based on the referee report, the editor sends his/her decision (acceptance of 
rejection) to the editorial office. 

 
(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the  

editor’s decision, and informs it to the author. 
b. When the paper is accepted, we ask the author to send us a source file and 

a PDF file of the final manuscript.  
c. The publication charges for the ISMS members are free if the membership dues 

have been paid without delay. If the authors of the accepted papers are not the 
ISMS members, they should become ISMS members and pay ¥6,000 (US$75, 
Euro55) as the membership dues for a year, or should just pay the same 
amount without becoming the members. 

 
 
 
 

Items required in Submission Form 
1. Editor’s name who the authors wish will take in charge of the paper 
2. Title of the paper 
3. Authors’ names 
3’.  3. in Japanese for Japanese authors 
4. Corresponding author’s name and postal address (affiliation) 
4’.  4. in Japanese for Japanese authors 
5. ISMS membership number 
6. E-mail address   

 
 
 
 
 
 
 
 

 
 

212



 3

Call for ISMS Members 
 

Call for Academic and Institutional Members 
 

Discounted subscription price: When organizations become the Academic and Institutional 
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the 
yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    

 
Invitation of two associate members: We would like to invite two persons from the 

organizations to the associate members with no membership fees. The two persons will enjoy 
almost the same privileges as the individual members.  Although the associate members 
cannot have their own ID Name and Password to read the online version of SCMJ, they can 
read the online version of SCMJ at their organization. 

 
To apply for the Academic and Institutional Member of the ISMS, please use the following 

application form. 
 
----------------------------------------------------------------------------------------------------------- 
 

Application for Academic and Institutional Member of ISMS 
Subscription of SCMJ 

Check one of the two. 

 

□Print               □Print ＋ Online 

(US$225)                 (US$225) 

University (Institution) 

 

 

Department 

 

 

Postal Address 

where SCMJ should be 

sent 

 

E-mail address 

 

 

Person in charge 

Name: 

Signature: 

 

Payment 

Check one of the two. 
□Bank transfer        □Credit Card (Visa, Master) 

Name of Associate Membership 

1.  

 

2.  
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Call for Individual Members 

 
We call for individual members.  The privileges to them and the membership dues are shown 

in “Join ISMS !” on the inside of the back cover. 
 

 
 Items required in Membership Application Form 
   

1. Name 
2. Birth date 
3. Academic background 
4. Affiliation 
5. 4’s address 
6. Doctorate 
7. Contact address 
8. E-mail address 
9. Special fields 
10. Membership category (See Table 1 in “Join ISMS !”) 
 

Individual Membership Application Form 
 
1. Name 
 

 

 
2. Birth date 
 

 

3. 
Academic background 
 

 

 
4. Affiliation 
 

 

 
5. 4’s address 
 
 

 

 
6. Doctorate 
 

 

 
7. Contact address 
 
 

 

  
8.  E-mail address 
 

 

 
9.  Special fields 
 

 

10.  
Membership 

    category 
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Contributions (Gift to the ISMS) 
We deeply appreciate your generous contributions to support the activities of our 

society. 
The donation are used (1) to make medals for the new prizes (Kitagawa Prize, 
Kunugi Prize, and ISMS Prize),  (2) to support the IVMS at Osaka University 
Nakanoshima Center, and (3) for a special fund designated by the contributors. 
 
Your remittance to the following accounts of ours will be very much appreciated. 

 
(1)  Through a post office, remit to our giro account ( in Yen only ): 

         No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS ) 
   or send International Postal Money Order (in US Dollar or in Yen) to our 

address: 
       International Society for Mathematical Sciences 

         2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan 
 
(2)   A/C 94103518, ISMS 

CITIBANK, Japan Ltd., Shinsaibashi Branch 
           Midosuji Diamond Building 
           2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan 
 

 
 

******************************************************************************** 
Payment Instructions: 

Payment can be made through a post office or a bank, or by credit card. Members may 
choose the most convenient way of remittance. Please note that we do not accept payment by 
bank drafts (checks). For more information, please refer to an invoice. 
 

Methods of Overseas Payment: 
Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4) 
UNESCO Coupons.  

Authors or members may choose the most convenient way of remittance as are shown below. 
Please note that we do not accept payment by bank drafts (checks). 
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send 
International Postal Money Order to our postal address (2) Remittance through a 
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment 
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO 
Coupons. 
 

Methods of Domestic Payment: 
Make remittance to: 

(1) Post Office Transfer Account - 00930-3-73982 or  
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING 
CORPORATION, Sakai, Osaka, Japan. 
All of the correspondences concerning subscriptions, back numbers, individual and 
institutional memberships, should be addressed to the Publications Department, 
International Society for Mathematical Sciences. 
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The International Society for Mathematical Sciences (ISMS) is an international soci-
ety consisting of mathematical scientists throughout the world.

The main activities of the ISMS are to publish (1) the (print and online) journal
Scientiae Mathematicae Japonicae (SCMJ) and (2) Notices from the ISMS and to
hold assembly meeetings in Japan and international internet meetings (distance
symposium) of mathematical sciences (IVMS) accessible from all over the world.

SCMJ is the 21st Century New Unified Series of Mathematica Japonica (MJ) and
Scientiae Mathematicae (SCM). MJ was first published in 1948 and was one of the
oldest mathematical journals in Japan. SCM was an online and print journal started in
1998 in celebration of the semi-centurial anniversary and received 26000 visits per month
from 50 countries in the world. SCMJ contains original papers in mathematical sciences
submitted from all over the world and receives 38000 visits per month now. Not only
papers in pure and applied mathematics but those devoted to mathematical statistics,
operations research, informatics, computer science, biomathematics, mathematical eco-
nomics and other mathematical sciences are also welcome. The journal is published in
January, March, May, July, September, and November in each calendar year.

The ISMS has enhanced the journal, begining from July 1995, by including excel-
lent Research-Expository papers in the section “International Plaza for Mathematical
Sciences ” as well as original research papers. The section provides papers dealing with
broad overviews of contemporary mathmatical sciences, written by experts mainly at
our invitation. Papers shedding lights on open problems or new directions or new break-
throughs for future research are especially welcome.

As is shown in the Editorial Board of SCMJ, we have invited many distin-
guished professors of 20 countries as editors, who will receive and referee the papers
of their special fields with their high standard.

Beginning from 2007, we make the online version of SCMJ more readable and conve-
nient to the readers by adding the specialized contents. By this, the readers can access
to the online version, in which the papers appear in the order of acceptance, from (i)
the contents of the printed version, and (ii) the specialized contents of a volume. From
2007, the subscription fee of the printed version plus the online version of SCMJ becomes
lower and the same of the printed version only. Therefore, the subscribers of the printed
version can read the online version without no additional cost.

For benefit of the ISMS members, we publish ”Notices from the ISMS” 6 times a year.
We are enhancing it by adding interesting articles, including book reviewing, written by
eminent professors.

The ISMS has set up a videoconferencing system (IVMS) which can connect up
to twenty sites of a reserch group in the same or different countries in the world.
Using this system, speakers of the session can write on a white board or an OHP sheet
or use PowerPoint. On the other hand participants can ask questions or make comments
from any connected site in the world. All these are performed similarly to the traditional
meetings.

To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).

Copyright Transfer Agreement

A copyright transfer agreement is required before a paper is published in this journal.
By submitting a paper to this journal, authors are regarded to certify that the manuscript
has not been submitted to nor is it under consideration for publication by another journal,
conference proceedings or similar publication.

For more information, please visit http://www.jams.or.jp.
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Join ISMS ! 
ISMS Publications: We published Mathematica Japonica (M.J.) in print, 

which was first published in 1948 and has gained an international reputation in 
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online 
and in print. In January 2001, the two publications were unified and changed to 
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New 
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and 
published both online and in print.  Ahead of this, the online version of SCMJ 
was first published in September 2000.  The whole number of SCMJ exceeds 270, 
which is the largest amount in the publications of mathematical sciences in 
Japan. The features of SCMJ are: 
1) About 80 eminent professors and researchers of not only Japan but also 20 

foreign countries join the Editorial Board. The accepted papers are 
published both online and in print. SCMJ is reviewed by Mathematical 
Review and Zentralblatt from cover to cover. 

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ 
are introduced to the relevant research groups for the positive exchanges 
between researchers. 

3) ISMS Annual Meeting: Many researchers of ISMS members and 
non-members gather and take time to make presentations and discussions 
in their research groups every year. 

 
The privileges to the individual ISMS Members:  
(1) No publication charges 
(2) Free access (including printing out) to the online version of SCMJ 

 (3) Free copy of each printed issue  
 
The privileges to the Institutional Members:  
Two associate members can be registered, free of charge, from an institution.  

 
 
Table 1: Membership Dues for 2013 
Categories Domestic Overseas Developing 

countries 
1-year Regular 
member 

     ￥6,000  US$75 ,  €55 US$45,  €33 
 

1-year Student 
member 

     ￥4,000 US$50,  €37 US$30,  €22 

Life member* Calculated  
as below* 

       NA    NA 
 

Honorary member     Free        Free    Free 
 

 
* Regular member between 63 - 73 years old can apply the category. 
   (73－age ) × ¥3,000 
Regular member over 73 years old can maintain the qualification and the 
privileges of the ISMS members, if they wish. 
 
Categories of 3-year members were abolished. 
  
 

Categories Domestic Overseas Developing 
countries

1-year� Regular
member ￥8,000 �US$80�，Euro75 �US$50，�Euro47

1-year� Students�
member ￥4,000 �US$50�，Euro47 �US$30�，Euro28

Life�member* Calculated
as�below* �US$750�，Euro710 �US$440，�Euro416

Honorary�member Free Free Free

Membership Dues for ２０１５

　(Regarding submitted papers,we apply above presented new fee after April 15 in 
2015 on registoration date.) * Regular member between 63 - 73 years old can apply 
the category.
(73－age ) × ￥3,000
Regular member over 73 years old can maintain the qualification and the privileges 
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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