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Abstract. We investigate real hypersurfaces with φ-invariant Ricci tensors in a non-
flat complex space form M̃n(c). In particular, we classify Hopf hypersurfaces having

weakly φ-invariant Ricci tensor in M̃n(c). In addition, we verify the non-existence

of Hopf hypersurfaces with strongly φ-invariant Ricci tensor in M̃n(c) and the non-

existence of ruled real hypersurfaces with weakly φ-invariant Ricci tensor in M̃n(c).

1 Introduction We denote by M̃n(c) (n � 2) an n-dimensional non-flat complex space

form. Namely, M̃n(c) is congruent to either a complex projective space of constant holo-
morphic sectional curvature c(> 0) or a complex hyperbolic space of constant holomorphic

sectional curvature c(< 0). Let M2n−1 be a real hypersurface in M̃n(c). It is well-known

that real hypersurfaces in M̃n(c) admitting almost contact metric structure (φ, ξ, η, g) in-

duced from Kähler structure J of M̃n(c) (see Section 2). From the viewpoint of contact

geometry, real hypersurfaces are interesting in M̃n(c). It is also well-known that there exist

no Einstein real hypersurfaces in M̃n(c). Thus, many geometers studied its weaker condi-
tions and conditions related to the Ricci tensor of M2n−1 (See [3], [5], [7], [10], [11], [14],
[15]).

In this paper, we focus on the structure tensor φ of M2n−1 and the Ricci tensor of
M2n−1. We define the notion of φ-invariant Ricci tensor of M2n−1 (for detail, see Section
5). This notion is divided into strongly φ-invariance of the Ricci tensor of M2n−1 or weakly
φ-invariance of the Ricci tensor of M2n−1. In particular, the latter is a weaker condition of
Einstein real hypersurfaces.

In the theory of real hypersurfaces in M̃n(c), Hopf hypersurfaces (namely, real hypersur-
faces such that the characteristic vector ξ is a principal curvature vector at its each point)
play an important role. We investigate Hopf hypersurfaces M2n−1 with φ-invariant Ricci
tensors of M2n−1 in M̃n(c). Note that there exist real hypersurfaces M2n−1 with weakly

φ-invariant Ricci tensor of M2n−1 in M̃n(c). In fact, the family of such real hypersur-

faces includes real hypersurfaces of type (A) in M̃n(c) (Theorem 1). It is known that real

hypersurfaces of type (A) in M̃n(c) have many nice geometric properties.
The purpose of this paper is to determine Hopf hypersurfaces M2n−1 having weakly

φ-invariant Ricci tensor of M2n−1 in M̃n(c). To do this, we shall prove that weakly φ-
invariance of the Ricci tensor of M2n−1 is equivalent to the commutativity of the structure
tensor φ of M2n−1 and the Ricci tensor Q of type (1, 1) of M2n−1 (that is, φQ = Qφ) on a

Hopf hypersurface M2n−1 in M̃n(c). In addition, we shall show the non-existence of Hopf

hypersurfaces M2n−1 with strongly φ-invariant Ricci tensor of M2n−1 in M̃n(c).
In general, weakly φ-invariance of the Ricci tensor is not equivalent to the commutativity

of the structure tensor φ and the Ricci tensor Q of type (1, 1) on a non-Hopf hypersurface in
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2 K. Okumura

M̃n(c). It is natural to consider non-Hopf hypersurfaces M2n−1 having weakly φ-invariant

Ricci tensor of M2n−1 in M̃n(c). Ruled real hypersurfaces are typical non-Hopf hypersur-

faces in M̃n(c). So, we shall also show the non-existence of ruled real hypersurfaces M2n−1

with weakly φ-invariant Ricci tensor of M2n−1 in M̃n(c).

2 Preliminaries Let M2n−1 be a real hypersurface with a unit local vector field N
of a complex n-dimensional non-flat complex space form M̃n(c) of constant holomorphic

sectional curvature c. The Riemannian connections ∇̃ of M̃n(c) and ∇ of M2n−1 are related
by

∇̃XY = ∇XY + g(AX, Y )N ,(2.1)

∇̃XN = −AX(2.2)

for vector fields X and Y tangent to M2n−1, where g denotes the induced metric from the
standard Riemannian metric of M̃n(c) and A is the shape operator of M2n−1 in M̃n(c).
(2.1) is called Gauss’s formula, and (2.2) is called Weingarten’s formula. Eigenvalues and
eigenvectors of the shape operator A are called principal curvatures and principal vectors
of M2n−1 in M̃n(c), respectively.

It is known that M2n−1 admits an almost contact metric structure (φ, ξ, η, g) induced

from the Kähler structure J of M̃n(c). The characteristic vector field ξ of M2n−1 is defined
as ξ = −JN and this structure satisfies

φ2 = −I + η ⊗ ξ, η(X) = g(X, ξ), η(ξ) = 1, φξ = 0, η(φX) = 0,(2.3)

g(φX, Y ) = −g(X,φY ) and g(φX, φY ) = g(X ,Y )− η(X)η(Y ),

where I denotes the identity map of the tangent bundle TM of M2n−1. We call φ and η
the structure tensor and the contact form of M2n−1, respectively.

Let R be the curvature tensor of M2n−1 in M̃n(c). We have the equation of Gauss given
by:

R(X,Y )Z =(c/4){g(Y, Z)X − g(X,Z)Y + g(φY, Z)φX − g(φX,Z)φY(2.4)

− 2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY

for all vectors X,Y and Z on M2n−1.
The Ricci tensor S of type (0, 2) and the Ricci tensor Q of type (1, 1) of an arbitrary

real hypersurface M2n−1 in M̃n(c) (n � 2) is expressed as:

S(X,Y ) = g(QX,Y ) = (c/4)((2n+ 1)g(X,Y )− 3η(X)η(Y ))(2.5)

+ (TraceA)g(AX, Y )− g(A2X,Y ).

3 Homogeneous Hopf hypersurfaces in M̃n(c) We usually call M2n−1 a Hopf hyper-
surface if the characteristic vector ξ is a principal curvature vector at each point of M2n−1.
It is known that every tube of sufficiently small constant radius around each Kähler subman-
ifold of M̃n(c) is a Hopf hypersurface. This fact tells us that the notion of Hopf hypersurface

is natural in the theory of real hypersurfaces in M̃n(c) (see [15]).
The following lemma clarifies a fundamental property which is a useful tool in the theory

of Hopf hypersurfaces in M̃n(c) (cf. [15]).

Lemma 1. For a Hopf hypersurface M2n−1 with the principal curvature δ corresponding
to the characteristic vector field ξ in M̃n(c), we have the following:

KAZUHIRO OKUMURA2



Hopf hypersurfaces admitting φ-invariant Ricci tensors 3

(1) δ is locally constant on M2n−1;

(2) If X is a tangent vector of M2n−1 perpendicular to ξ with AX = λX, then (2λ −
δ)AφX = (δλ+ (c/2))φX.

In CPn(c) (n � 2), a Hopf hypersurface all of whose principal curvatures are constant is
locally congruent to a homogeneous real hypersurface (that is, real hypersurfaces which are

expressed as orbits of some subgroup of the isometry group I(�Mn(c)) of �Mn(c)). Moreover,
these real hypersurfaces are one of the following:

(A1) A geodesic sphere G(r) of radius r, where 0 < r < π/
√
c ;

(A2) A tube of radius r around a totally geodesic CP �(c) (1 � � � n − 2), where 0 < r <
π/

√
c ;

(B) A tube of radius r around a complex hyper quadric CQn−1, where 0 < r < π/(2
√
c );

(C) A tube of radius r around a CP 1(c) × CP (n−1)/2(c), where 0 < r < π/(2
√
c ) and

n(� 5) is odd;

(D) A tube of radius r around a complex Grassmann CG2,5, where 0 < r < π/(2
√
c ) and

n = 9;

(E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where 0 < r <
π/(2

√
c ) and n = 15.

These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E). Summing
up real hypersurfaces of type (A1) and (A2), we call them real hypersurfaces of type (A).
The numbers of distinct principal curvatures of these real hypersurfaces are 2, 3, 3, 5, 5, 5,
respectively. The principal curvatures of these real hypersurfaces in CPn(c) are given as
follows (cf. [15]):

(A1) (A2) (B) (C), (D), (E)

λ1

√
c
2 cot

(√
c
2 r

) √
c
2 cot

(√
c
2 r

) √
c
2 cot

(√
c
2 r − π

4

) √
c
2 cot

(√
c
2 r − π

4

)

λ2 — −
√
c
2 tan

(√
c
2 r

) √
c
2 cot

(√
c
2 r + π

4

) √
c
2 cot

(√
c
2 r + π

4

)

λ3 — — —
√
c
2 cot

(√
c
2 r

)

λ4 — — — −
√
c
2 tan

(√
c
2 r

)

δ
√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

√
c cot(

√
c r)

The multiplicities of these principal curvatures are given as follows (cf. [15]):

(A1) (A2) (B) (C) (D) (E)

m(λ1) 2n− 2 2n− 2�− 2 n− 1 2 4 6

m(λ2) — 2� n− 1 2 4 6

m(λ3) — — — n− 3 4 8

m(λ4) — — — n− 3 4 8

m(δ) 1 1 1 1 1 1

Remark 1. A geodesic sphere G(r) of radius r (0 < r < π/
√
c ) in CPn(c) is congru-

ent to a tube of radius (π/
√
c ) − r around totally geodesic CPn−1(c) of CPn(c). Indeed,

lim
r→π/

√
c
G(r) = CPn−1(c).
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4 K. Okumura

In CHn(c) (n � 2), a Hopf hypersurface all of whose principal curvatures are constant
is locally congruent to one of the following:

(A0) A horosphere in CHn(c);

(A1,0) A geodesic sphere G(r) of radius r, where 0 < r < ∞;

(A1,1) A tube of radius r around a totally geodesic CHn−1(c), where 0 < r < ∞;

(A2) A tube of radius r around a totally geodesic CH�(c)(1 � � � n−2), where 0 < r < ∞;

(B) A tube of radius r around a totally real totally geodesic RHn(c/4), where 0 < r < ∞.

These real hypersurfaces are said to be of types (A0), (A1,0), (A1,1), (A2) and (B). Here,
type (A1) means either type (A1,0) or type (A1,1). Summing up real hypersurfaces of types
(A0), (A1) and (A2), we call them hypersurfaces of type (A). A real hypersurface of type
(B) with radius r = (1/

√
|c| ) loge(2 +

√
3 ) has two distinct constant principal curvatures

λ1 = δ =
√

3|c| /2 and λ2 =
√
|c| /(2

√
3 ). Except for this real hypersurface, the numbers

of distinct principal curvatures of Hopf hypersurfaces with constant principal curvatures are
2, 2, 2, 3, 3, respectively. The principal curvatures of these real hypersurfaces in CHn(c) are
given as follows (cf. [15]):

(A0) (A1,0) (A1,1) (A2) (B)

λ1

√
|c|
2

√
|c|
2 coth

(√|c|
2 r

) √
|c|
2 tanh

(√|c|
2 r

) √
|c|
2 coth

(√|c|
2 r

) √
|c|
2 coth

(√|c|
2 r

)

λ2 — — —

√
|c|
2 tanh

(√|c|
2 r

) √
|c|
2 tanh

(√|c|
2 r

)

δ
√
|c|

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| tanh(

√
|c| r)

The multiplicities of these principal curvatures are given as follows (cf. [15]):

(A0) (A1,0) (A1,1) (A2) (B)

m(λ1) 2n− 2 2n− 2 2n− 2 2n− 2�− 2 n− 1

m(λ2) — — — 2� n− 1

m(δ) 1 1 1 1 1

Remark 2. The above Hopf hypersurfaces of type (A) and (B) in CHn(c) are homoge-
neous real hypersurfaces. However, there exist non-Hopf homogeneous real hypersurfaces in
CHn(c) (for detail, see [1]).

4 Ruled real hypersurfaces in �Mn(c) Next we give ruled real hypersurfaces in a non-

flat complex space form �Mn(c), which are typical examples of non-Hopf hypersurfaces. A
real hypersurface M2n−1 is called a ruled real hypersurface of a non-flat complex space form
�Mn(c) (n � 2) if the holomorphic distribution T 0M defined by T 0M(x) = {X ∈ TxM |
X⊥ξ} for x ∈ M2n−1 is integrable and each of its maximal integral manifolds is a totally

geodesic complex hypersurface Mn−1(c) of �Mn(c). A ruled real hypersurface is constructed

in the following way. Given an arbitrary regular real smooth curve γ in �Mn(c) which is
defined on an interval I we have at each point γ(t) (t ∈ I) a totally geodesic complex

hypersurface M
(t)
n−1(c) that is orthogonal to the plane spanned by {γ̇(t), Jγ̇(t)}. Then we

see that M2n−1 =
∪

t∈I M
(t)
n−1(c) is a ruled real hypersurface in �Mn(c). The following is a

well-known characterization of ruled real hypersurfaces in terms of the shape operator A.

KAZUHIRO OKUMURA4



Hopf hypersurfaces admitting φ-invariant Ricci tensors 5

Lemma 2. For a real hypersurface M2n−1 in a non-flat complex space form �Mn(c)
(n � 2), the following conditions are mutually equivalent:

1. M2n−1 is a ruled real hypersurface;

2. The shape operator A of M2n−1 satisfies the following equalities on the open dense
subset M1 = {x ∈ M2n−1|ν(x) �= 0} with a unit vector field U orthogonal to ξ : Aξ =
µξ + νU, AU = νξ, AX = 0 for an arbitrary tangent vector X orthogonal to ξ and
U , where µ, ν are differentiable functions on M1 by µ = g(Aξ, ξ) and ν = �Aξ − µξ�;

3. The shape operator A of M2n−1 satisfies g(Av,w) = 0 for arbitrary tangent vectors
v, w ∈ TxM orthogonal to ξx at each point x ∈ M2n−1.

We treat a ruled real hypersurface locally, because generally this hypersurface has sin-
gularities. When we study ruled real hypersurfaces, we usually omit points where ξ is
principal and suppose that ν does not vanish everywhere, namely a ruled hypersurface
M2n−1 is usually supposed M1 = M2n−1.

5 φ-invariances of the Ricci tensor and main theorem First, we define the notion
of φ-invariance of the Ricci tensor S of M2n−1 in �Mn(c). The Ricci tensor S of M2n−1 is
called strongly φ-invariant if S satisfies

S(φX, φY ) = S(X,Y )

for all vectors X and Y on M2n−1. Also it is called weakly φ-invariant if S satisfies

S(φX, φY ) = S(X,Y )

for all vectors X and Y on M2n−1 orthogonal to the characteristic vector ξ on M2n−1.

Theorem 1. Let M2n−1 be a real hypersurface in a non-flat complex space form �Mn(c) (n �
2). Then the following holds:

1. Suppose that M2n−1 is a Hopf hypersurface in �Mn(c). Then M2n−1 has weakly φ-
invariant Ricci tensor S of M2n−1 if and only if M2n−1 satisfies φQ = Qφ. Moreover,
M2n−1 is locally congruent to one of the following:

(a) A real hypersurface of type (A) in �Mn(c);

(b) A tube of radius r around a complex hyperquadric CQn−1 in CPn(c), where
0 < r < π/(2

√
c ) and cot (

√
c r/2) =

√
n− 2 +

√
n− 1 ;

(c) A tube of radius r around a CP 1(c) × CP (n−1)/2(c) in CPn(c), where 0 < r <
π/(2

√
c ), n (� 5) is odd and cot (

√
c r/2) = (

√
n− 1 + 1)/

√
n− 2 ;

(d) A tube of radius r around a complex Grassmann CG2,5 in CPn(c), where 0 <
r < π/(2

√
c ), n = 9 and cot (

√
c r/2) = (

√
8 +

√
3 )/

√
5 ;

(e) A tube of radius r around a Hermitian symmetric space SO(10)/U(5) in CPn(c),
where 0 < r < π/(2

√
c ), n = 15 and cot (

√
c r/2) = (

√
14 +

√
5 )/3;

(f) A non-homogeneous real hypersurface which is a tube of radius r around an �-

dimensional non-totally geodesic Kähler submanifold �N without principal curva-
tures ±(

√
c /2)

√
(2�− 1)/(2n− 2�− 1) , where the rank of every shape operator

of �N in the ambient space CPn(c) is not greater than 2 and cot2(
√
c r/2) =

(2�− 1)/(2n− 2�− 1) with � = 1, . . . , n− 1.
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6 K. Okumura

2. There does not exist a Hopf hypersurface M2n−1 with strongly φ-invariant Ricci tensor
S of M2n−1.

3. There does not exist a ruled real hypersurface M2n−1 with weakly φ-invariant Ricci
tensor S of M2n−1.

Proof. From (2.5), we know that strongly φ-invariance of the Ricci tensor S of M2n−1 is
equivalent to saying that

− c

2
(n− 1)η(X)η(Y ) + (TraceA)(g(AφX, φY )− g(AX, Y ))(5.1)

− g(A2φX, φY ) + g(A2X,Y ) = 0

for all vectors X,Y on M2n−1. By this equation, we obtain that weakly φ-invariance of the
Ricci tensor S of M2n−1 is equivalent to saying that

(5.2) (TraceA)(g(AφX, φY )− g(AX, Y ))− g(A2φX, φY ) + g(A2X,Y ) = 0

for all vectors X and Y orthogonal to ξ.
(1) First of all, we suppose that M2n−1 satisfies φQ = Qφ. Then, we get

S(φX, φY ) = g(QφX, φY ) = g(φQX, φY ) = −g(QX,φ2Y ) = g(QX,Y ) = S(X,Y )

for any vectors X,Y orthogonal to ξ.
Next, we suppose that M2n−1 has weakly φ-invariant Ricci tensor S of M2n−1. By (5.2),

we have

(5.3) (TraceA)g(−φAφX −AX, Y ) + g(φA2φX +A2X,Y ) = 0

for any vectors X,Y orthogonal to ξ. Interchanging a vector X(⊥ ξ) with a vector φX(⊥ ξ)
in Equation (5.3), we obtain

(TraceA)g((φA−Aφ)X,Y )− g((φA2 −A2φ)X,Y ) = 0

for any vectors X,Y orthogonal to ξ. This implies that

(5.4) g((φQ−Qφ)X,Y ) = 0

for any vectors X,Y orthogonal to ξ. On the other hand, using assumption that M2n−1 is a
Hopf hypersurface in M̃n(c), we obtain φQξ = 0 = Qφξ. This, combine with (5.4), implies
φQ = Qφ.

By the works of M. Kimura [8], [9] (the case of n � 3 in CPn(c)), U-H. Ki and Y. J.

Suh [6] (the case of n � 3 in CHn(c)) and J. T. Cho [4] (the case of M̃2(c)), we know the

classification of Hopf hypersurfaces with φQ = Qφ in M̃n(c). Hence, we get the classification

of Hopf hypersurfaces having weakly φ-invariant Ricci tensor in M̃n(c).

(2) We suppose that M2n−1 is a Hopf hypersurface with Aξ = δξ in M̃n(c). From (5.1),
we find that M2n−1 has strongly φ-invariant Ricci tensor S of M2n−1 if and only if M2n−1

satisfies the following two conditions:

(i) The Hopf hypersurface M2n−1 has weakly φ-invariant Ricci tensor S of M2n−1;

(ii) The Hopf hypersurface M2n−1 satisfies the following equation:

(5.5) δ2 − (TraceA)δ − c

2
(n− 1) = 0.
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Now we shall check Equation (5.5) one by one for real hypersurfaces of (1) in our Theorem.
Let M2n−1 be a real hypersurface of type (A1) in CPn(c). Let x = cot (

√
c r/2), 0 <

r < π/
√
c . Then we have δ = (

√
c /2)(x − (1/x)), δ2 = (c/4)(x2 − 2 + (1/x2)) and

TraceA = (
√
c /2)((2n − 1)x − (1/x)). These, together with Equation (5.5) we get n = 1,

which contradicts n � 2. Hence M2n−1 does not have strongly φ-invariant Ricci tensor S
of M2n−1.

Let M2n−1 be a real hypersurface of type (A2) in CPn(c). Let x = cot (
√
cr/2), 0 <

r < π/
√
c . Then we have δ = (

√
c /2)(x − (1/x)), δ2 = (c/4)(x2 − 2 + (1/x2)) and

TraceA = (
√
c /2)((2n− 2�− 1)x− (2�+ 1)(1/x)). These, together with Equation (5.5) we

get (n − � − 1)x4 + � = 0. However, this equation can not occur. Hence M2n−1 does not
have strongly φ-invariant Ricci tensor S of M2n−1.

Let M2n−1 be a real hypersurface of type (A0) in CHn(c). Then we have δ =
√
|c| , δ2 =

−c and TraceA =
√

|c| + (2n − 2)(
√
|c| /2). These, together with Equation (5.5) we get

n = 1, which contradicts n � 2. Hence M2n−1 does not have strongly φ-invariant Ricci
tensor S of M2n−1.

Let M2n−1 be a real hypersurface of type (A1,0) in CHn(c). Let x = coth (
√

|c|r/2),
0 < r < ∞. Then we have δ = (

√
|c| /2)(x + (1/x)), δ2 = −(c/4)(x2 + 2 + (1/x2)) and

TraceA = (
√

|c| /2)((2n− 1)x+ (1/x)). These, together with Equation (5.5) we get n = 1,
which contradicts n � 2. Hence M2n−1 does not have strongly φ-invariant Ricci tensor S
of M2n−1. Similarly, we can show that real hypersurfaces of type (A1,1) in CHn(c) do not
have strongly φ-invariant Ricci tensor.

Let M2n−1 be a real hypersurface of type (A2) in CHn(c). Let x = coth (
√
|c|r/2),

0 < r < ∞. Then we have δ = (
√
|c| /2)(x + (1/x)), δ2 = −(c/4)(x2 + 2 + (1/x2)) and

TraceA = (
√
|c| /2)((2n − 2� − 1)x + (2� + 1)(1/x)). These, together with Equation (5.5)

we get (n− �− 1)x4 + � = 0. However, this equation can not occur. Hence M2n−1 does not
have strongly φ-invariant Ricci tensor S of M2n−1.

Let M2n−1 be a real hypersurface of the case of (b) in our Theorem. Then we have
δ =

√
c(n− 2) , δ2 = c(n−2) and TraceA = −

√
c /

√
n− 2 . These, together with Equation

(5.5) we get n = 1, which contradicts n � 3.
Let M2n−1 be a real hypersurface of the case of (c) in our Theorem. Then we have

δ =
√
c /

√
n− 2 , δ2 = c/(n−2) and TraceA = −

√
c(n− 2) . These, together with Equation

(5.5) we get n2 − 5n+ 4 = 0, so that n = 1, 4, which contradicts n � 5.
Let M2n−1 be a real hypersurface of the case of (d) in our Theorem. Then we have

δ =
√
3c /

√
5 , δ2 = 3c/5 and TraceA = −

√
5c /

√
3 . These, together with Equation (5.5)

we get n = 21/5, which contradicts n = 9.
Let M2n−1 be a real hypersurface of the case of (e) in our Theorem. Then we have

δ =
√
5c /3, δ2 = 5c/9 and TraceA = −3

√
5c /5. These, together with Equation (5.5) we

get n = 37/9, which contradicts n = 15.
Let M2n−1 be a real hypersurface of the case of (f) in our Theorem. Then M2n−1

has at most five distinct principal curvatures as follow:
√
c cot(

√
c r) with multiplicity 1,

(
√
c /2) cot(

√
c r/2) with multiplicity 2n − 2� − 2, −(

√
c /2) tan(

√
c r/2) with multiplicity

2� − 2, (
√
c /2) cot((

√
c r/2) − θ) with multiplicity 1 and (

√
c /2) cot((

√
c r/2) + θ) with

multiplicity 1, where (
√
c /2)cot θ is a principal curvature of the Kähler submanifold �N (see

[3], [9], [10], [12]). In this case, M2n−1 has either the case of δ = 0 or the case of δ �= 0.
When δ = 0 (that is, the case of n = 2�), we have (c/2)(n−1) = 0, which is a contradiction.
When δ �= 0, we have

(5.6) TraceA = δ +
c

2δ
(n− 1).

It follows from (1) of Lemma 1 that the right side of Equation (5.6) is constant on M2n−1.
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On the other hand, the left side of Equation (5.6) is non-constant. Indeed, Trace A of
M2n−1 is expressed as:

TraceA = δ + (2n− 2�− 2)

√
c

2
cot

(√
c

2
r

)
− (2�− 2)

√
c

2
tan

(√
c

2
r

)

+

√
c

2
cot

(√
c

2
r − θ

)
+

√
c

2
cot

(√
c

2
r + θ

)
.

Note that (
√
c /2) cot((

√
c r/2)− θ) + (

√
c /2) cot((

√
c r/2)+ θ) is non-constant on M2n−1.

Thus, we have a contradiction. Hence, M2n−1 does not have strongly φ-invariant Ricci
tensor S of M2n−1.

Therefore, there exist no Hopf hypersurfaceM2n−1 with strongly φ-invariant Ricci tensor
S of M2n−1 in �Mn(c).

(3) We suppose that M2n−1 is a ruled real hypersurface with weakly φ-invariant Ricci

tensor S of M2n−1 in �Mn(c). It follows from (5.2) and (3) of Lemma 2 that we obtain

−g(A2φX, φY ) + g(A2X,Y ) = 0

for all vectors X,Y orthogonal to ξ. Setting X = Y = U , by using Lemma 2 we have

0 = −g(A2φU, φU) + g(A2U,U) = ν2 �= 0,

which is a contradiction. Hence, M2n−1 does not have weakly φ-invariant Ricci tensor S of
M2n−1.

Remark 3. Note that the commutativity of the structure tensor φ and the Ricci tensor Q
of type (1, 1) always implies weakly φ-invariance of the Ricci tensor. However, in general,
we do not know whether the converse holds or not.

6 Concluding remarks

6.1 In general, there exist contact metric manifolds with strongly φ-invariant Ricci ten-
sor.

For example, R3 with coordinates (x1, x2, x3) and the contact form η = (1/2)(cosx3 dx1+
sinx3 dx2). The characteristic vector filed ξ is defined by ξ = 2(cosx3(∂/∂x1)+sinx3(∂/∂x2))
and the metric g is given by gij = (1/4)δij , where gij are components of g. Then R3 has a flat
contact metric structure (cf. [2]). Hence clearly this example admits strongly φ-invariant
Ricci tensor.

6.2 In [13], S. Maeda and H. Naitoh investigated real hypersurfaces with φ-invariant
shape operators in CPn(c). The shape operator A of a real hypersurface M2n−1 is called
strongly φ-invariant if A satisfies

g(AφX, φY ) = g(AX, Y )

for all vectors X and Y on M2n−1. Also, it is called weakly φ-invariant if A satisfies

g(AφX, φY ) = g(AX, Y )

for all vectors X and Y orthogonal to the characteristic vector ξ on M2n−1.
S. Maeda and H. Naitoh [13] obtained the following results:

Proposition 1. Let M2n−1 be a real hypersurface M2n−1 with strongly φ-invariant shape
operator A of M2n−1 in CPn(c). Then M2n−1 is locally congruent to a real hypersurface
of type (A) of radius π/(2

√
c ) in CPn(c).

KAZUHIRO OKUMURA8



Hopf hypersurfaces admitting φ-invariant Ricci tensors 9

Proposition 2. Let M2n−1 be a real hypersurface M2n−1 with weakly φ-invariant shape
operator A of M2n−1 in CPn(c). Then the following holds:

1. If M2n−1 is a Hopf hypersurface in CPn(c), then M2n−1 is locally congruent to a real
hypersurface of type (A) in CPn(c).

2. If the holomorphic distribution T 0M = {X ∈ TM : X ⊥ ξ} is integrable, then M2n−1

is locally congruent to a ruled real hypersurface in CPn(c).

By using the discussion of [13], we know that there exists no real hypersurface M2n−1

in CHn(c) such that the shape operator A of M2n−1 is strongly φ-invariant. In addition,
for real hypersurfaces in CHn(c), Proposition 2 also holds.

From our theorem, ruled real hypersurfaces do not have weakly φ-invariant Ricci tensor
in M̃n(c). However, ruled real hypersurfaces have weakly φ-invariant shape operator in

M̃n(c).

6.3 We shall consider the notion of φ-invariant curvature tensor R of M2n−1 in M̃n(c).
The curvature tensor R of a real hypersurface M2n−1 is called strongly φ-invariant if R
satisfies

R(φX, φY ) = R(X,Y )

for all vectors X and Y on M2n−1. Also, it is called weakly φ-invariant if R satisfies

R(φX, φY ) = R(X,Y )

for all vectors X and Y orthogonal to the characteristic vector ξ on M2n−1 .
From our theorem and S. Maeda and H. Naitoh’s work [13], real hypersurfaces of type (A)

in M̃n(c) have both weakly φ-invariant Ricci tensor and weakly φ-invariant shape operator.

Now we investigate whether there exists a real hypersurface of type (A) in M̃n(c) having
weakly φ-invariant curvature tensor R or not.

Proposition 3. There does not exist a real hypersurface M2n−1 of type (A) admitting

weakly φ-invariant curvature tensor R of M2n−1 in M̃n(c) (n � 3).

Proof. We suppose that a real hypersurface M2n−1 admitting weakly φ-invariant curvature
tensor R of M2n−1. By (2.4), we know that weakly φ-invariance of the curvature tensor R
of M2n−1 is equivalent to saying that

(6.1) g(AφY,Z)AφX − g(AφX,Z)AφY − g(AY,Z)AX + g(AX,Z)AY = 0

for ∀X,Y ⊥ ξ and ∀Z ∈ TM .
Let M2n−1 be a real hypersurface of type (A1) in CPn(c) (n � 3). We take a local field

of orthogonal frame {e1, e2, . . . , en−1, φe1, φe2, . . . φen−1, ξ} in M2n−1 such that

Aei = (
√
c /2) cot(

√
c r/2)ei, Aφei = (

√
c /2) cot(

√
c r/2)φei (1 � i � n− 1).

We can put X = ei, Y = ej , Z = ej in Equation (6.1) satisfying ei �= ej , φei �= ej . Then
we have cot2(

√
c r/2) = 0, which is a contradiction. Hence M2n−1 does not have weakly

φ-invariant curvature tensor R of M2n−1. Similarly, real hypersurfaces M2n−1 of types (A0)
and (A1) in CHn(c) (n � 3) do not admit φ-invariant curvature tensor R of M2n−1.

Let M2n−1 be a real hypersurface of type (A2) in CPn(c) (n � 3). We take a local field
of orthogonal frame {e1, e2, . . . , e2n−2, ξ} in M2n−1 such that

Aei = (
√
c /2) cot(

√
c r/2)ei (1 � i � 2n− 2�− 2),

Aej = −(
√
c /2) tan(

√
c r/2)ej (2n− 2�− 1 � j � 2n− 2).

HOPF HYPERSURFACES ADMITTING φ-INVARIANT RICCI TENSORS
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10 K. Okumura

We setX = ei, Y = ej , Z = ej (1 � i � 2n−2�−2, 2n−2�−1 � j � 2n−2) in Equation (6.1).
Note that φVλ1 = Vλ1 = {X ∈ TM : AX = λ1X}, φVλ2 = Vλ2 = {X ∈ TM : AX = λ2X}
and Vλ1

⊕ Vλ2
= T 0M = {X ∈ TM : X ⊥ ξ}, where λ1 = (

√
c /2) cot(

√
c r/2), λ2 =

−(
√
c /2) tan(

√
c r/2). Then we obtain cot(

√
c r/2) tan(

√
c r/2) = 0, which is a contradic-

tion. Hence M2n−1 does not have weakly φ-invariant curvature tensor R of M2n−1. Simi-
larly, real hypersurfaces M2n−1 of type (A2) in CHn(c) (n � 3) does not have φ-invariant
curvature tensor R of M2n−1.

Therefore real hypersurfaces of type (A) in M̃n(c) (n � 3) do not admit φ-invariant
curvature tensor.
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Abstract. We know many results about colorability for single-valued maps. But
we know a few results about colorability for set-valued maps. In this paper we
generalize some results on colorability for single-valued maps to those for set-valued
maps. Especially, our main result is a generalization of E. K. van Douwen’s result,
which insists that every fixed-point free continuous closed map f : X → X with
sup

˘

|f−1(x)| : x ∈ X
¯

< ∞ on a finite-dimensional paracompact space X is col-
orable. In fact, we prove the following: Let X be a finite-dimensional paracompact
space and f : X → Fk(X) a fixed-point free upper semi-continuous map, where Fk(X)
is the family of non-empty subsets of X with at most k elements. Suppose that
sup

˘

|f−1(x)| : x ∈ X
¯

< ∞ and
S

{f(x) : x ∈ F} is closed in X for any closed subset
F of X. Then f is colorable.

1 Introduction
All spaces under discussion are regular. We will discuss some set-valued versions of

results about colorability for single-valued maps.
We define some notions about colorability of single-valued maps as follows: Let X be a

subset of a space Y and f : X → Y a single-valued map. For a subset A of X, A is called a
color of f if A∩ f(A) = ∅ and a bright color of f if A

Y ∩ f(A)
Y

= ∅, where A
Y

denotes the
closure of A in Y . Also we call a finite closed cover of X consisting of colors of f a coloring
of f and we say that f is colorable if there is a coloring of f . Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f .

The following shows the essential meaning of colorability for single-valued maps:

Proposition 1.1. Let X be a closed subspace of a normal space Y and let f : X → Y be
a fixed-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.
(2) The Stone-Čech extension βf : βX → βY of f is fixed-point free.

Also the following results for single-valued maps are known:

Proposition 1.2. Let X be a compact subspace of a space Y and let f : X → Y be a
fixed-point free continuous map. Then f is colorable.

Theorem 1.3. ([5]) Let X be a closed subspace of a locally compact separable metrizable
space Y with dim Y ≤ n and let f : X → Y be a fixed-point free continuous map. Then, f
is brightly colorable.

2014 Msthematics Subject Classification. 54F45, 54C60, 54H25 .
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Theorem 1.4. ([6]) Let X be a paracompact space with dimX ≤ n and let f : X → X be
a fixed-point free continuous closed map such that l = sup

{
|f−1(x)| : x ∈ X

}
< ∞. Then,

f is colorable with at most (l + 1)(n + 1) + 1 colors.

Theorem 1.5. ([2]) Let X be a separable metrizable space with dimX ≤ n and let f : X →
X be a fixed-point free homeomorphism. Then, f is colorable with at most n + 3 colors.

In this paper we generalize these results for single-valued maps to some results for set-
valued maps. To start our discussion we give a topology of the space consisting of closed
subsets (see [9] in detail).

For a space X we define the hyperspace 2X of X as the family of all non-empty closed
subsets of X and endow 2X with the Vietoris topology, which has

〈 U 〉 =
{

A ∈ 2X : A ⊂
∪

U and A ∩ U �= ∅ for any U ∈ U
}

,

where U is a finite family of open subsets of X, as the basic open subsets of 2X . Also let
K(X) and Fk(X) for k ∈ N denote the family of non-empty compact subsets of X and the
family of non-empty finite subsets of X with at most k elements, respectively.

Let X and Y be spaces and f : X → 2Y a set-valued map. For A ⊂ X we write
f(A) =

∪
{f(x) : x ∈ A}. Also for y ∈ Y , B ⊂ Y and B ⊂ 2Y we write f−1(y) = {x ∈

X : y ∈ f(x)}, f−1(B) = {x ∈ X : f(x) ∩ B �= ∅} and f−1[B] = {x ∈ X : f(x) ∈ B}. Also
f : X → 2Y is upper semi-continuous if for x ∈ X and an open set V of Y with f(x) ⊂ V ,
f−1[〈{V }〉](= {x′ ∈ X : f(x′) ⊂ V }) is open in X.

When X ⊂ Y we define some notions about colorability of set-valued maps as follows:
A map f : X → 2Y is called a fixed-point free map if x /∈ f(x) for any x ∈ X. For a
subset A of X, A is called a color of f if A ∩ f(A) = ∅ and called a bright color of f if

A
Y ∩ f(A)

Y
= ∅. Also we call a finite closed cover of X consisting of colors of f a coloring

of f and we say that f is colorable if there is a coloring of f . Similarly, we define a bright
coloring of f and say that f is brightly colorable if there is a bright coloring of f .

Any space X can be embedded to 2X by the inclusion ι : X → 2X defined by x �→ {x}.
Hence all results for set-valued maps are also true for single-valued maps. The proofs are
modifications of proofs for single-valued versions in [5], [6] and [2].

Also let (A,B) be a pair of disjoint closed subsets of a space X. A subset S of X is
called a partition between A and B if there is a pair (U, V ) of disjoint open subsets of X
such that A ⊂ U , B ⊂ V and X\S = U ∪ V .

2 Results
First, we present a generalization of Proposition 1.2.

Proposition 2.1. Let X be a compact subspace of a space Y and let f : X → 2Y be a
fixed-point free and upper semi-continuous map. Then, f is colorable.

Proof. By compactness of X it is sufficient to show that for each x ∈ X there is an open
neighborhood of x in X such that its closure is a color of f . Take x ∈ X. Then x /∈ f(x)
since f is fixed-point free. By regularity of Y there are two open neighborhoods U and V
of x and f(x) in Y , respectively, such that U ∩ V = ∅. Since f is upper semi-continuous,
f−1[〈{V }〉] is open in X. By regularity of X there is an open neighborhood W of x in X
such that W ⊂ U ∩ f−1[〈{V }〉]. This is as required.
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Next, we consider a generalization of Theorem 1.3.

Theorem 2.2. ([4]) Let X be a closed subspace of Rn and let f : X → Fk(Rn) be a
fixed-point free continuous map. Then, f is brightly colorable.

Applying Theorem 2.2, we obtain a generalization of Theorem 1.3 as follows.

Theorem 2.3. Let X be a closed subset of a locally compact separable metrizable space Y
with dim Y ≤ n and let f : X → Fk(Y ) be a fixed-point free continuous map. Then, f is
brightly colorable.

Proof. We may assume that Y is closed in R2n+1 since any n-dimensional locally compact
separable metrizable space can be embedded in R2n+1 as a closed subset. Therefore, this
proof is completed by Theorem 2.2.

Remark. For Theorem 2.2 we know that for n, k ∈ N there is a minimal integer K(n, k)
such that every fixed point free continuous map f : X → Fk(Rn) is colorable with at most
K(n, k) colors (see [4]). So we can see that K(2n + 1, k) plays the same part for Theorem
2.3. But it is not clear about the exact values.

To show our main result we define the order and give a lemma.
Let X be a space and U a family of subsets of X and n ∈ {0, 1, 2, ...}. We define the

order of U , which is denoted by ord U , as follows:

ordU ≤ n if sup
{��{U ∈ U : x ∈ U

}�� : x ∈ X
}
≤ n.

Remark. In many books ord U ≤ n is defined by
��{U ∈ U : x ∈ U

}�� ≤ n + 1 for any x ∈ X.
But in this paper we use the above definition to see inequalities about the order easily.

Lemma 2.4. ([6]) Let X be a normal space. Let {Gi : i = 1, ..., k} be a family of closed
subsets of X with ord{Gi : i = 1, ..., k} ≤ dim X + 1 and {Wi : i = 1, ..., k} an open cover
of X such that Gi ⊂ Wi for i = 1, ..., k. Then, there is an open cover {Vi : i = 1, ..., k} of
X such that ord{Vi : i = 1, ..., k} ≤ dimX + 1 and Gi ⊂ Vi and Vi ⊂ Wi for i = 1, ..., k.

The following theorem is a generalization of Theorem 1.4.

Theorem 2.5. Let X be a paracompact space with dim X ≤ n and let f : X → Fk(X) be a
fixed-point free upper semi-continuous map. Suppose that l = sup

{
|f−1(x)| : x ∈ X

}
< ∞

and f(F ) is closed in X for any closed subset F of X. Then, f is colorable with at most
(k + l)(n + 1) + 1 colors.

Proof. First, fix x ∈ X. Since f is fixed-point free, there are two open neighborhoods Ux

and Vx of x and f(x) in X, respectively, such that Ux ∩ Vx = ∅. f−1[〈{Vx}〉] is an open
neighborhood of x in X since f is upper semi-continuous. Put Wx = Ux ∩ f−1[〈{Vx}〉].
Then Wx ∩ f(Wx) = ∅.

Put W = {Wx : x ∈ X}. Then W covers X. So by paracompactness of X there is a
locally finite closed refinement A of W. List A as {Aξ : ξ < κ} for some ordinal number κ.
Observe that Aξ ∪ f(Aξ) = ∅ for each ξ < κ.
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Next, put p = (k+ l)(n+1)+1 and for each ξ < κ we will construct inductively a closed
cover {Bξ,i : i = 1, ..., p} of Aξ in a way such that if

Cη,i =
∪
ξ<η

Bξ,i for i = 1, ..., p

then for all η < κ we have

(1η) Cη,i ∩ f(Cη,i) = ∅ for i = 1, ..., p,

(2η) ord
{
Cη,i : i = 1, ..., p

}
≤ n + 1.

We note that Cη,i is closed in X for each η < κ and i = 1, ..., p since A is locally finite.
The construction: For η = 0 (10) and (20) hold since C0,i = ∅ for i = 1, ..., p.
When constructing {Bξ,i : i = 1, ..., p} for an η < κ and each ξ < η, we may assume

(1η) and (2η) to hold. Now we will construct {Bη,i : i = 1, ..., p}. For i = 1, ..., p define

Di = f−1(Cη,i) ∪ f(Cη,i).

Then Di is closed in X since f is upper semi-continuous. To see that

(a) {Aη\Di : i = 1, ..., p} covers Aη

we claim that
p∩

i=1

Di = ∅.

By (2η) and |f(x)| ≤ k, |f−1(x)| ≤ l for all x ∈ X we have

ord{f−1(Cη,i) : i = 1, ..., p} ≤ k(n + 1),
ord{f(Cη,i) : i = 1, ..., p} ≤ l(n + 1).

Indeed, for the first when we put f(x) = {x1, ..., xk} for each x ∈ X,
��{i : xj ∈ Cη,i}

�� ≤ n+1
for j = 1, ..., k by (2η). Hence

��{i : x ∈ f−1(Cη,i)}
�� =

���
k∪

j=1

{i : xj ∈ Cη,i}
���

≤
k∑

j=1

��{i : xj ∈ Cη,i}
��

≤ k(n + 1).

Similarly, we can verify the second.
Thus, from the definition of Di

ord{Di : i = 1, ..., p} ≤ ord{f−1(Cη,i) ∪ f(Cη,i) : i = 1, ..., p}
≤ k(n + 1) + l(n + 1)
= (k + l)(n + 1).

So
∩p

i=1 Di = ∅ and (a) holds.
By (1η)
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(b) Cη,i ∩ Di = ∅ for i = 1, ..., p.

So because dim Aη ≤ n, ord{Aη ∩Cη,i : i = 1, ..., p} ≤ n + 1 and Aη ∩Cη,i ⊂ Aη\Di for
i = 1, ..., p, by Lemma 2.4 there is a relatively open cover {Oi : i = 1, ..., p} of Aη such that

(c) Aη ∩ Cη,i ⊂ Oi, Oi ⊂ Aη\Di for i = 1, ..., p ,

(d) ord
{
Oi : i = 1, ..., p

}
≤ n + 1.

Define Bη,i = Oi for i = 1, ..., p. Then, Cη+1,i = Cη,i ∪ Bη,i = Cη,i ∪ Oi for i = 1, ..., p.
We check (1η+1) and (2η+1). For (2η+1) we obtain

ord{Cη+1,i : i = 1, ..., p} = ord{Cη,i ∪ Oi : i = 1, ..., p}
= ord{(Cη,i\Aη) ∪ Oi : i = 1, ..., p}
≤ n + 1

by (2η), (d) and the first part of (c). For (1η+1) it is sufficient to prove that

Cη,i ∩ f(Cη,i) = ∅,
Cη,i ∩ f(Bη,i) = ∅,
Bη,i ∩ f(Cη,i) = ∅,
Bη,i ∩ f(Bη,i) = ∅

for i = 1, ..., p. The first and fourth are trivial from (1η) and the property of Aη. Also
Bη,i ∩ f−1(Cη,i) = ∅ if and only if Cη,i ∩ f(Bη,i) = ∅. Thus, the second and third hold by
the second part of (c). This completes the construction of Bξ,i.

Finally, define
Ci =

∪
η<κ

Cη,i for i = 1, ..., p.

It is easy to see that C = {Ci : i = 1, ..., p} is a closed cover of X consisting of colors of f .
Consequently, C is as required.

When X is compact, Theorem 2.5 implies the following corollary.

Corollary 2.6. Let X be a compact space with dim X ≤ n and let f : X → Fk(X) be a fixed-
point free and upper semi-continuous map. Suppose that l = sup

{
|f−1(x)| : x ∈ X

}
< ∞.

Then f is colorable with at most (k + l)(n + 1) + 1 colors.

Proof. By compactness of X, f(F ) is closed in X for any closed subset F of X. So this is
shown from Theorem 2.5.

The numbers of colors in the above results are not sharp. Here we consider reducing the
numbers of colors.

Lemma 2.7. Let X be a separable metrizable space with dim X ≤ n and let f : X → 2X

be an upper semi-continuous map such that f(F ) is closed in X and dim f−1(F ) = dimF
for any closed subset F of X. Let ϕ and ϕi(i = 1, 2, ......) denote one of the map f and the
inclusion ι. Assume that S = {Si : i ∈ N} is a family of closed subsets of X such that

dim(ϕi1(Si1) ∩ · · · ∩ ϕik
(Sik

)) ≤ n − k
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whenever i1 < · · · < ik and k = 1, ..., n + 1. Then for every pair (G,H) of disjoint closed
subsets of X there is a partition S between G and H in X such that

dim(ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ ϕ(S)) ≤ n − k

whenever i1 < · · · < ik−1 and k = 1, ..., n + 1.

Proof. Put Xk =
∪
{ϕi1(Si1)∩· · ·∩ϕik

(Sik
) : i1 < · · · < ik} for k = 1, ..., n. Write X0 = X.

Then Xk is an Fσ-subset of X. By assumptions of S we have dimXk ≤ n − k. So there is
an Fσ-subset Z of X with dim Z = 0 and dim(Xk\Z) ≤ n − k − 1 for k = 1, ..., n. Since
f is upper semi-continuous, f−1(Z) is an Fσ-subset of X. By assumption of f we have
dim(Z ∪ f−1(Z)) = 0. Hence there is a partition S between G and H in X such that
S ∩ (Z ∪ f−1(Z)) = ∅.

Then

ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ S ⊂ Xk−1\Z,

ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ f(S) ⊂ Xk−1\Z,

whenever i1 < · · · < ik−1 and k = 1, ..., n + 1. Therefore,

dim((ϕi1(Si1) ∩ · · · ∩ ϕik−1(Sik−1) ∩ ϕ(S)) ≤ n − (k − 1) − 1
= n − k.

So S is as required.

Lemma 2.8. Let X be a separable metrizable space with dim X ≤ n and let f : X → 2X be
an upper semi-continuous map such that f(F ) is closed in X and dim f−1(F ) = dim F =
dim f(F ) for any closed subset F of X. Let ϕ and ϕi(i = 1, 2, ......) denote one of the map
f and the inclusion ι. Let U = {Ui : i = 1, ...,m} be an open cover of X and K = {Ki : i =
1, ...,m} be an closed shrinking of U . Then there is a closed cover L = {Li : i = 1, ...,m}
of X such that Ki ⊂ Li ⊂ Ui for i = 1, ...,m and

ϕi1(∂Li1) ∩ · · · ∩ ϕin+1(∂Lin+1) = ∅

whenever 1 ≤ i1 < · · · < in+1 ≤ m.

Proof. The proof will be done by induction.
First, we define L1. Since dimX ≤ n, there is a partition S1 between K1 and X\U1 in

X such that dim S1 ≤ n− 1. By assumption of f we have dim f(S1) ≤ n− 1. Now X\S1 is
the disjoint union of two open subsets V1 and W1 in X such that K1 ⊂ V1 and X\U1 ⊂ W1.
Define L1 = V1. Then ∂L1 ⊂ S1 and so dim ϕ(∂L1) ≤ n − 1.

Next, assume that for some r ∈ {1, ...,m} Li is defined for i = 1, ..., r − 1 such that the
family {∂Li : i = 1, ..., r − 1} has the property

(∗) dim(ϕi1(∂Li1) ∩ · · · ∩ ϕik
(∂Lik

)) ≤ n − k,

whenever 1 ≤ i1 < · · · < ik ≤ r − 1 and k = 1, ..., n + 1. From Lemma 2.7 there is a
partition Sr between Kr and X\Ur in X such that the property (∗) holds for the family
{∂Li : i = 1, ..., r − 1} ∪ {Sr}. Now X\Sr is the disjoint union of two open subsets Vr and
Wr in X such that Kr ⊂ Vr and X\Ur ⊂ Wr. Define Lr = Vr. Then ∂Lr ⊂ Sr and so the
property (∗) holds for {∂Li : i = 1, ..., r}. This completes the construction of Li.
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Take 1 ≤ i1 < · · · < in+1 ≤ m. Then

dim(ϕi1(∂Li1) ∩ · · · ∩ ϕin+1(∂Lin+1)) ≤ n − (n + 1) = −1

and so
ϕi1(∂Li1) ∩ · · · ∩ ϕin+1(∂Lin+1) = ∅.

Consequently, L = {Li : i = 1, ...,m} is as required.

Lemma 2.9. ([2]) Let K = {Ki : i = 1, ..., k} be a finite closed cover of a space X.
Define Li = Ki\(

∪i−1
j=1 Kj) for i = 1, ...,m. Then L = {Li : i = 1, ..., k} has the following

properties:
(1) Ls ∩ Lt = ∂Ls ∩ ∂Lt for s �= t.
(2) If ∂Li1∩· · ·∩∂Lim �= ∅, then ∂Ki1∩· · ·∩∂Kim−1 �= ∅ whenever 1 ≤ i1 < · · · < im ≤ k.

The following theorem is a generalization of Theorem 1.5.

Theorem 2.10. Let X be a separable metrizable space with dim X ≤ n and let f : X →
Fk(X) be a fixed-point free upper semi-continuous map such that l = sup

{
|f−1(x)| : x ∈

X
}

< ∞. Suppose that f(F ) is closed in X and dim f−1(F ) = dimF = dim f(F ) for any
closed subset F of X. Then f is colorable with at most kn + k + l + 1 colors.

Proof. f is colorable by Theorem 2.5. So there is a coloring A = {Ai : i = 1, ..., r} of f for
some r ∈ N. Assume that r > kn + k + l + 1. Because Ai and f(Ai) are disjoint closed
subsets of X for each i = 1, ..., r and X is normal, there are two open neighborhoods Ui and
Vi of Ai and f(A) in X, respectively, such that Ui ∩ Vi = ∅ for each i = 1, ..., r. Since f is
upper semi-continuous, f−1[〈{Vi}〉] is an open neighborhood of Ai in X for each i = 1, ..., r.
Put Bi = Ui ∩ f−1[〈{Vi}〉] for each i = 1, ..., r. Then B = {Bi|i = 1, ..., r} is an open cover
of X such that Ai ⊂ Bi and Bi ∩ f(Bi) = ∅ for i = 1, ..., r.

Define g : X → 2X by g(x) = f(f(x)) for x ∈ X. Since f is upper semi-continuous, g
is upper semi-continuous. For any closed subset F of X, g(F ) = f(f(F )) and g−1(F ) =
f−1(f−1(F )). Hence g(F ) is closed in X and dim g−1(F ) = dim F = dim g(F ) by assump-
tions of f . These enable us to apply Lemma 2.8 as ϕ and ϕi(i = 1, 2, ......) denote one of
the map g and the inclusion ι. So there is a closed cover C = {Ci : i = 1, ..., r} of X such
that Ai ⊂ Ci ⊂ Bi for i = 1, ..., r and

(�) ϕi1(∂Ci1) ∩ · · · ∩ ϕin+1(∂Cin+1) = ∅,

whenever 1 ≤ i1 < · · · < in+1 ≤ r. Define Di = Ci\(
∪i−1

j=1 Cj) and let D = {Di : i =
1, ..., r}. Observe that D is a coloring of f .

Take x ∈ Dr and put f−1(x) = {y1, ..., yl} and f(x) = {z1, ..., zk}. Define m, pa and qb

for a = 1, ..., l, b = 1, ..., k as follows:

m = |{i : (f−1(x) ∪ f(x)) ∩ Di �= ∅}|,
p1 = |{i : y1 ∈ Di}|,
pa = |{i : {y1, ..., ya−1} ∩ Di = ∅ and ya ∈ Di}| (a ≥ 2),
q1 = |{i : f−1(x) ∩ Di = ∅ and z1 ∈ Di}|,
qb = |{i : (f−1(x) ∪ {z1, ..., zb−1}) ∩ Di = ∅ and zb ∈ Di}| (b ≥ 2).
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Without lost of generality we may assume that pa ≥ 1, qb ≥ 1 for a = 1, ..., l, b = 1, ..., k.
Note that no indices i overlap in the definition of pa and qb for a = 1, ..., l, b = 1, ..., k i.e.

m =
l∑

a=1

pa +
k∑

b=1

qb

By Lemma 2.9

ya ∈ ∂Ci for at least pa − 1 indices i,

zb ∈ ∂Ci for at least qb − 1 indices i,

for a = 1, ..., l, b = 1, ..., k. So

f(x) ⊂ g(∂Ci) for at least
l∑

a=1

(pa − 1) indices i.

Hence for b = 1, ..., k

zb ∈ ϕ(∂Ci) for at least
l∑

a=1

(pa − 1) + (qb − 1) indices i.

By the property (�) for b = 1, ..., k

l∑
a=1

(pa − 1) + (qb − 1) ≤ n.

Since pa − 1 ≥ 0 for a = 1, ..., l,

m =
l∑

a=1

pa +
k∑

b=1

qb

=
l∑

a=1

(pa − 1) + l +
k∑

b=1

(qb − 1) + k

≤
k∑

b=1

( l∑
a=1

(pa − 1) + (qb − 1)
)

+ k + l

≤
k∑

b=1

n + k + l

= kn + k + l.

Now since r > kn + k + l + 1, there is a j(x) ∈ {1, ..., r − 1} such that x /∈ f−1(Dj(x))∪
f(Dj(x)). Because f−1(Dj(x)) and f(Dj(x)) are closed in X, there is an open neighborhood
Wx of x in X such that Wx ⊂ Br\(f−1(Dj(x)) ∪ f(Dj(x))).

Put W = {Wx : x ∈ Dr}. By paracompactness of Dr there is a locally finite closed
refinement K = {Ks : s ∈ S} of W, where S is an index set. Define ψ : S → {1, ..., r − 1}
as it satisfies that Ks ⊂ Br\(f−1(Dψ(s)) ∪ f(Dψ(s))). Put Ej =

∪
{Ks : j = ψ(s)} and

Fj = Dj ∪Ej for j = 1, ..., r−1. Then F = {Fj : j = 1, ..., r−1} is a coloring of f consisting
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of r − 1 colors. In fact, since K is locally finite, Ej is closed in X and so Fj is closed in X.
To show that Fj is a color of f for each j = 1, ..., r − 1 we check the followings:

Dj ∩ f(Dj) = ∅,
Dj ∩ f(Ej) = ∅,
Ej ∩ f(Dj) = ∅,
Ej ∩ f(Ej) = ∅

for j = 1, ..., r − 1. The second can be replaced by Ej ∩ f−1(Dj) = ∅. Therefore, all hold
since D is the coloring of f and Ej ⊂ Br\(f−1(Dj) ∪ f(Dj)).

We have reduced the number of colors by one, under the assumption that this number
is greater than kn + k + l + 1. Inductively, the coloring of f can be reduced to a coloring
of f with kn + k + l + 1 colors.

When X is compact, Theorem 2.10 implies the following corollary by the same way as
Corollary 2.6.

Corollary 2.11. Let X be a compact metrizable space with dim X ≤ n and let f : X →
Fk(X) be a fixed-point free upper semi-continuous map such that l = sup

{
|f−1(x)| : x ∈

X
}

< ∞. Suppose that dim f−1(F ) = dimF = dim f(F ) for any closed subset F of X.
Then f is colorable with at most kn + k + l + 1 colors.

We would like to finish the paper by mentioning a relation between colorability and the
Stone-Čech compactification. Let X be a normal space. Then the Stone-Čech compacti-
fication βX of X is equivalent to the Wallman compactification of X with respect to the
Wallman base consisting of all closed subsets of X. Hence F

βX ∩ G
βX

= ∅ for any pair
(F,G) of disjoint closed subsets of X. Also if F is closed in X, βF = F

βX
. So we may

assume that βF ⊂ βX.
The following is a generalization of Proposition 1.1.

Proposition 2.12. Let X be a closed subspace of a normal space Y and let f : X → K(Y )
be a fixed-point free continuous map. Then, the following are equivalent:

(1) f is brightly colorable.
(2) The Stone-Čech extension βf : βX → 2βY of f is fixed-point free.

Proof. We will show that (1) implies (2). Since 2βY is compact and K(Y ) ⊂ 2βY , there is
a continuous extension βf : βX → 2βY of f . Take z ∈ βX to show that βf is fixed-point
free . By (1) there is a bright coloring C of f . Then CβY

is a finite cover of βX and hence

there is a C ∈ C such that z ∈ C
βY

. Because C is a bright color of f , C ∩ f(C)
Y

= ∅. By

the property of the Stone-Čech compactification C
βY ∩ f(C)

βY
= ∅. By continuity of f

βf(z) ⊂ βf(C
βY

) ⊂ βf(C)
βY

⊂ f(C)
βY

.

Thus, z /∈ βf(z).
Next, we will show that (2) implies (1). Since βf is fixed-point free continuous and βX

is compact, βf is colorable from Proposition 2.1. So there is a coloring C of βf . Then the
restriction of C to X is as required.

This shows that colorability for set-valued continuous maps with compact values is
similar to that for single-valued continuous maps.
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Weighted variable modulation spaces

Definition 1.1. Let p(·) and q(·) be exponents satisfying

(1.1) 0 < p− ≤ p+ < ∞, 0 < q− ≤ q+ < ∞,

and let w be a weight. One defines the weighted vector-valued function space ℓq(·)(Lp(·)(w))
by

ℓq(·)(Lp(·)(w)) ≡

{
{fm}m∈Zn ⊂ L0(Rn) :

∑
m∈Zn

���|fm|q(·)
���
L

p(·)
q(·) (w)

< ∞

}

as a linear space, and the norm is given by:

∥{fm}m∈Zn∥ℓq(·)(Lp(·)(w)) = inf


λ > 0 :

∑
m∈Zn

�����
����
fm
λ

����
q(·)

�����
L

p(·)
q(·) (w)

≤ 1




for {fm}m∈Zn ⊂ L0(Rn).

Now we define the weighted modulation space Mp(·),q(·),a(w) with variable exponents by
using the following standard operators in time frequency analysis:

• For a measurable function f on Rn and m, l ∈ Zn, define Mmf and Tlf by Mmf(x) ≡
exp(im · x)f(x) and Tlf(x) ≡ f(x− l), respectively.

• Define the Fourier transform and its inverse by

Ff(ξ) ≡ 1

(2π)
n
2

∫

Rn

f(x) exp(−ix · ξ) dx, F−1f(x) ≡ 1

(2π)
n
2

∫

Rn

f(ξ) exp(ix · ξ) dξ.

• Let Q(r) = {x ∈ Rn : max{|x1|, |x2|, . . . , |xn|} ≤ r}.

With these definitions in mind, we present the definition of the weighted modulation space
Mp(·),q(·),a(w) with variable exponents.

Definition 1.2. Suppose that p(·) and q(·) satisfies (1.1) and a > 0. Let ϕ ∈ S(Rn)
satisfying

(1.2) χQ(1/4) ≤ Fϕ ≤ χQ(2)

and

(1.3)
∑

m∈Zn

Tm[Fϕ](x) > 0

for all x ∈ Rn. Then the space Mp(·),q(·),a(w) is defined to be the set of all f ∈ S ′(Rn) for
which the quasi-norm

∥f∥Mp(·),q(·),a(w) ≡ ∥{(Mmϕ ∗ f)a}m∈Zn∥ℓq(·)(Lp(·)(w))

is finite, where

(1.4) (Mmϕ ∗ f)a(x) = sup
y∈Rn

|Mmϕ ∗ f(y)|
(1 + |x− y|)a

.

The next result justifies the notation Mp(·),q(·),a(w).
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Theorem 1.1. Let p(·), q(·) : Rn → (0,∞) be variable exponents satisfying (1.1). Then
the definition of the set Mp(·),q(·),a(w) is independent of the choice of ϕ; different choices of
admissible functions yield equivalent norms.

With the new parameter a, our assumption on w can be minimized in order that
Mp(·),q(·),a(w) �→ S ′(Rn). More quantitatively, we have the following assertion:

Theorem 1.2. Let w be a weight such that

(1.5)

∫

[0,1]n
w(x) dx < ∞.

Let f ∈ Mp(·),q(·),a(w). Then there exists C > 0 such that

sup
m∈Zn

∥(1 + | · |)−a(Mmϕ ∗ f)a∥L∞ ≤ C∥f∥Mp(·),q(·),a(w).

In particular, Mp(·),q(·),a(w) �→ S ′(Rn).

Theorem 1.2 shows that (1.5) is sufficient to guarantee that our new space Mp(·),q(·),a(w)
is a subset of S ′(Rn).

We impose on p(·) the log-Hölder continuity condition:

(1.6) |p(x)− p(y)| ≤ clog(p)

log(e + |x− y|−1)
for x, y ∈ Rn,

and the log decay condition;

(1.7) |p(x)− p∞| ≤ c∗

log(e+ |x|)
for x ∈ Rn,

where p∞ is a real number, clog(p) and c∗ are positive constants independent of x and y.
We say that p(·) satisfies the globally log-Hölder condition if p(·) satisfies both (1.6) and
(1.7).

We also consider the sequence space mp(·),q(·),a(w) to prove the molecular decomposition
theorem.

Definition 1.3. Let p(·) and q(·) be exponents satisfying (1.1) and a > 0. One defines a
space mp(·),q(·),a(w) as the set of all complex sequences λ = {λml}m,l∈Zn such that

∑
m∈Zn

������

����� supy∈Rn

(∑
l∈Rn

|λml|χl+[0,1)n(· − y)

(1 + |y|)a

)�����
q(·)

������
L

p(·)
q(·) (w)

< ∞.

For such a sequence λ, define the quasi-norm by

∥λ∥mp(·),q(·),a(w)

≡ inf




T > 0 :

∑
m∈Zn

������

����� supy∈Rn

(∑
l∈Rn

|λml|χl+[0,1)n(· − y)

T (1 + |y|)a

)�����
q(·)

������
L

p(·)
q(·) (w)

≤ 1





.

We consider the following condition on weights:

(1.8) (1 + | · |)−a ∈ Lp(·)(w) < ∞.

As the following theorem shows, (1.8) is a natural and minimal condition.

TAKAHIRO NOI AND YOSHIHIRO SAWANO 23



Weighted variable modulation spaces

Theorem 1.3. Let w : Rn → [0,∞) be a measurable function. Assume that p(·) and q(·)
satisfy (1.1) and a > 0. Then assumption (1.8) is necessary and sufficient for mp(·),q(·),a(w)
to contain an element other than 0.

We may ask ourselves whether the parameter a is essential. If the weight is good enough,
then we can show that a is not essential as long as a ≫ 0. We invoke the following definition
from [2, 3, 4].

For a variable exponent p(·) : Rn → [1,∞), a measurable function w is said to be an
Ap(·) weight if 0 < w(x) < ∞ for almost every x ∈ Rn and

(1.9) sup
Q

(
1

|Q|
∥w1/p(·)χQ∥Lp(·)∥w−1/p(·)χQ∥Lp′(·)

)
< ∞

holds, where the supremum is taken over all open cubes Q ⊂ Rn whose sides are parallel to
the coordinate axes and p′(x) is the conjugate exponent of p(x), that is, 1/p(x)+1/p′(x) = 1.

In the above definition, when a ≫ 0 and w ∈ Ap(·), the space mp(·),q(·),a(w) does not
depend on a, as the following theorem shows.

Theorem 1.4. Assume that p(·) and q(·) satisfy (1.1), p− > 1, w ∈ Ap(·) and a ≫
0. Assume, in addition, that p(·) and q(·) are globally log-Hölder continuous. Then λ ∈
mp(·),q(·),a(w) if and only if

������

{∑
l∈Zn

|λml|χl+[0,1)n(·)

}

m∈Zn

������
ℓq(·)(Lp(·)(w))

< ∞.

We also consider the molecular decomposition. For x ∈ Rn, we write ⟨x⟩ ≡
√

1 + |x|2.
Suppose that K,N ∈ N are large enough and fixed. A CK -function τ : Rn → C is said to
be an (m, l)-molecule if it satisfies |∂α(e−im·xτ(x))| ≤ ⟨x− l⟩−N , x ∈ Rn for |α| ≤ K. Set

M ≡ {M = {molml}m,l∈Zn ⊂ CK : molml is an (m, l)-molecule for every m, l ∈ Zn}.

We shall develop a theory of decomposition based on the above definition.

Theorem 1.5. Let a ≫ N + n. Assume, in addition, that p(·) and q(·) satisfy (1.1).

(i) Let ϕ, κ ∈ S(Rn) satisfy

(1.10) χQ(1/4) ≤ Fϕ ≤ χQ(2),
∑
l∈Zn

Tl[Fϕ] ≡ 1

and

(1.11) 0 ≤ κ ≤ χQ(2),
∑
l∈Zn

Tlκ ≡ 1.

The decomposition, called Gabor decomposition, holds for Mp(·),q(·),a(w). More pre-
cisely, we have {TlMm[F−1κ]}m,l∈Zn ∈ M and the mapping

f ∈ Mp(·),q(·),a(w) �→ λ = {Mmϕ ∗ f(l)}m,l∈Zn ∈ mp(·),q(·),a(w)

is bounded. Furthermore, any f ∈ Mp(·),q(·),a(w) admits the following Gabor decom-
position

f =
∑

m,l∈Zn

λml · TlMm[F−1κ],

(1.12) λ = {λml}m,l∈Zn = {Mmϕ ∗ f(l)}m,l∈Zn ∈ mp(·),q(·),a(w).
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(ii) Suppose we are given M = {molml}m,l∈Zn ∈ M and λ = {λml}m,l∈Zn ∈ mp(·),q(·),a(w).
Then

(1.13) f ≡
∑

m,l∈Zn

λml ·molml

converges unconditionally in S ′(Rn). Furthermore, f belongs to Mp(·),q(·),a(w) and
satisfies the quasi-norm estimate ∥f∥Mp(·),q(·),a(w) ≤ C ∥λ∥mp(·),q(·),a(w). In particular,
the convergence of (1.13) takes place in Mp(·),q(·),a(w).

Corollary 1.6. Under assumption (1.8), S(Rn) ⊂ Mp(·),q(·),a(w).

As an application, we shall show that the pseudo-differential operator with symbol S0
00

is bounded on Mp(·),q(·),a(w). Recall that a ∈ C∞(Rn
x × Rn

ξ ) is an S0
00-symbol if

∂β
x∂

α
ξ a ∈ L∞(Rn

x × Rn
ξ )

for all multi-indices α and β. The pseudo-differential operator a(X,D) is defined by

a(X,D)f(x) ≡ 1

(2π)n/2

∫

Rn

a(x, ξ)Ff(ξ)eix·ξ dξ.

In [9, Lemma 3.2], the authors showed that the set M is preserved by a(X,D). Thus, we
have the following result, which is a direct corollary of Theorem 1.5:

Theorem 1.7. Let a ∈ S0
00. Then a(X,D) is a bounded linear operator on Mp(·),q(·),a(w).

Remark 1.1. When p(·) ≡ q(·) ≡ 2, a > n/2 and w ≡ 1, we have Mp(·),q(·),a(w) = L2(Rn). It
may be interesting to note that Sjöstrand proved this result when Mp(·),q(·),a(w) = L2(Rn)
by using the so-called T ∗T -method, while our method is beyond the reach of this method
employed in [12].

We organize the remaining part of this paper as follows: The proofs of Theorem 1.1
through Theorem 1.4 can be found in Section 2. In Section 3, we shall develop a theory of
decomposition and we prove Theorem 1.5.

2 Fundamental structure of Mp(·),q(·),a(w)

2.1 Proof of Theorem 1.1 Let ϕ, ψ be functions in S(Rn) satisfying (1.2) and (1.3).
Let us choose a smooth function Φ ∈ S(Rn) so that

FΦ(ξ)
∑

m∈{−2,−1,0,1,2}n

Fψ(ξ −m) = Fϕ(ξ).

Then we have

ϕ = (2π)n/2Φ ∗
∑

m∈{−2,−1,0,1,2}n

Mmψ

and hence

Mlϕ = (2π)n/2MlΦ ∗
∑

m∈{−2,−1,0,1,2}n

Ml+mψ,
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which implies

|Mlϕ ∗ f(x− y)|

≤ C
∑

m∈{−2,−1,0,1,2}n

∫

Rn

|Φ(z)| · |Ml+mψ ∗ f(x− y − z)| dz

≤ C

(∫

Rn

|Φ(z)|(1 + |z + y|)a dz
) ∑

m∈{−2,−1,0,1,2}n

sup
w∈Rn

|Ml+mψ ∗ f(x− w)|
(1 + |w|)a

≤ C(1 + |y|)a
∑

m∈{−2,−1,0,1,2}n

sup
w∈Rn

|Ml+mψ ∗ f(x− w)|
(1 + |w|)a

for all x, y ∈ Rn. This in turn implies

(Mlϕ ∗ f)a(x) ≤ C
∑

m∈{−2,−1,0,1,2}n

(Ml+mψ ∗ f)a(x).

Due to symmetry, we see that different choices of admissible functions yield equivalent
norms.

2.2 Proof of Theorem 1.2 Let m ∈ Zn be fixed and take x ∈ m + [0, 1]n. Then we
have

(1 + |x|)−a(Mmϕ ∗ f)a(x) = sup
y∈Rn

|Mmϕ ∗ f(y)|
(1 + |x− y|)a(1 + |x|)a

≤ C sup
y∈Rn

|Mmϕ ∗ f(y)|
(1 + |y|)a

≤ C inf
z∈[0,1]n

sup
y∈Rn

|Mmϕ ∗ f(y)|
(1 + |y − z|)a

.

If we use (1.5), then we obtain

(1 + |x|)−a(Mmϕ ∗ f)a(x) ≤ C

���� sup
y∈Rn

|Mmϕ ∗ f(y)|
(1 + |y − ·|)a

����
Lp(·)(w)

= C∥(Mmϕ ∗ f)a∥Lp(·)(w).

This then yields
(1 + |x|)−a(Mmϕ ∗ f)a(x) ≤ C∥f∥Mp(·),q(·),a(w).

Thus, the proof is complete.

2.3 Proof of Theorem 1.3 We justify the condition (1.8); we prove Theorem 1.3.

Proof of Theorem 1.3. Let λ = {λml}m,l∈Zn ∈ mp(·),q(·),a(w)\{0}. Then there existm0, l0 ∈
Zn such that λm0l0 ̸= 0. Set

ρml ≡

{
λm0l0 (m, l) = (m0, l0),

0 otherwise.

Then ρ ≡ {ρml}m,l∈Zn belongs to mp(·),q(·),a(w) \ {0}. This implies

0 < ∥ρ∥mp(·),q(·),a(w) =

����� sup
y∈Rn

(
|λm0l0 |

χl0+[0,1)n(· − y)

(1 + |y|)a

)q(·)
�����
L

p(·)
q(·) (w)

< ∞.
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Hence, we have
����� sup
y∈Rn

(
χ[0,1)n(· − y)

(1 + |y|)a

)q(·)
�����
L

p(·)
q(·) (w)

≤ (1 + |l0|)aq+
����� sup
y∈Rn

(
χl0+[0,1)n(· − y)

(1 + |y|)a

)q(·)
�����
L

p(·)
q(·) (w)

< ∞.

Therefore, we obtain
�����
���� sup
y∈Rn

(
χ[0,1)n(· − y)

(1 + |y|)a

)����
q(·)

�����
L

p(·)
q(·) (w)

≤ max

{���� sup
y∈Rn

(
χ[0,1)n(· − y)

(1 + |y|)a

)����
q−

Lp(·)(w)

,

���� sup
y∈Rn

(
χ[0,1)n(· − y)

(1 + |y|)a

)����
q+

Lp(·)(w)

}
< ∞

and hence (1.8).

2.4 Proof of Theorem 1.4 Firstly, we prove the following lemma to prove Lemma 2.2.

Lemma 2.1. Let p(·) satisfy the log-Hölder conditions. Define ηa(x) ≡ 1

(1 + |x|)a
for

x ∈ Rn. If a > clog(p), then there exists a constant C > 0 such that

(2.1) bp(x)η2a(x− y) ≤ Cbp(y)ηa(x− y)

holds for any 1 ≤ b < ∞ and x, y ∈ Rn.

Proof. We use a similar argument to the proof of [5, Lemma 6.1]. We may assume |x−y| ≥ b
due to the log Hölder continuity of p(·). We fix the smallest natural number k ≥ 2 such
that |x− y| ≤ b−1+k. Then, for such x, y and k, 1 + |x− y| ∼ bk holds and we have

(2.2)
η2a(x− y)

ηa(x− y)
≤ c(1 + bk)−a ≤ cb−ka.

Furthermore, by the Hölder continuity of p(·) and a > clog(p), we see that

(2.3) bp(y)−p(x) ≥ b−clog(p)/ log(e+|x−y|−1) ≥ b−clog(p) ≥ b−(k−1)a.

Hence, the desired inequality (2.1) holds thanks to (2.2) and (2.3) as well as the fact that
a > clog(p).

We need the following auxiliary estimate akin to the one in [1].

Lemma 2.2. Let p(·), q(·) satisfy the log-Hölder condition as well as the log decay condition.
Let 1 ≤ p− ≤ p+ < ∞ and let also w ∈ Ap(·). Let a > 2max{n, clog(q)}. Set ηa(x) ≡
(1 + |x|)−a. Then, for any {fm}m∈Zn ∈ ℓq(·)(Lp(·)(w)),

∥{ηa ∗ fm}m∈Zn∥ℓq(·)(Lp(·)(w)) ≤ C∥{fm}m∈Zn∥ℓq(·)(Lp(·)(w)).

Proof. We follow the idea in the work by Almeida and Hästö, which is listed above. Without
loss of generality, we can assume ∥{fm}m∈Zn∥ℓq(·)(Lp(·)(w)) = 1. Then it is easy to see that

∥fm∥Lp(·)(w) ≤ 1 hold for any m ∈ Zn. Let m ∈ Zn be fixed and δ = ∥|fm|q(·)∥Lp(·)/q(·)(w).
By the argument of [1, Proof of Lemma 4.7] with Lemma 2.1 which takes the place of [1,
Lemma 4.3], we have ∥δ−1/q(·)(ηa ∗ fm)∥Lp(·)(w) ≤ C∥ηa/2 ∗ [δ−1/q(·)fm]∥Lp(·)(w).
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Denote by M the Hardy-Littlewood maximal operator; for a measurable function f
define

Mf(x) = sup
r>0

1

(2r)n

∫

[−r,r]n
|f(x− y)| dy (x ∈ Rn).

Since a > 2n, we have ∥ηa/2∥L1 < ∞ and hence

|ηa/2 ∗ F (x)| ≤ CMF (x)

for all positive measurable functions F . Since w ∈ Ap(·), we have

(2.4) ∥ηa/2 ∗ F∥Lp(·)(w) ≤ C∥F∥Lp(·)(w).

Note that

∥δ−1/q(·)(ηa ∗ fm)∥Lp(·)(w) ≤ C∥ηa/2 ∗ [δ−1/q(·)fm]∥Lp(·)(w) ≤ C∥δ−1/q(·)fm∥Lp(·)(w),

where for the second inequality we used (2.4). Note that

min{∥hq(·)∥1/q−
Lp(·)/q(·)(w)

, ∥hq(·)∥1/q+
Lp(·)/q(·)(w)

}

≤ ∥h∥Lp(·) ≤ max{∥hq(·)∥1/q−
Lp(·)/q(·)(w)

, ∥hq(·)∥1/q+
Lp(·)/q(·)(w)

}

for any non-negative measurable function h. Therefore,

min{δ−1/q−∥|ηa ∗ fm|q(·)∥1/q−
Lp(·)/q(·)(w)

, δ−1/q+∥|ηa ∗ fm|q(·)∥1/q+
Lp(·)/q(·)(w)

}

≤ max{δ−1/q−∥|fm|q(·)∥1/q−
Lp(·)/q(·)(w)

, δ−1/q+∥|fm|q(·)∥1/q+
Lp(·)/q(·)(w)

} = 1.

This implies that either

δ−1/q−∥|ηa ∗ fm|q(·)∥1/q−
Lp(·)/q(·)(w)

≤ 1

or

δ−1/q+∥|ηa ∗ fm|q(·)∥1/q+
Lp(·)/q(·)(w)

≤ 1.

Hence,

∥ |ηa ∗ fm|q(·) ∥Lp(·)/q(·)(w) ≤ C∥ |fm|q(·) ∥Lp(·)/q(·)(w).

Now we prove Theorem 1.4. Let ηa(x) ≡ (1 + |x|)−a as before. Then we have

sup
y∈Rn

(∑
l∈Zn

|λml|χl+[0,1)n(x− y)

(1 + |y|)a

)
≤ C

∑
k∈Zn

(∑
l∈Zn

|λml|χl+[0,1)n(x− k)

(1 + |k|)a

)

≤ C

∫

Rn

(∑
l∈Zn

|λml|χl+[0,1)n(x− z)

(1 + |z|)a

)
dz

= Cηa ∗

[∑
l∈Zn

|λml|χl+[0,1)n

]
(x).
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Taking the ℓq(·)(Lp(·)(w))-norm, we obtain

������

{
sup
y∈Rn

(∑
l∈Zn

|λml|χl+[0,1)n(· − y)

(1 + |y|)a

)}

m∈Zn

������
ℓq(·)(Lp(·)(w))

≤ C

������

{
ηa ∗

[∑
l∈Zn

|λml|χl+[0,1)n

]}

m∈Zn

������
ℓq(·)(Lp(·)(w))

.

Hence, we invoke Lemma 2.2 to see that

������

{
sup
y∈Rn

(∑
l∈Zn

|λml|χl+[0,1)n(· − y)

(1 + |y|)a

)}

m∈Zn

������
ℓq(·)(Lp(·)(w))

≤ C

������

{∑
l∈Zn

|λml|χl+[0,1)n

}

m∈Zn

������
ℓq(·)(Lp(·)(w))

,

as was to be shown.

3 Molecular decomposition Assumption (1.5) is also appropriate to develop a theory
for the decomposition of weighted modulation spaces with variable exponent.

The following well-known lemma is used to prove Theorem 1.5. For example, we refer
for the proof to the paper [6, Lemma 2.1] due to M. Frazier and B. Jawerth, who took full
advantage of this equality in [7, Lemma 2.1].

Lemma 3.1. [6, Lemma 2.1], [7, Lemma 2.1] Let f ∈ S ′(Rn) with frequency support
contained in Q(2);

(3.1) supp(Ff) ⊂ Q(2).

Assume, in addition, that κ ∈ S(Rn) is supported on Q(2) and that

∑
l∈Zn

Tlκ ≡ 1.

Then we have

(3.2) f = (2π)−
n
2

∑
l∈Zn

f(l) · Tl[F−1κ].

Remark 3.1. In the original version of [6, Lemma 2.1], Frazier and Jawerth did not consider
condition (3.1). Instead, they decomposed f according the size of frequency support; see [6,
(2.5)]. Apart from the mollification done in [6, (2.7)], their key idea of the proof is to expand
a function into Fourier series; see [6, (2.8)]. This technique will be used to prove Lemma
3.1. Despite the fact that Frazier and Jawerth dealt with Besov spaces and Triebel-Lizorkin
spaces in [6, 7] and that we deal with (weighted) modulation spaces, we can say that Lemma
3.1 is essentially due to Frazier and Jawerth because of the important contribution to the
theory of decompositions obtained in [6, 7].

Proof of Theorem 1.5. Define Mp(·),q(·),a(w) according to Definition 1.2 by using ϕ satisfy-
ing (1.10).
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(i) Let f ∈ Mp(·),q(·),a(w). Then by using (1.10) and (1.11) we expand f according to
Lemma 3.1 :

 
 

)
 

Thus, if we set λml ≡ (2π)−
n

2 Mmϕ ∗ f(l), then we obtain a decomposition of f as
follows:

f =
∑

m∈Zn

(∑
l∈Zn

λml · TlMm[F−1κ]

)
.

Let us check that this decomposition fulfills the desired property in Theorem 1.5(i).

Let x, y ∈ Rn. Denote by lx,y an element in Zn such that x−y ∈ lx,y+[0, 1)n. Observe
that

(2π)
n
2 sup

y∈Rn

(∑
l∈Rn

|λml|χl+[0,1)n(x− y)

(1 + |y|)a

)
= sup

y∈Rn

(∑
l∈Rn

|Mmϕ ∗ f(l)|χl+[0,1)n(x− y)

(1 + |y|)a

)

= sup
y∈Rn

|Mmϕ ∗ f(lx,y)|
(1 + |y|)a

≤ sup
y∈Rn

|Mmϕ ∗ f(lx,y)|
(1 + |x− lx,y|)a

(1 + |y − x+ lx,y|)a

≤ 2a sup
y∈Rn

|Mmϕ ∗ f(lx,y)|
(1 + |x− lx,y|)a

= 2a(Mmϕ ∗ f)a(x).

Therefore, we obtain

∥λ∥mp(·),q(·),a(w) ≤ C∥f∥Mp(·),q(·),a(w),

as was to be shown.

(ii) Let m′ ∈ Zn and x ∈ Rn. Then we have

|Mm′ϕ ∗ f(x)| ≤
∑

m,l∈Zn

|λml| · |Mm′ϕ ∗molml(x)|

=
∑

m,l∈Zn

|λml| · |Mm′ϕ ∗ [Mm[M−mmolml]](x)|

=
∑

m,l∈Zn

|λml| · |Mm′−mϕ ∗ [M−mmolml](x)|.

Note that

Mm′−mϕ ∗ [M−mmolml](x) = (2π)
n
2

∫

Rn

ei(m
′−m)yϕ(y)(M−mmolml)(x− y) dy

satisfies
|Mm′−mϕ ∗ [M−mmolml](x)| ≤ C⟨m′ −m⟩−N ⟨x− l⟩−N .

Thus, it follows that

|Mm′−mϕ ∗ [M−mmolml](y)|
(1 + |x− y|)N

≤ C⟨m′ −m⟩−N ⟨x− l⟩−N

f =
∑

m∈Zn

Mmφ ∗ f = (2π)−
n
2

∑
m∈Zn

(∑
l∈Zn

Mmφ ∗ f(l) · TlMm[F−1κ]　.
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for all y ∈ Rn. Consequently,

sup
y∈Rn

|Mm′ϕ ∗ f(y)|
(1 + |x− y|)N

≤ C
∑

m∈Zn

(∑
l∈Zn

|λml|⟨m′ −m⟩−N ⟨x− l⟩−N

)

= C
∑

m∈Zn

⟨m′ −m⟩−N

(∑
l∈Zn

|λml|⟨x− l⟩−a⟨x− l⟩−N+a

)

≤ C
∑

m∈Zn

⟨m′ −m⟩−N

(∑
l∈Zn

sup
z∈Rn

( ∑
l1∈Zn

|λml1 |χl1+[0,1)n(x− z)

(1 + |z|)a

)
⟨x− l⟩−N+a

)

≤ C
∑

m∈Zn

⟨m′ −m⟩−N

(
sup
z∈Rn

( ∑
l1∈Zn

|λml1 |χl1+[0,1)n(x− z)

(1 + |z|)a

))

as long as N > a+ n. Thus, f ∈ Mp(·),q(·),a(w).
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Arya et al. (2008) explore the standard conclusions about duopoly competition when the
production of key input is outsourced to a vertically integrated retail competitor with up-
stream market power. They show that prices and industry profits can be larger in Bertrand
competition than in Cournot, while consumer and total surplus can be smaller in Bertrand
than in Cournot. Mukherjee et al. (2012) compare Cournot with Bertrand competition in
a vertical structure in which a monopoly upstream firm sells its product to two downstream
firms, assuming there are asymmetric costs between downstream firms and homogeneous
final goods. They demonstrate that the technology differences among the downstream firms
and the pricing strategy (i.e., uniform pricing or price discrimination) of the upstream firm
play an important role in the ranking of profit and social welfare. We revisit the profit rank-
ing under Bertrand and Cournot competition in a vertically related duopoly in which each
upstream firm sells its product to its own downstream firm. Our paper differs from the ex-
isting literature in at least two important aspects. First, previous studies consider Bertrand
and Cournot competitions under wage bargaining and input prices negotiation. Our study
examines them without negotiation. Second, previous ones produced the counter-results of
Signs and Vives (1984) under costs and demand asymmetry. However, this paper analyzes
the issue under symmetric conditions. This paper is organized as follows; in Section 2, we
set up the model. Section 3 examines the Cournot competition, and then, Section 4 ana-
lyzes the Bertrand competition. Section 5 deals with comparative analysis. Finally, Section
6 contains concluding remarks.

Consider a manufacturing duopoly in which each upstream firm sells its product to its
own downstream firm. There is a continuum of consumers of the same type with a utility
function separable and linear in numeraire goods. Therefore, there are no income effects.
The representative consumer maximizes U(qi, qj) − Σpiqi; i = 1, 2; i �= j, where qi is the
quantity of good i and pi its price. U is assumed to be quadratic and strictly concave
U(qi, qj) = qi + qj − (q2

i + 2bqiqj + q2
j )/2; i = 1, 2; i �= j. This utility function gives rise to a

linear demand structure. Inverse demands are given by

(1) pi = 1 − qi − bqj , 0 ≤ b ≤ 1, i, j = 1, 2, i �= j.

where pi is the retail price for product i, and qi and qj are the amount of goods produced
by channel i and j, respectively. Each unit of retail output requires exactly one unit of the
input. The products are differentiated (0 ≤ b ≤ 1). Upstream firms and downstream firms
are risk-neutral and there are no production or retailing costs.

We posit a two-stage game. At stage one, each upstream firm sets an wholesale price.
At stage two, each downstream firm also sets the retail price or quantity.

2 Cournot Competition We first consider Cournot competition in which each down-
stream firm sets a quantity. In this case the equilibrium concept is the sub-game perfect
Nash equilibrium.
Stage Two (Quantity): At stage two, downstream firm i sets a quantity, qi, so as to maximize
its profit for a given input price, wi. Downstream firm i’s maximization problem is as follows:

max πi = (pi − wi)qi, w.r.t. qi.

where wi is the input price. Therefore, downstream firm i sets the quantity, qi, as the
function of input prices as follows:

(2) qi(wi, wj) =
2(1 − wi) − b(1 − wj)

4 − b2
.
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Stage one (Wholesale Price): At stage one, upstream firm i sets wholesale, wi, to maximize
its profit for a given wj . Upstream firm i’s maximization problem is as follows:

max Πi = wiqi(wi, wj) =
wi[(2 − wi) − b(1 − wj)]

4 − b2
, w.r.t. wi.

The equilibrium wholesale price for upstream firm i is derived as follows:

(3.1) wi =
2 − b

4 − b
.

Substituting the wholesale price into Eq. (1) and Eq. (2), we obtain the retail price, pi, the
quantity, qi, the upstream firm i’s payoff, Πi, and downstream firm i’s payoff, πi,

pC
i =

6 − b2

(2 + b)(4 − b)
,(3.2)

qC
i =

2
(2 + b)(4 − b)

,(3.3)

ΠC
i =

2(2 − b)
(2 + b)(4 − b)2

, and(3.4)

πC
i =

4
(2 + b)2(4 − b)2

.(3.5)

where superscripts C denote Cournot equilibrium.

3 Bertrand Competition We now turn to Bertrand competition in which each down-
stream firm sets a retail price. From Eq. (1), the following direct demand function can be
derived as follows:

(4) qi =
1 − b − pi + bpj

1 − b2
, 0 ≤ b ≤ 1, i, j = 1, 2, i �= j.

Stage Two (Retail Price): At stage two, downstream firm i sets retail price, pi, so as to
maximize its profit for a given wholesale price, wi. Downstream firm i’s maximization
problem is as follows:

max πi = (pi − wi)qi =
(pi − wi)(1 − b − pi + bpj)

1 − b2
, w.r.t. pi.

Therefore, downstream firm i sets the retail price, pi, as the function of wholesale prices
as follows:

pi(wi, wj) =
2(1 − wi) − b(1 − wj) − b2

4 − b2
.(5)

Stage One (Wholesale Price): At stage one, upstream firm i sets a wholesale price, wi, to
maximize its profit for a given wholesale price, wj . Upstream firm i’s maximization problem
is as follows:

maxΠi = wiqi(wi, wj) =
wi[(2 − b2)(1 − wi) − b(1 − wj)]

(4 − b2)(1 − b2)
, w.r.t. wi.

The equilibrium wholesale price for upstream firm i is derived as follows:

wi =
2 − b − b2

4 − b − 2b2
.(6.1)
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Substituting the wholesale price into Eq. (4) and Eq. (5), we obtain the retail price, pi, the
quantity, qi, the upstream firm i’s payoff, Πi, and downstream firm i’s payoff, πi,

pB
i =

2(1 − b)(3 − b2)
(2 − b)(4 − b − 2b2)

,(6.2)

qB
i =

(2 − b2)
(2 − b)(4 − b − 2b2)

,(6.3)

ΠB
i =

(1 − b)(2 + b)(2 − b2)
(1 + b)(2 − b)(4 − b − 2b2)2

, and(6.4)

πB
i =

(1 − b)(2 − b2)2

(1 + b)(2 − b)2(4 − b − 2b2)2
.(6.5)

4 Comparative Analysis We turn now to compare the equilibrium under Bertrand and
Cournot competition. Firstly, we compare wholesale prices between two types of contracts.
From Eq. (3.1) and Eq. (6.1), we obtain the following results:

wC
i − wB

i =
b3

(4 − b)(4 − b − 2b2)
≥ 0.

where superscripts B and C denote Bertrand and Cournot, respectively.
Lemma 1. Under Eq. (1) and Eq. (4), if 0 < b ≤ 1, the equilibrium wholesale prices are
higher in Cournot than in Bertrand competition. If b = 0, both have the same wholesale
prices.

Secondly, the equilibrium levels of retail prices and quantities are shown in Table 1.

Table 1: Equilibrium Levels of Retail Price and Quantity
Retail Price Quantity

Bertrand
2(1 − b)(3 − b2)

(2 − b)(4 − b − 2b2)
2 − b2

(2 − b)(4 − b − 2b2)

Cournot
(6 − b2)

(2 + b)(4 − b)
2

(2 + b)(4 − b)

Lemma 2. Under Eq. (1) and Eq. (4), if 0 < b ≤ 1, the equilibrium prices for both
downstream firms are higher in Cournot than in Bertrand competition. If b = 0, both have
the same prices.
Lemma 3. Under Eq. (1) and Eq. (4), if 0 < b ≤ 1, the equilibrium outputs for both
downstream firms are larger in Bertrand than in Cournot competition. If b = 0, both have
the same input prices.

Quantities are larger and prices lower in Bertrand than in Cournot competition re-
gardless of the nature of goods.5 Lower prices and higher quantities are always better in
welfare terms. Consumer and total surplus are decreasing as a function of prices. There-
fore, in terms of consumer surplus and total surplus, the Bertrand equilibrium dominates
the Cournot one. Proposition 1 summarizes the results thus far.

5When b = 0, they are equal.
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Proposition 1. Under Eq. (1) and Eq. (4), if 0 < b ≤ 1, consumer surplus and total
surplus are larger in Bertrand than in Cournot competition. If b = 0, they are equal.
For proof, see Appendix.

Thirdly, we turn to the equilibrium profits for Bertrand and Cournot competition. From
Eq. (3.4) and Eq. (6.4), when 0 ≤ b ≤ 1, notice that the following results are satisfied:

ΠB
i − ΠC

i =
b2(4 + b − b2)(16 − b(2 − b)(10 + 7b))

(1 + b)(2 − b)(2 + b)(4 − b)2(4 − b − 2b2)2
,

ΠB
i > ΠC

i ⇔ 0 < b < 0.8868 ≡ b̄.

Proposition 2. Under Eq. (1) and Eq. (4), if 0 < b ≤ b̄, the Bertrand strategy is dominant
for upstream firms. If b̄ < b ≤ 1, the Cournot strategy is dominant for upstream firms. If
b = 0, payoffs for both upstream firm are equal.

Proposition 2 can be explained as follows. If 0 < b < b̄, pay-offs in Bertrand competition
are higher than those in Cournot, and vise versa. The degree of product differentiation
plays an important role in equilibrium. As the degree of product differentiation decreases,
the product market competition is more intense under Bertrand compared with Cournot
competition. Therefore, pay-offs of Cournot competition are higher than those of Bertrand
competition because of monopolistic effect. On the other hand, as the degree of product
differentiation decreases, even if the wholesale price is lower in Bertrand competition than
in Cournot competition, a more intense competition in the former helps to create a larger
wholesale demand than in the latter. As a result, the upstream firm obtains higher pay-offs
in Bertrand competition than in Cournot competition.

5 Concluding Remarks We may summarize the results derived from the model as
follows:
(1) With linear demand function, if 0 < b ≤ 1, consumer and total surplus are larger in
Bertrand than in Cournot competition.
(2) Pay-offs of both upstream firms are larger, equal, or smaller in Bertrand competition
than in Cournot competition, according to whether 0 < b < b̄, or b̄ < b ≤ 1.

We can also extend our analysis for each upstream firm and each downstream firm to
make a precommitment to quantity or price contract in a vertically related market. In such
a situation, we are wondering the results are the same as Singh and Vives (1984).

Appendix
Proof of Proposition 1. Consumer Surplus ranking of Bertrand and Cournot equilibria. In
view of Lemma 2, consumer surplus is clearly higher under Bertrand than under Cournot
competition. From the utility function, we get

CS = U(qi, qj) − (piqi + pjqj) = qi + qj −
(q2

i + 2bqiqj + q2
j )

2
− (piqi + pjqj)

= qi + qj −
(qi + qj)2

2
+ (1 − b)qiqj − (piqi + pjqj) = (1 − pi)

qi

2
+ (1 − pj)

qj

2
.

For 0 ≤ b ≤ 1, inequality CSB > CSC reduces to

CSB − CSC =
b2(8 − 3b2)(32 + 8b − 28b2 − 4b3 + 5b4)

(1 + b)(2 − b)2(2 + b)2(4 − b)2(4 − b − 2b2)2
> 0.
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COMBINATION OF OPTIMAL STOPPING ALGORITHMS
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Abstract. In this paper we investigate the possibility of combination two optimal
stopping algorithms: Odds algorithm and Elimination algorithm. We show how reduce
a problem to monotone problem and after this step find the optimal strategy which
will be valid also in the original problem.

1 Introduction Bruss (2000) in [3] developed Odds algorithm which is very simple tool
used to solve optimal stopping problems. In this model observe sequence of independent
indicators and want to stop on the last (if any) success. Extension of this idea was presented
in [4] and [9]. Different approaches are presented in work of Dendievel [6]. The result of
Bruss’ can be obtain in another way if we focus on monotonicity of a problem of selecting last
success in sequence of events. However there are some problems which are not monotone
and therefore Odds algorithm can give us strategy that is not optimal. Sonin (1999) in
[13] presented so called Elimination Algorithm (EA) for solving optimal stopping problems
(OSP). The idea is to combine this two algorithms by reducing original problem to monotone
problem using EA and then find the optimal strategy by One-Step-Look-Ahead (1-SLA)
method. Similar work was done by Ferguson [8]. This problem was also considered by
Ano [1].

2 Optimal stopping for unobservable event Let a probability space (Ω,G, P ) be
given and let {Xk}∞k=1 be a sequence of random variables whose joint distribution is known.
Let Fk = σ(X1, ..., Xk) be a sigma field generated by X1, ..., Xk (natural filtration). In many
cases we deal with Markov chain. We assume that we have finite horizon n. Define function
gk((X1, ...Xk)) and call it reward function. gk is Fk measurable. Further we will denote
gk((X1, ...Xk)) as Gk. We observe Xk sequentially. The goal is to stop observation on
index i for which reward function reach the maximum value. The triplet (space, filtration,
function) we will call an optimal stopping problem (OSP).

Definition 1. Let Ak denote a set {Gk ≥ E[Gk+1|Fk]}. We say that the stopping rule
problem is monotone if

(1) A0 ⊂ A1 ⊂ A2 ⊂ ... a.s.

One of the simplest stopping rule is known as One-Step-Look-Ahead (OSLA or 1-SLA).
The 1-SLA is the rule which calls for stopping on the first k for which the return for stopping
is greater or equal as the expected return of continuing one step and then stopping.

Definition 2. 1-SLA is described by the stopping time

ν1 = min{k ≥ 0 : Gk ≥ E[Gk+1|Fk]}.
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Theorem 1. In a finite horizon monotone stopping rule problem, the 1-SLA rule is optimal.

The proof of this fact is here omitted. It can be found in [7]

3 Odds theorem Idea is that we consider n independent indicators Ik, 1 ≤ k ≤ n
observed sequentially. If the indicator on place k has value 1 we say that the success occur.
If 0 then we say that the failure occur. The aim is to stop on last 1.

Let (Ω,G, P ) be a probability space. On this space we define sequence of independent
events {Ak}n

k=1. We observe sequence of indicators of this events {Ik}n
k=1. Let us denote

by Fk = σ(I1, ...Ik) sequence of sigma fields generated by indicators and let T be the set of
all stopping moments τ wrt σ -fields Fk, k = 1, ..., n. We want to stop on such time τ∗ that
will maximize P (It = 1, It+1 = ... = In = 0) over all t ∈ T .

Theorem 2. (Bruss 2000)
Let I1, I2, ..., In be a sequence of independent indicator functions with pj = E[Ij ]. Let
qj = 1 − pj and rj = pj

qj
. Then an optimal rule τn for stopping on the last success exists

and is to stop on the first index (if any) k with Ik = 1 and k ≥ s where

s = sup{1, sup{1 ≤ k ≤ n :
n∑

j=k

rj ≥ 1}}

with sup{∅} = −∞. The optimal reward (win probability) is given by

V (n) =
n∏

j=s

qj

n∑
j=s

rj .

Proof presented by Bruss in [3] is based on probability generating function. We present
different approach.

Proof. Define a process ξt in the following way

ξt = inf{k ≥ ξt−1 : Ik = 1}

with initial point ξ0 = 1. Calculate transition probabilities

pi,s = P (ξk+1 = s|ξk = i) =
P (ξk+1 = s, ξk = i)

P (ξk = i)
=

=
P (Ii = 1, Ii+1 = ... = Is−1 = 0, Is = 1)

P (Ii = 1)
= ps

s−1∏
j=i+1

qj .

(2)

Define a gain function g in the following way

(3) g(i) = P (Ii+1 = ... = In = 0) =
n∏

j=i+1

qj .

Definition 3. An operator T (·) defined as follows

Tf(x) =
∑

y

p(x, y)f(y)

is called the averaging operator.
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Using averaging operator calculate the expected pay-off in next step.

Tg(i) =
n∑

s=i+1

pi,sg(s) =
n∑

s=i+1

ps

s−1∏
j=i+1

qj

n∏
j=s+1

qj =

=
n∑

s=i+1

ps

s−1∏
j=i+1

qj

n∏
j=s+1

qj
qs

qs
=

=
n∏

j=i+1

qj

n∑
s=i+1

rs.

(4)

To find an optimal stopping rule we check when Tg ≤ g, i.e. when the expected value
of doing one step more is less or equal to pay-off in current state. We get condition that
stopping rule is

(5) s = min{1 ≤ k ≤ n :
n∑

j=k

rj ≤ 1}.

We show that it is optimal. In Bruss’ theorem we can see that problem is monotone, because
sets Ak = {Tg(k) ≤ g(k)} satisfies condition (1). Therefore we know that method 1-SLA
is optimal. In this case, because we deal with independent events 1-SLA is described as
follows

(6) ν0 = min{1 ≤ k ≤ n :
n∑

j=k

rj ≤ 1}.

So it is exactly the same rule as in (5). Therefore we get the thesis. Win probability is
calculated as follows

(7) V (n) = Eg(ν0) =
n∏

j=ν0

qj

n∑
s=ν0

rs.

3.1 Extension of Bruss’ theorem ¿From Odds theorem we can find the moment of
last success in n trials. The obvious question is how to find the moment of last l-th success
in n independent trials. Idea is to find such a stopping time τ∗

l that will maximize P (It =
1, It+1 + ... + In = l) and its value. The following theorem gives us the answer of this
question.

Theorem 3. (Bruss, Paindaveine 2000)
Let I1, I2, ..., In be a sequence of independent indicator functions with pj = E[Ij ]. Let
qj = 1−pj and rj = pj

qj
. Then an optimal rule τn for stopping on the l-th last success exists

and is to stop on the first index (if any) k with Ik = 1 and k ≥ sl where

sl = sup{1, sup{1 ≤ k ≤ n − l + 1 : Rl,k ≥ lRl−1,k and πk ≥ l}}

where

Rl,k =
n∑

j1,...jl=k,all�=

rj1 ...rjl

πk = #{j ≥ k|rj > 0}
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with sup{∅} = −∞. The optimal reward (win probability) is given by:

V (l, n) =
n∏

j=sl

qj
Rl,sl

l!
.

The proof of this fact can be found in [4].
Another similar problem is to stop on any of last l-th success. The following theorem gives
the solution of it.

Theorem 4. (Tamaki 2010)
Let I1, I2, ..., In be a sequence of independent indicator functions with pj = E[Ij ]. Let
qj = 1 − pj and rj = pj

qj
. Then an optimal rule τn for stopping on any of the l-th last

success exists and is to stop on the first index (if any) k with Ik = 1 and k ≥ sl where

sl = sup{1, sup{1 ≤ k ≤ n : �Rl,k+1 ≥ 1}}

where
�Rl,k =

∑
k≤j1<...<jl≤n

rj1 ...rjl

with sup{∅} = −∞. The optimal reward (win probability) is given by

V (l, n) =
n∏

j=sl

qj

( l∑
j=1

�Rj,sl

)
.

The proof of this fact can be found in [16].

4 Eliminate and Stop. Theorem 2 provides a simple rule for stopping on problems
which can be described via simple indicator functions. As an example we consider Classical
Secretary problem:

4.1 Example 1 - Selecting the best object. Consider the classical secretary problem.
Let Xk be the absolute rank of the k-th candidate. We define

Yk = #{1 ≤ i ≤ k : Xi ≤ Xk}.

The random variable Yk is called the relative rank of k-th candidate.
Let (Ω,F , P ) be the probability space, where elementary events are permutations of the
elements from {1, ..., n} and the probability measure P is the uniform distribution on Ω.
For k = 1, ..., n let Fk = σ{Y1, ..., Yk} be a sequence of σ -fields. It can be proved that Yk

are independent and P (Yk = i) = 1
k , i = 1, ..., k. Set a function

Ik := I{Yk=1}.

Then we get that pk = E[Ik] = P (Yk = 1) = 1
k and qk = k−1

k , rk = 1
k−1 . The optimal

stopping rule is therefore

s = min{1 ≤ k ≤ n :
n∑

i=k

1
i − 1

≤ 1}.

The gain is

V (n) =
s − 1

n

n∑
i=s

1
i − 1

.
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4.2 Example 2A - Selecting the second best object. There are problems that can
be described similarly as in Odds theorem: we want to maximize the probability of unob-
servable event describing them via Indicator functions. But because of non-monotonicity
of the problem there does not exist a simple rule as the above. As an example consider
secretary problem with choosing the second best applicant.
Let A = {Xk = 2} denote an event that k-th absolute rank is equal to 2.

{Xk = 2} =

=
n∪

s=k+1

{Yk = 1, Yk+1 > 1, ..., Ys = 1, Ys+1 > 2, ..., Yn > 2} ∪ {Yk = 2, Yk+1 > 2, ..., Yn > 2} :=

:=
n∪

s=k+1

B
(s)
1 ∪ B2.

The sets B
(s)
1 , B2 for all indexes s are disjoint. We have that

(8) P (A) = P (Xk = 2) = P (
n∪

s=k+1

B
(s)
1 ∪ B2) =

n∑
s=k+1

P (B(s)
1 ) + P (B2).

First calculate P (B2). Let us introduce function G

(9) G(Yi) =
{

I{Yi=2} for i = k
I{Yi∈{1,2}} for k + 1 ≤ i ≤ n.

(10) P (B2) = P (G(Yk) = 1, G(Yk+1) = 0, ..., G(Yn) = 0) = P (
n∑

i=k

G(Yi) = 1).

Now we calculate P (B(s)
1 ). Let us introduce function F(s)

(11) F(s)(Yi) =
{

I{Yi=1} for k ≤ i ≤ s
I{Yi∈{1,2}} for s < i ≤ n

P (
n∪

s=k+1

B
(s)
1 ) =

n∑
s=k+1

P (B(s)
1 ) =

=
n∑

s=k+1

P (Fs(Yk) = 1, Fs(Yk+1) = 0, ..., Fs(Ys) = 1, Fs(Ys+1) = 0, ..., Fs(Yn) = 0) =

(12) =
n∑

s=k+1

P (
n∑

i=k

Fs(Yi) = 2).

From 8, 10 and 12 we get that

(13)
n∑

s=k+1

P (
n∑

i=k

Fs(Yi) = 2) + P (
n∑

i=k

G(Yi) = 1).
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We are looking for such τ∗ ∈ T that P (A) is the greatest, i.e.

τ∗ = arg sup
τ∈T

P (A).

From Theorem 2 we can find a stopping time τ2 ∈ T that:

τ2 = arg sup
τ∈T

P (
n∑

i=τ

G(Yi) = 1).

We have

pi = P (G(Yi) = 1) =
{

P (Yi = 2) = 1
k for i = k

P (Yi ∈ {1, 2}) = 2
i for k + 1 ≤ i ≤ n

and

qi =
{

k−1
k for i = k

i−2
i for k + 1 ≤ i ≤ n

ri =
{ 1

k−1 for i = k
2

i−2 for k + 1 ≤ i ≤ n

For i = 1, p1 = 0, q1 = 1, r1 = 1. We get that

τ2 = sup{1, sup{1 ≤ k ≤ n :
1

k − 1
+

n∑
i=k+1

2
i − 2

≥ 1}}.

τ2 = sup{1, sup{1 ≤ k ≤ n :
n−1∑
i=k

1
i − 1

≥ k − 2
2k − 2

}}.

The win probability is V (n) = (k−1)2

n(n−1) (
1

k−1 +
∑n

i=k+1
2

i−2 ).

From Theorem 3 we can find a stopping time τ
(s)
1 ∈ T that

τ
(s)
1 = arg sup

τ∈T
P (

n∑
i=τ

Fs(Yi) = 2).

We have

pi = P (Fs(Yi) = 1) =
{

P (Yi = 1) = 1
i for k ≤ i ≤ s

P (Yi ∈ {1, 2}) = 2
i for s < i ≤ n

and

qi =
{

i−1
i for k ≤ i ≤ s

i−2
i for s < i ≤ n

ri =
{ 1

i−1 for k ≤ i ≤ s
2

i−2 for s < i ≤ n

Let us consider the following inequality

n∑
i,j=k,i �=j

rirj ≥ 2
n∑

j=k

rj .
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LHS =
n∑

i,j=k,i �=j

rirj = ((
n∑

i=k

ri)2 −
n∑

i=k

r2
i ) =

=((
s∑

i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2 −
s∑

i=k

1
(i − 1)2

−
n∑

i=s+1

4
(i − 2)2

).

RHS =2
n∑

i=k

rj = 2(
s∑

i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

).

We get that

τ
(s)
1 = sup{1, sup{1 ≤ k ≤ n − 1 : (

s∑
i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2 −
s∑

i=k

1
(i − 1)2

−
n∑

i=s+1

4
(i − 2)2

≥ 2(
s∑

i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

) and πk ≥ 2}}.

Which after some simplifications gives us

τ
(s)
1 = sup{1, sup{1 ≤ k ≤ n − 1 :

s∑
i=k

(
i

i − 1
)2 +

n∑
i=s+1

(
i

i − 2
)2 − (

s∑
i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2

≤ n − k + 1 and πk ≥ 2}}.

The value of the problem is (according to Theorem 3)

V (n) =
(k − 1)(s − 1)

n(n − 1)
((

s∑
i=k

1
i − 1

+
n∑

i=s+1

2
i − 2

)2 −
s∑

i=k

1
(i − 1)2

−
n∑

i=s+1

4
(i − 2)2

).

Remark 5. Exact results for stopping on second best object can be found in [11]. The above
probabilities are conditional probabilities that selected relatively best object is the second one
from the end. Denote as k∗ the first moment after k when relatively first occurs and let
Sj := Ij + ... + In. Then we have the following approximation

P (Xk∗ = 2|Sk = 2) =

=
n∑

s=k+1

k

s(s − 1)
( n∑

l=s+1

s

l(l − 1)
(1 − 2

n∑
j=l+1

l(l − 1)
j(j − 1)(j − 2)

)
)
→

→x

∫ 1

x

1
t2
(
t

∫ 1

t

1
u2

(1 − 2
∫ 1

u

u2

z3
dz)du

)
dt =

=x

∫ 1

x

t(1 − t)
t2

dt = x(x − 1 − log(x)) := v(x).

(14)

We have that

(15) k∗ = s∗2, x∗ :=
s∗2
n

→ e−2 ≈ 0.13534 as n → ∞.

Approximated reward (probability of stopping on relative rank 1, such that Sk = 2) is

(16) V (2, n) → 22

2!e2
=

2
e2

≈ 0.27067 as n → ∞.

But approximating win probability of P (Xk∗ = 2) we get that P (Xk∗ = 2) = v(x). Substi-
tuting x∗ = e−2 to this formula we get

(17) v(e−2) = e−2 + e−4 ≈ 0.15361.
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4.3 Reduction of states We want to consider the above example as a stopping problem
of some Markov chain. It is obvious that the problem is not monotone. Thus we can not use
1-SLA method. In similar problems we would like to find the most simple optimal stopping
rule. But the simplest rule is provided by monotone problems. Idea is to eliminate those
states that spoils monotonicity and afterwards use 1-SLA.
State reduction approach (SRA). Let us assume that the model (X1, P1), where X1

is a state space and P1 is a transition matrix is given. Let Zn be a Markov chain in this
model and let τ1, ..., τn be the sequence of the moments of first,..., n-th exit of Zn from
set D ⊂ X1. Consider the chain Z ′

n = Zτn . Denote by X2 = X1 \ D. Let us denote by
u1(z,X2, ·) the distribution of the Markov chain Zn for the initial model at the moment τ1

of first exit from D starting at z, z ∈ D.

The sequence Z ′
n is a Markov chain in model (X2, P2), where the transition matrix is

given by the formula

(18) p2(x, y) = p1(x, y) +
∑
z∈D

p1(x, z)u1(z,X2, y), x, y ∈ X2.

In case when D = {�z} and it is not absorbing point we get simpler formula

(19) p2(x, y) = p1(x, y) +
p1(x, �z)p1(�z, y)

1 − p1(�z, �z)
.

New model is called D-reduced model. Zn and Z ′
n are different chains, with different

state spaces and transition probabilities, but there are some characteristics that are common
for them. We formulate one result that will be used later.

Lemma 1. Let us assume that we have two models (X1, P1) and (X2, P2) defined as above,
U ⊂ X2 and τU , (τ ′

U ) be the moment of first visit to U in the first (second) model. Then

∀x ∈ X2 u1(x,U, y) = u2(x, U, y), (x ∈ X2, y ∈ U).

Proof of this lemma can be found in [13]. In a finite model we can use procedure of
eliminating states recursively by eliminating on each step one state. This is very simple
implication from the Lemma 1.
Elimination theorem. Let us assume that we have Markov model M = (X, P1, g), where
X is a state space, and P1 is a transition matrix and g is reward function. Let Zn be
a Markov chain specified on this model with initial point z. We denote by Pz, Ez the
probability measure and expectation of the Markov chain with the initial point z. We
introduce natural filtration and with respect to it we define stopping times. Denote by T
the set of all stopping times.

Let v be the value function, i.e. v(z) = supτ∈T Ezg(Zτ ). Let T be an averaging operator.
By D let us denote a subset of X and by τD we denote moment of first visit of the chain in
set D, i.e: τD = min{k ≥ 1 : Zk ∈ D}.

Definition 4. We call a set S an optimal stopping set if

S = {x : v(x) = g(x)} and P (τS < ∞) = 1.

The idea of state elimination approach is to eliminate states where is not optimal to
stop. We want to eliminate those states, where doing one step more is optimal. In this case
we want to satisfy the condition

(20) Tg(x) > g(x).
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Theorem 6. (Sonin 1995)
Let M1 = (X1, P1, g) be an OSP,D ⊆ {z ∈ X1 : T1g(z) > g(z)} and P1,x(τX1\D < ∞) = 1
for all x ∈ D. Consider an OSP M2 = (X2, P2, g) with X2 = X1 \ D, p2(x, y) defined by
(18). Let S be the optimal stopping set in M2. Then S is the optimal stopping set in the
problem M1 also and v1(x) = v2(x), ∀x ∈ X2.

Second theorem from [13] deals with situation when the problem can be divided into
disjoint classes with two properties:

• for any class the transition probability from each state in one class to another class
are the same for all states in first class

• the reward function is a constant inside of each of these classes.

Theorem 7. Let M1 = (X1, P1, g) and M2 = (X2, P2, g) be two optimal stopping problems
and let f : X1 → M2 be surjection such that

• P1(x, f−1(y)) = p2(f(x), y) ∀x ∈ X1, y ∈ X2

• g(x) = g(f(x)) ∀x ∈ X1.

Then

1. v1(x) = v2(f(x)), ∀x ∈ X1

2. if S2 is an optimal stopping set for the problem X2 then S1 = {f−1(S2)} is an optimal
stopping set for the problem M1.

Proof. 1. Denote f(z) = y. Then

Tg1(x) =
∑

z

p1(x, z)g1(z) =

=
∑

f−1(y)

p1(x, f−1(y))g1(f−1(y)) =

=
∑

y

p2(f(x), y)g2(f(f−1(y))) = Tg2(f(x)).

Thus

v1(x) = max{g1(x), T v1(x)} = max{g2(f(x)), T v2(f(x))} = v2(f(x)).

2.

S2 = {y : g2(y) = v2(y)}.

f−1S2 = f−1{y : g2(y) = v2(y)} = {x : g2(f(x)) = v2(f(x))} =
= {x : g1(x) = v1(x)} = S1.
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4.4 The monotonicity of the model after the state reduction Consider a Markov
model (X1, P1, g), where X1 is a state space and P1 is a transition matrix. Let Zn be a
Markov chain in this model with special absorbing state 0. Denote Gk = gk(Z1, .., Zk)
Consider sets

D(1) = {zk ∈ X1 : Gk < E[Gk+1|Fk]}.

We denote by Ti an averaging operator in model Xi.
Idea is to eliminate all states from set D. We do it sequentially till we get such a model
(Xj , Pj , g), that Tjg(z) ≤ g(z). It means that

D(j) = {z ∈ Xj : Gk < E[Gk+1|Fk]} = ∅

and therefore

(21) ∀ z ∈ Xj : Tjg(z) ≤ g(z).

We get that new Markov chain Z
(j)
k . For every index k we have that

G
(j)
k ≥ E[G(j)

k+1|F
(j)
k ].

Denote this set by Aj
k. It is easy to see that in this model condition (1) is satisfied. Thus

we get a monotone stopping problem.
In this new problem we want to find an optimal stopping rule. But according to Theorem
1 1-SLA is optimal for this problem.

Lemma 2. Suppose that we have Markov model (X1, P1, g) and reduced model (X2, P2, g)
such that condition (21) is satisfied. Then 1-SLA stopping rule optimal in model X2 is also
optimal is X1.

Proof. Suppose that in reduced model X1. From SRA we can reduce this model to X2. We
do it sequentially till condition (21) is satisfied. Therefore stopping set is

X2 = {z : gk(z′1, ..., z
′
k) ≥ E[gk(z′1, ..., z

′
k, Z ′

k+1)|z′1, ..., z′k])}

where Z ′
i is a Markov chain in reduced model. Consider set A′

k = {Gk ≥ E[Gk+1|F ′
k]},

where F ′
k is sigma-field generated by Z ′

1, ..., Z
′
k. We show that A′

k ⊂ A′
k+1.

Take an arbitrary elementary event ω ∈ A′
k. Then we have

Gk+1 = gk+1(Z ′
1(ω), ..., Z ′

k(ω), Z ′
k+1(ω)) (∗)

Since Z ′
k+1(ω) ∈ X2 thus we have:

(∗) ≥ E[gk+1(Z ′
1(ω), ..., Z ′

k+1(ω), Z ′
k+2)|Z ′

1(ω), ..., Z ′
k+1(ω)])

Therefore ω ∈ A′
k+1. Because ω and k was arbitrary we have that

ω ∈ A′
k ⇒ ω ∈ A′

k+1,

A′
k ⊂ A′

k+1.

So we have that 1-SLA is optimal in model X2. From Theorem 6 we have the that the same
stopping rule is valid in model X1.
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4.5 General model for monotone problems One of the most important modifications
of Odds theorem provided in [8] was finding the connection between Bruss’ result and 1-
SLA method. Let Z1, Z2, ... be a stochastic process on an arbitrary space with special
absorbing state which will be denoted as 0. Zk denote the set of random variables observed
after k − 1 success up to and including success k. If there are less than k successes then
Zk = 0. Assume that the process will be absorbed with probability one. We want to predict
when the process will first hit state 0. If we predict correctly then we win 1, if we predict
incorrectly we win nothing, if the process hits 0 before our prediction then we win ω < 1.
Therefore the pay-off function is given by

Gn = ωI(Zn = 0) + I(Zn �= 0)P (Zn+1 = 0|Gn)
G∞ = ω.

(22)

where Gn = σ(Z1, ..., Zn).
This problem is solved by 1-SLA described in Definition 2. The optimal stopping rule is
given by

(23) ν1 = min{k ≥ 1 : Zk = 0 or (Zk �= 0 and
Wk

Vk
≤ 1 − ω)}

where

Vk = P (Zk+1 = 0|Gk)
Wk = P (Zk+1 �= 0, Zk+2 = 0|Gk).

¿From the condition in Definition 1 it is easy to see that the sufficient condition for the
problem to be monotone is

(24)
Wk

Vk
is a.s non-increasing in k.

Theorem 8. (Ferguson 2008)
Suppose that process Z1, Z2, ... has an absorbing state 0 such that probability that the pro-
cess is absorbed is 1 and that the stopping problem with reward sequence (22) satisfies the
condition (24). Then the 1-SLA is optimal.

The problem for the Bruss’ theorem deals with situation where we observe independent
indicators and natural filtration generated by this indicators. Nevertheless this method can
be also applied to possibly dependent indicators. Then we have that

Vk = P (Ik+1 = Ik+2 = ... = 0|Gk)

Wk =
∞∑

j=k+1

P (Ik+1 = Ik+2 = ... = Ij−1 = 0, Ij = 1, Ij+1 = Ij+2 = ... = 0|Gk).

In Bruss’ result we have also ω = 0. From Theorem 8 we get the following corollary.

Corollary 1. Suppose the Bernoulli variables I1, I2, ... satisfy the condition that there are
finite number of successes with probability one. Let G1,G2, ... be an increasing sequence of
sigma-fields such that {Ik = 1} is in Gk for any k = 1, 2, ... . Then among stopping rules
adapted to the sequence {Gk}, the rule (23) is an optimal stopping rule provided condition
(24) is satisfied.
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It is easy to see that this corollary implies the Bruss’ theorem. In the theorem of

Bruss indicators Ik are independent so the ratio
Wk

Vk
in (23) may be written as

Wk

Vk
=

∑∞
j=k+1

pj

1 − pj
. All conditions for monotonicity of the problem are satisfied. Thus problem

is monotone and 1-SLA is optimal. This also proves the Bruss’ result in the infinite horizon
case. Using this approach we can easily find 1-SLA rule in reduced model from Lemma 2.
Therefore it is also optimal stopping rule in non-reduced model.

4.6 Example 2B - Selecting the second best object We want to find optimal stop-
ping set for event {Xk = 2}. Gain function is given by:

g((n, k)) = E[I{Xn=2}|Yn = k], n = 1, ..., N ; k = 1, ..., n.

Because absolute rank 2 we can obtain only if we focus on relative ranks 1 or 2 then we get
that

g((n, l)) = 0, ∀ l ≥ 3.

g((n, 1)) = E[I{Xn=2}|Yn = 1] =

= P (Xn = 2|Yn = 1) =

(
1
0

)(
N−2
n−1

)
(
N
n

) =

=
(N − 2)!

(n − 1)!(N − n − 1)!
· n!(N − n)!

N !
=

n(N − n)
N(N − 1)

.

(25)

g((n, 2)) = E[I{Xn=2}|Yn = 2] =

= P (Xn = 2|Yn = 2) =

(
1
1

)(
N−2
n−2

)
(
N
n

) =

=
(N − 2)!

(n − 2)!(N − n)!
· n!(N − n)!

N !
=

n(n − 1)
N(N − 1)

.

(26)

Define mapping

f((Y1, ..., Yk)) =




(k, 2) for Yk = 2
(k, 1) for Yk = 1
(k, 0) otherwise

New transition probabilities are given by p2((k−1, j), (k, 1)) = p2((k−1, j), (k, 2)) = 1
k and

p2((k − 1, j), (k, 0)) = k−2
k . We want to create a simpler model M3 and eliminate states in

which is not optimal to stop. First notice that all states (n, l) where l ≥ 3 are eliminated,
because

Tg(n, l) > 0 = g(n, l).

Thus we get new model M3:

1. X3 is set of all pairs (n, k), where 1 ≤ n ≤ N and k = 1, 2

2. transition matrix is defines as

p3((n, k), (m, j)) =
n(n − 1)

m(m − 1)(m − 2)
, 2 ≤ n < m ≤ N,

p3((1, 1), (2, j)) =
1
2
, j = 1, 2

and satisfies monotonicity property, i.e. for m ≤ n, p3((n, k), (m, j)) = 0 .
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3. Zn be a Markov chain with initial point z = (1, 1).

There are also some states with relative ranks 1 and 2 that should be eliminated. We
will find condition for that. First calculate Tg(n, j), j = 1, 2.

Tg(n, 1) =
∑

p((n, 1), (m, k))g((m, k)) =

=
N∑

m=n+1

p((n, 1), (m, 1))g((m, 1)) + p((n, 1), (m, 2))g((m, 2)) =

=
N∑

m=n+1

n(n − 1)
m(m − 1)(m − 2)

m(N − m)
N(N − 1)

+
n(n − 1)

m(m − 1)(m − 2)
m(m − 1)
N(N − 1)

=

=
N∑

m=n+1

n(n − 1)
N(N − 1)(m − 2)

(
N − m

m − 1
+ 1

)
=

=
n(n − 1)
N(N − 1)

N∑
m=n+1

1
m − 2

(
N − m + m − 1

m − 1

)
=

=
n(n − 1)

N

N∑
m=n+1

1
(m − 1)(m − 2)

.

(27)

Similarly

Tg(n, 2) =
∑

p((n, 2), (m, k))g((m, k)) =

=
N∑

m=n+1

p((n, 2), (m, 1))g((m, 1)) + p((n, 2), (m, 2))g((m, 2)) =

=
N∑

m=n+1

n(n − 1)
m(m − 1)(m − 2)

m(N − m)
N(N − 1)

+
n(n − 1)

m(m − 1)(m − 2)
m(m − 1)
N(N − 1)

=

=
N∑

m=n+1

n(n − 1)
N(N − 1)(m − 2)

(
N − m

m − 1
+ 1

)
=

=
n(n − 1)
N(N − 1)

N∑
m=n+1

1
m − 2

(
N − m + m − 1

m − 1

)
=

=
n(n − 1)

N

N∑
m=n+1

1
(m − 1)(m − 2)

.

(28)

We see that Tg((n, 1)) = Tg((n, 2)). From (20), (25) and (27) we get

(29)
N∑

m=n+1

1
(m − 1)(m − 2)

>
N − n

(n − 1)(N − 1)

and from (20), (26) and (28)

(30)
N∑

m=n+1

1
(m − 1)(m − 2)

>
1

N − 1
.
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Then we eliminate states for which conditions (29) and (30) are satisfied and recalculate
transition probabilities using (29). We get simpler model M4 and from Theorem 6 we know
that optimal stopping set in M4 is also optimal stopping set in M1.

From calculus we know that

(31)
N∑

m=n+1

1
(m − 1)(m − 2)

=
N − n

(n − 1)(N − 1)
.

It means that we do not eliminate any state (n, 1) and eliminate states (n, 2) such that

N − n

(n − 1)(N − 1)
>

1
N − 1

N − n

n − 1
> 1

n <
N + 1

2
.

(32)

Denote: K = �N
2 �. According to the Lemma 1 we can eliminate the states recursively using

formula (18). Therefore the new transition probabilities are

(33)

p4((n, 1), (m, 1)) =
n

m(m − 1)
, 1 ≤ n < m ≤ K

p4((n, 1), (m, j)) =
n(K − 1)

m(m − 1)(m − 2)
, n ≤ K < m

p4((n, k), (m, j)) =
n(n − 1)

m(m − 1)(m − 2)
, K < n < m

Continuing this procedure of course should give us the minimal optimal stopping set and
transition probabilities. Once again calculate Tg(n, j), j = 1, 2.
For n < K

Tg(n, 1) =

=
K∑

m=n+1

n

m(m − 1)
· m(N − m)

N(N − 1)
+

N∑
m=K+1

n(K − 1)
m(m − 1)(m − 2)

m(N − m) + m(m − 1)
N(N − 1)

=

=
n

N(N − 1)
(
(N − 1)

K∑
m=n+1

1
m − 1

− K + n + N − K
)

=

=
n

N

K∑
m=n+1

1
m − 1

+
n

N(N − 1)
(N + n − 2K).

(34)

Using 20 we get

(35)
K∑

m=n+1

1
m − 1

>
2(K − 1)
N − 1

.

From this we find an index k∗ such that the above condition is satisfied. Of course neither
for n ≥ K states (n, 1) and states (n, 2) are eliminated.
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It is easy to check, that there are no more states that can be eliminated. Thus the optimal
stopping rule is

N∗ = min{1 ≤ n ≤ N : (Yn = 1 and
�N

2 �∑
m=n+1

1
m − 1

≤
2(�N

2 � − 1)
N − 1

)

or (Yn ∈ {1, 2} and n > �N

2
�)}.

Now from Lemma 2 we know that the same optimal stopping rule holds for initial model.

5 Conclusion We have shown two important results: one is that Odds Theorem comes
from problem of optimal stopping of Markov chains. Second is that optimal stopping
problem of Markov chain can be reduced to monotone stopping problem. The procedure is
the following: eliminate those states which is not optimal to stop on, apply 1-SLA method
to find the optimal stopping rule and calculate the expected reward. This explains why
the procedure was called ’Eliminate and stop’. This algorithm can be used to solve many
problems. One of them is ’secretary problem’.
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The present study was undertaken to develop test problems that distinguish between
conceptual and procedural knowledge relating to ratios, express the thought processes of
children mathematically, and elucidate the structures of ratio-related conceptual and pro-
cedural knowledge.

2 Development of test problems
(1) Symbolization of inference process by propositional and predicate logic In
the development of each test problem, it is necessary to prove that a given inference process
can derive the correct conclusion from the perspective of probability with the conditions
given in the problem statement as assumptions. In analysis of the test results, moreover, it is
essential to explain the children-specific logic used in the inference process mathematically.
In the present study, we perform these proofs and analyses by using propositional logic and
predicate logic with reference to the views of S. Tamura, K. Aragane, and T. Hirai [14] and
K. Todayama [15]. The symbols and the rules and laws of inference as used in the present
study are essentially as follows. Note that we express A ⇒ B, i.e., if A ≡ ⊤ then B ≡ ⊤,
as inference schemata with a horizontal line of the form as below.

A ⇒ B
A

B

1) Inference rules and laws We let x, y, z, a, b, c, and d be nonnegative variables, and
let f(x) be x = y, x > y, or x < y. We refer to f(x) containing variable x as the expression.
The focus is on the thought processes of children, and we accordingly allow the use of
operations on the variables and take the operation rules to be applicable to inference rules.
Tables 1 through 3 show the unit element, zero element, and reflective, symmetric, and
transitive laws, the inference rules, and the inference laws, respectively, for operations on
the variables. The proofs of the inference laws are not shown.

Unit Element(UE) If x× y = y × x = x, take y as a unit element and write y = 1.
Zero Element(ZE) If x+ y = y + x = x, take y as a zero element and write y = 0.
Reflective Law(RL) x = x

Symmetric Law(SL)
x = y

y = x

Transitive Law(TL)
x = y y = z

x = z

x > y y > z

x > z

x < y y < z

x < z

x > y y = z

x > z

x = y y > z

x > z

x < y y = z

x < z

x = y y < z

x < z
Table 1: Unit element, zero element, and reflective, symmetric, and
transitive laws for operations on the variables

Rule name Inference rule

Operation−Inference(OI) Where a ◦ b = c, allow
f(a ◦ b)
f(c)

and
f(c)

f(a ◦ b)

==
a = b c = d

a ◦ c = b ◦ d
◦ : +,−,×, or ÷
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>= 1
a > b c = d

a ◦ c > b ◦ d
a < b c = d

a ◦ c < b ◦ d
◦ : +,−,×, or ÷

a = b c > d

a ◦ c > b ◦ d
a = b c < d

a ◦ c < b ◦ d
◦ : + or ×

>= 2
a = b c > d

a ◦ c < b ◦ d
a = b c < d

a ◦ c > b ◦ d
◦ : − or ÷

>> 1
a > b c > d

a ◦ c > b ◦ d
a < b c < d

a ◦ c < b ◦ d
◦ : + or ×

>> 2
a > b c > d

a ◦ d > b ◦ c
a < b c < d

a ◦ d < b ◦ c
◦ : − or ÷

<>
a > b

b < a

a < b

b > a
Table 2: Rules of inference for operations on variables

In all of the above operations, ÷ is applicable so long as c ̸= 0 and d ̸= 0.

The following rules are allowed as operation-inference rules for a ◦ b = c.
(1) x× 1 = 1× x = x
(2) x× 1/x = 1/x× x = x÷ x = x/x = 1
(3) x+ 0 = 0 + x = x
(4) x− x = 0
(5) x ◦ y = y ◦ x (◦ : + or ×) [Commutative Law]
(6) (x ◦ y) ◦ z = x ◦ (y ◦ z) (◦ : + or ×) [Associative Law]
(7) x× (y ◦ z) = x× y ◦ x× z (◦ : + or −) [Distributive Law]
(8) (y ◦ z)÷ x = y ÷ x ◦ z ÷ x (◦ : + or −) [Distributive Law]

The following calculations are allowed as operation-inference rules for a ◦ b = c.
(1) x× 1/y = x÷ y = x/y
(2) a÷ b = (a× c)÷ (b× c)
(3) (a/b× bd)÷ (c/d× bd) = (a× d)÷ (b× c)

Law name Inference law

= Substitution(= Sub)
f(a1, a2, · · · , an) a1 = b1, a2 = b2, · · · , an = bn

f(b1, b2, · · · , bn)
Table 3: Laws of inference for operations on variables

The next four tables show the inference rules (Table 4) and inference laws (Table 5)
for propositional logic, and the inference rules (Table 6) and inference law (Table 7) for
predicate logic. F (X) is a logical expression containing propositional variable X. The
proofs of the inference laws are not shown.
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Rule name Inference rule Rule name Inference rule

(k) (k) (k)

→ Introduction(→ Int) [A] ∨Removal(∨Rem) [A] [B]

B

A → B
(k)

A ∨B C C

C
(k)

→ Removal(→ Rem)
A A → B

B
∨Introduction(∨Int) A

A ∨B

Transition(Trn)
A → B B → C

A → B
¬Removal(¬Rem)

A ¬¬A
⊥

∧Introduction(∧Int) A B

A ∧B
¬Introduction(¬Int) [A]

⊥
¬A

∧Removal(∧Rem)
A ∧B

A

A ∧B

B
¬¬Removal(¬¬Rem)

¬¬A
A

Table 4: Rules of inference for propositional logic

Law name Inference law Law name Inference law

≡ Removal(≡ Rem)
A ≡ B

A → B

A ≡ B

B → A
≡ Substiution(≡ Sub)

F (A) A ≡ B

F (B)

∧∧Introduction(∧∧Int) A1 A2 A3 · · ·An

A1∧A2∧A3∧· · ·∧An
⊻ → ∨ A ⊻B

A ∨B

¬¬Introduction(¬¬Int) A

¬¬A
Importation(Imp)

A → (B → C)

A ∧B → C

Contraposition(Cont)
A → B

¬B → ¬A
Table 5: Laws of inference for propositional logic

Rule name Inference rule

∀Removal(∀Rem)
∀x[P (x)]

P (ai)

∃Introduction(∃Int) P (ai)

∃x[P (x)]

∀Introduction(∀Int) P (a1) P (a2) · · ·P (an)

∀x[P (x)]

∃Removal(∃Rem)
∃x[P (x)]

P (a1)

C

P (a2)

C
· · · P (an)

C
C

Table 6: Rules of inference for predicate logic
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Law name Inference law

∃∃Introduction(∃∃Int)
P1(a1i1 ) P2(a2i2 ) · · ·Pn(anin

)

∃x1∃x2 · · · ∃xn[P1(x1) ∧ P2(x2) ∧ · · · ∧ Pn(xn)]
Table 7: Law of inference for predicate logic

2) Symbolization for single-lot drawing trials Table 8 shows the symbolization for
the number of events, elementary events, and probabilities in a trial drawing of one lot
from a set containing winning and losing lots and in a trial drawing of one lot each from
sets A and B (thus an A lot and a B lot , respectively) with both sets containing
winning and losing lots. Variable x may be n(X), n(Y ), n(S), P (X), or P (Y ), either alone
or in combination.

X Event: Drawing of winning lot n(S) Total number of lots
XA Event: Drawing of winning A lot n(SA) Total number of A lots
XB Event: Drawing of winning B lot n(SB) Total number of B lots
Y Event: Drawing of losing lot P (X) Probability of drawing winning lot
YA Event: Drawing of losing A lot P (XA) Probability of drawing winning A lot
YB Event: Drawing of losing B lot P (XB) Probability of drawing winning B lot
S All events P (Y ) Probability of drawing losing lot
SA All A-lot events P (YA) Probability of drawing losing A lot
SB All B-lot events P (YB) Probability of drawing losing B lot
n(X) Number of winning lots P (S) Probability of all events
n(XA) Number of winning A lots P (SA) Probability of all events for A lots
n(XB) Number of winning B lots P (SB) Probability of all events for B lots

n(Y ) Number of losing lots

n(YA) Number of losing A lots

n(YB) Number of losing B lots

Table 8: Number and probability of events and elementary events
in single-lot drawing trials

Table 9 shows the symbolization of comparative conditions in the settings, with the total
number of lots, number of winning lots, number of losing lots, probability of winning, and
probability of losing as the objects of comparison. The expression (A ∧ ¬B) ∨ (¬A ∧B) is
abbreviated A ⊻B, and exclusive disjunction is symbolized as ⊻.

Condition Symbolization
Equal total numbers of A and B lots A1: n(SA) = n(SB)
Larger total number of A lots A2: n(SA) > n(SB)
Larger total number of B lots A3: n(SA) < n(SB)
Different total numbers of A and B lots ¬A1: ¬(n(SA) = n(SB))
Equal numbers of winning A and B lots B1: n(XA) = n(XB)
Larger number of winning A lots B2: n(XA) > n(XB)
Larger number of winning B lots B3: n(XA) < n(XB)
Different numbers of winning A and B lots ¬B1: ¬(n(XA) = n(XB))
Equal numbers of losing A and B lots C1: n(YA) = n(YB)
Larger number of losing A lots C2: n(YA) > n(YB)
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Larger number of losing B lots C3: n(YA) < n(YB)
Different numbers of losing A and B lots ¬C1: ¬(n(YA) = n(YB))
Equal chances of winning with A and B lots D1: P (XA) = P (XB)
Greater chance of winning with A lots D2: P (XA) > P (XB)
Greater chance of winning with B lots D3: P (XA) < P (XB)
Different chances of winning with A and B lots ¬D1: ¬(P (XA) = P (XB))
Equal chances of losing with A and B lots E1: P (YA) = P (YB)
Greater chance of losing with A lots E2: P (YA) > P (YB)
Greater chance of losing with B lots E3: P (YA) < P (YB)
Different chances of losing with A and B lots ¬E1: ¬(P (YA) = P (YB))

Table 9: Comparative setting conditions relating to probabilities

From A1 ⊻ A2 ⊻ A3, ¬A1 ≡ A2 ⊻ A3; from B1 ⊻ B2 ⊻ B3, ¬B1 ≡ B2 ⊻ B3; from C1 ⊻ C2

⊻ C3, ¬C1 ≡ C2 ⊻ C3; from D1 ⊻ D2 ⊻ D3, ¬D1 ≡ D2 ⊻ D3; and from E1 ⊻ E2 ⊻ E3, ¬E1

≡ E2 ⊻ E3

3) Axioms, definitions, and theorems for single-lot drawing trials Table 10 shows
the axioms, definitions, and theorems for the trials in which a single lot is drawn. The
theorem proofs are not shown.

Axiom1(Ax1) P (S) = 1, P (ϕ) = 0
Axiom2(Ax2) P (S) = P (X) + P (Y )
Axiom3(Ax3) 0 ≦ P (X) ≦ 1, 0 ≦ P (Y ) ≦ 1 (X ⫅ S, Y ⫅ S)
Definition(Def) P (Z) = n(Z)÷ n(S) (Z : X,Y )
Theorem1(Thm1) P (Y ) = 1− P (X)
Theorem2(Thm2) P (X) = 1− P (Y )
Theorem3(Thm3) n(Z) = n(S)× P (Z) (Z : X,Y )
Theorem4(Thm4) n(S) = n(Z)÷ P (Z) (Z : X,Y )
Theorem5(Thm5) n(S) = n(X) + n(Y )
Theorem6(Thm6) n(Y ) = n(S)− n(X)
Theorem7(Thm7) n(X) = n(S)− n(Y )
Table 10: Axioms, definitions, and theorems for single-lot drawing
trials

(2) Test problems The test problems in the probability comparison tasks are in the two
categories of ratio-related conceptual and ratio-related procedural knowledge. Each of the
two categories includes the three contextual categories of ratio, comparative-quantity, and
base-quantity. The conceptual-knowledge problems are those that contain no numbers and
thus require approaches based primarily on concepts. The procedural-knowledge problems
are those that contain numbers and thus allow approaches based primarily on procedures.
In the following, we provide examples of ratio-context test problems that pertain to ratio-
related conceptual and procedural knowledge. Tables 11 and 12 show the supposition and
conclusion of each of these test problems. Please refer to Supplements 1 through 4 for test
problems in the comparative-quantity and base-quantity contexts pertaining to ratio-related
conceptual and procedural knowledge.
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Example test problem for ratio-related conceptual knowledge in the ratio context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called A lots and lots from
the other group are called B lots . Both groups include winning lots and losing lots.
The total number of lots in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an easy winner .

The total number of A lots is the same as the total number of B lots.
There are more winning A lots than winning B lots.
There are more losing B lots than losing A lots. (Supposition)

If just one lot is drawn, will it be easier to win with an A lot or a B lot, or will it be
the same for an A lot and a B lot? Draw a circle in the box above any of the following
answers that you think may be correct. Note that in some questions, a circle can be
drawn in all of the boxes.

□
It is easier to win
with an A lot.

□
No difference between
an A lot and a B lot.

□
It is easier to win
with a B lot. (Conclusion)

Supposition Correct conclusion
Question 1 A1, B2, C3 D2

Question 2 A1, B1, C1 D1

Question 3 ¬A1, B2, C3 D2

Question 4 ¬A1, B2, C2 D1, D2, D3

Question 5 ¬A1, B2, C1 D2

Question 6 ¬A1, B1, C2 D3

Table 11: Test problem suppositions and correct conclusions for
ratio-related conceptual knowledge in the ratio context

Example test problem for ratio-related procedural knowledge in the ratio context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called A lots and lots from
the other group are called B lots . Both groups include winning lots and losing lots.
The total number of lots in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot chance of winning . If chance of
winning is high, we call the group an easy winner .

The total number of A lots is 5, and 3 of them are winning lots.
The total number of B lots is 5, and 1 of them is a winning lot.

(Supposition)

LOGICAL ANALYSIS OF RATIO INFERENCE BY CHILDREN 61



　　　　　　　　　　　　　　　　　T. Sakai, T. Takahashi

If just one lot is drawn, will it be easier to win with an A lot or a B lot, or will it be
the same for an A lot and a B lot? Draw a circle in the box above any of the following
answers that you think may be correct.

□
It is easier to win
with an A lot.

□
No difference between
an A lot and a B lot.

□
It is easier to win
with a B lot. (Conclusion)

Supposition Correct conclusion
Question 1 n(XA) = 3, n(XB) = 1, n(SA) = 5, n(SB) = 5 D2

Question 2 n(XA) = 1, n(XB) = 3, n(SA) = 2, n(SB) = 6 D1

Question 3 n(XA) = 3, n(XB) = 3, n(SA) = 4, n(SB) = 5 D2

Question 4 n(XA) = 1, n(XB) = 3, n(SA) = 4, n(SB) = 4 D3

Question 5 n(XA) = 3, n(XB) = 6, n(SA) = 4, n(SB) = 8 D1

Question 6 n(XA) = 2, n(XB) = 2, n(SA) = 4, n(SB) = 5 D2

Question 7 n(XA) = 1, n(XB) = 4, n(SA) = 2, n(SB) = 5 D3

Question 8 n(XA) = 1, n(XB) = 3, n(SA) = 4, n(SB) = 6 D3

Question 9 n(XA) = 2, n(XB) = 3, n(SA) = 4, n(SB) = 5 D3

Question 10 n(XA) = 2, n(XB) = 3, n(SA) = 8, n(SB) = 10 D3

Question 11 n(XA) = 3, n(XB) = 4, n(SA) = 4, n(SB) = 5 D3

Question 12 n(XA) = 4, n(XB) = 3, n(SA) = 10, n(SB) = 6 D3

Table 12: Test problem suppositions and correct conclusions for
ratio-related procedural knowledge in the ratio context

(3) Test-problem proofs We proved the validity of the correct conclusions given the
problem descriptions and suppositions, by propositional logic in cases resulting in one correct
answer and by predicate logic in cases not resulting in one correct answer. The following
two examples are typical of the proof process. One is for a problem involving ratio-related
conceptual knowledge in the ratio context and the other is for a problem involving ratio-
related procedural knowledge in the ratio context.

1) Ratio-related conceptual knowledge in the ratio context
Case resulting in one correct answer: Question 1

Supposition A1, B2, C3

Correct conclusion D2

B2 : n(XA) > n(XB) A1 : n(SA) = n(SB)

n(XA)÷ n(SA) > n(XB)÷ n(SB)
(>= 1)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XA) n(S) = n(SA) P (Z) = P (XA)

P (XA) = n(XA)÷ n(SA)

n(XA)÷ n(SA) = P (XA)
(SL)

(= Sub)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XB) n(S) = n(SB) P (Z) = P (XB)

P (XB) = n(XB)÷ n(SB)

n(XB)÷ n(SB) = P (XB)
(SL)

(= Sub)
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n(XA)÷n(SA)>n(XB)÷n(SB) n(XA)÷n(SA)=P (XA) n(XB)÷n(SB)=P (XB)

D2 : P (XA) > P (XB)
(= Sub)

This proves that D2 is the correct conclusion, given supposition A1 and B2.

Case not resulting in one correct answer: Question 4

Supposition ¬A1, B2, C2

Correct conclusion D1, D2, D3

n(XA)=2 n(XB)=1 n(SA)=4 n(SB)=2 2>1 4>2 4−2>2−1 2/4=1/2

∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∃∃Int)

∧n(SA) = z ∧ n(SB) = w ∧ z > w
∧n(YA) = z − x ∧ n(YB) = w − y ∧ z − x > w − y
∧P (XA) = x/z ∧ P (XB) = y/w ∧ x/z = y/w] · · · (a)

n(XA)=3 n(XB)=1 n(SA)=5 n(SB)=2 3>1 5>2 5−3>2−1 3/5>1/2

∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′
(∃∃Int)

∧n(SA) = z′ ∧ n(SB) = w′ ∧ z′ > w′

∧n(YA) = z′ − x′ ∧ n(YB) = w′ − y′ ∧ z′ − x′ > w′ − y′

∧P (XA) = x′/z′ ∧ P (XB) = y′/w′ ∧ x′/z′ > y′/w′] · · · (b)

n(XA)=2 n(XB)=1 n(SA)=5 n(SB)=2 2>1 5>2 5−2>2−1 2/5<1/2

∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′
(∃∃Int)

∧n(SA) = z′′ ∧ n(SB) = w′′ ∧ z′′ > w′′

∧n(YA) = z′′ − x′′ ∧ n(YB) = w′′ − y′′ ∧ z′′ − x′′ > w′′ − y′′

∧P (XA) = x′′/z′′ ∧ P (XB) = y′′/w′′ ∧ x′′/z′′ < y′′/w′′] · · · (c)

(a) (b) (c)

(∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∧∧ Int)

∧n(SA) = z ∧ n(SB) = w ∧ z > w
∧n(YA) = z − x ∧ n(YB) = w − y ∧ z − x > w − y
∧P (XA) = x/z ∧ P (XB) = y/w ∧ x/z = y/w])

∧(∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′

∧n(SA) = z′ ∧ n(SB) = w′ ∧ z′ > w′

∧n(YA) = z′ − x′ ∧ n(YB) = w′ − y′ ∧ z′ − x′ > w′ − y′

∧P (XA) = x′/z′ ∧ P (XB) = y′/w′ ∧ x′/z′ > y′/w′])
∧(∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′

∧n(SA) = z′′ ∧ n(SB) = w′′ ∧ z′′ > w′′

∧n(YA) = z′′ − x′′ ∧ n(YB) = w′′ − y′′ ∧ z′′ − x′′ > w′′ − y′′

∧P (XA) = x′′/z′′ ∧ P (XB) = y′′/w′′ ∧ x′′/z′′ < y′′/w′′])

This proves that there exist n(XA), n(XB), n(SA), and n(SB) that satisfy ¬A1, B2, C2,
and D1; ¬A1, B2, C2, and D2; and ¬A1, B2, C2, and D3, respectively.
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2) Ratio-related procedural knowledge in the ratio context
Question 1

Supposition n(XA) = 3, n(XB) = 1, n(SA) = 5, n(SB) = 5
Correct conclusion D2

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XA) n(S) = n(SA) P (Z) = P (XA)

P (XA) = n(XA)÷ n(SA)
(= Sub)

P (XA) = n(XA)÷ n(SA) n(XA) = 3 n(SA) = 5

P (XA) = 3÷ 5

P (XA) = 3/5
(OI)

(= Sub)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XB) n(S) = n(SB) P (Z) = P (XB)

P (XB) = n(XB)÷ n(SB)
(= Sub)

P (XB) = n(XB)÷ n(SB) n(XB) = 1 n(SB) = 5

P (XB) = 1÷ 5

P (XB) = 1/5
(OI)

(= Sub)

P (XA) = 3/5 3/5 > 1/5

P (XA) > 1/5
(TL)

P (XB) = 1/5

1/5 = P (XB)
(SL)

D2 : P (XA) > P (XB)
(TL)

This proves D2 as the correct conclusion.

We similarly proved all of the test problems by mathematically deriving the correct
answers from the suppositions, using propositional or predicate logic. The results showed all
of the test problems to be free from contradiction and demonstrated their correct inference
processes. By similarly representing the inference processes performed by the children, it
was then possible to obtain a clear comparison between the correct reasoning based on
probability definitions and the children’s reasoning based on theorems of their own making.

(4) Children tested The tests were administered to children in the fifth and sixth grades
of elementary schools. The sixth graders had been schooled in unit-element ratios and the
fifth graders had not. The number of children in each test category was as follows.

Ratio-related conceptual knowledge in the ratio context
125 5th graders, 129 6th graders, 254 total

Ratio-related conceptual knowledge in the comparative-quantity context
117 5th graders, 114 6th graders, 231 total

Ratio-related conceptual knowledge in the base-quantity context
144 5th graders, 139 6th graders, 283 total

Ratio-related procedural knowledge in the ratio context
214 5th graders, 229 6th graders, 443 tota

Ratio-related procedural knowledge in the comparative-quantity context
188 5th graders, 203 6th grader, 391 total

Ratio-related procedural knowledge in the base-quantity context
207 5th graders, 220 6th graders, 427 total
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3 Analysis of test results
(1) Mathematical explication of children’s inference processes We listed the test
problems in order from high to low correct-answer rate and analyzed the children’s proto-
cols. As a result, we found that the children’s manner of reasoning was characteristic and
that because they consistently used the same manner of reasoning it tended to be applicable
only to specific problems. As shown in Table 13, we therefore added symbols relating to
determinations based on half (1/2) as the basis/standard and then performed the symbol-
ization of inferences seen in classic child protocols to obtain a mathematical explication of
the children’s manner of reasoning. We also performed level and stage categorization, with
structural and qualitative changes in the children’s manner of reasoning taken as changes
of level and changes of stages within levels, respectively. For integrated analysis relating to
the two types of ratio-related knowledge and the three contexts, we extracted the children-
specific manner of reasoning as reasoning that is central to the reasoning of children.

In the following, we show typical examples of our symbolization of inferences made by
the children and the related level and stage categories for several test problems on ratio-
related conceptual knowledge in the ratio context. In these examples, we refer to correct
conclusions derived from the suppositions as correct answers and answers derived by the
children simply as conclusions , and highlight the children-specific reasoning in inference
schemata.

W (z) P (z) > 1/2
L(z) P (z) < 1/2
H(z) P (z) = 1/2

Table 13: Determinations from base 1/2

1) Level 0

Question 2
Supposition A1, B1, C1

Correct answer D1

Conclusion D3

Correct or Incorrect Incorrect

2) Level 1, Stage 1A

Question 2
Supposition A1, B1, C1

Correct answer D1

Conclusion D1

Correct or Incorrect correct

B1 : n(XA) = n(XB) n(XA)=n(XB)→P (XA)=P (XB)

D1 : P (XA) = P (XB)
(→ Rem)

Question 6
Supposition ¬A1, B1, C2

Correct answer D3
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Conclusion D1

Correct or Incorrect Incorrect

B1 : n(XA) = n(XB) n(XA)=n(XB)→P (XA)=P (XB)

D1 : P (XA) = P (XB)
(→ Rem)

3) Level 1, Stage 1B

Question 6
Supposition ¬A1, B1, C2

Correct answer D3

Conclusion D3

Correct or Incorrect correct

B1 C2

B1 ∧ C2
(∧Int)

C2 : n(YA) > n(YB)
(∧Rem)

n(YA)>n(YB)→P (XA)<P (XB)

D3 : P (XA) < P (XB)
(→ Rem)

Question 4
Supposition ¬A1, B2, C2

Correct answer D1, D2, D3

Conclusion D2

Correct or Incorrect Incorrect

B2 C2

B2 ∧ C2
(∧Int)

B2 : n(XA) > n(XB)
(∧Rem)

n(XA)>n(XB)→P (XA)>P (XB)

D2 : P (XA) > P (XB)
(→ Rem)

4) Level 2

Question 4
Supposition ¬A1, B2, C2

Correct answer D1, D2, D3

Conclusion D1, D2, D3

Correct or Incorrect correct

n(XA) = 3, n(XB) = 2, n(YA) = 3, n(YB) = 2 · · · (1)

In the following inference schemata, [1] should be replaced with (1), excluding the
commas.

[1] 3 > 2 3 > 2 3/(3 + 3) = 2/(2 + 2)

∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∃∃Int)

∧n(YA) = z ∧ n(YB) = w ∧ z > w
∧P (XA) = x/(x+ z) ∧ P (XB) = y/(y + w) ∧ x/(x+ z) = y/(y + w)] · · · (a)

n(XA) = 6, n(XB) = 2, n(YA) = 3, n(YB) = 2 · · · (2)
In the following inference schemata, [2] should be replaced with (2), excluding the
commas.
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[2] 6 > 2 3 > 2 6/(6 + 3) > 2/(2 + 2)

∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′
(∃∃Int)

∧n(YA) = z′ ∧ n(YB) = w′ ∧ z′ > w′

∧P (XA) = x′/(x′+z′)∧P (XB) = y′/(y′+w′)∧x′/(x′+z′) > y′/(y′+w′)] · · · (b)

n(XA) = 6, n(XB) = 4, n(YA) = 6, n(YB) = 2 · · · (3)
In the following inference schemata, [3] should be replaced with (3), excluding the
commas.

[3] 6 > 4 6 > 2 6/(6 + 6) < 4/(4 + 2)

∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′
(∃∃Int)

∧n(YA) = z′′ ∧ n(YB) = w′′ ∧ z′′ > w′′

∧P (XA)=x′′/(x′′+z′′)∧P (XB)=y′′/(y′′+w′′)∧x′′/(x′′+z′′)<y′′/(y′′+w′′)] · · · (c)

(a) (b) (c)

(∃x∃y∃z∃w[n(XA) = x ∧ n(XB) = y ∧ x > y
(∧∧ Int)

∧n(YA) = z ∧ n(YB) = w ∧ z > w
∧P (XA) = x/(x+ z) ∧ P (XB) = y/(y + w) ∧ x/(x+ z) = y/(y + w)])

∧(∃x′∃y′∃z′∃w′[n(XA) = x′ ∧ n(XB) = y′ ∧ x′ > y′

∧n(YA) = z′ ∧ n(YB) = w′ ∧ z′ > w′

∧P (XA) = x′/(x′+z′)∧P (XB) = y′/(y′+w′)∧x′/(x′+z′) > y′/(y′+w′)])
∧(∃x′′∃y′′∃z′′∃w′′[n(XA) = x′′ ∧ n(XB) = y′′ ∧ x′′ > y′′

∧n(YA) = z′′ ∧ n(YB) = w′′ ∧ z′′ > w′′

∧P (XA) = x′′/(x′′+z′′)∧P (XB) = y′′/(y′′+w′′)∧x′′/(x′′+z′′) < y′′/(y′′+w′′)])

The processes of inference in children unschooled in probability are not based on an ex-
plicit definition of probability. In their inference processes, leaps therefore tend to occur due
to children-specific reasoning. The children’s reasoning sequences n(XA)=n(XB)→P (XA)=

P (XB) in Level 1 Stage 1A and n(YA)>n(YB)→P (XA)<P (XB) in Level 1 Stage 1B gen-
erally hold in cases where n(SA) = n(SB), but it appears that they were also excessively
applied in cases where n(SA) ̸= n(SB). The children at Level 2 apparently focused on
n(XA), n(XB), n(YA), and n(YB), and derived inference schema conclusion (a) based on
the following manner of reasoning.

n(XA) = 3, n(XB) = 2, n(YA) = 3, n(YB) = 2

n(XA) = 3 3 > 2

n(XA) > 2
(TL)

n(XB) = 2

2 = n(XB)
(SL)

B2 : n(XA) > n(XB)
(TL)

n(YA) = 3 3 > 2

n(YA) > 2
(TL)

n(YB) = 2

2 = n(YB)
(SL)

C2 : n(YA) > n(YB)
(TL)

n(XA) = 3 n(YA) = 3

n(XA)÷ n(YA) = 3÷ 3
(==)

n(XA)÷ n(YA) = 1
(OI)

n(XB) = 2 n(YB) = 2

n(XB)÷ n(YB) = 2÷ 2
(==)

n(XB)÷ n(YB) = 1
(OI)

1 = n(XB)÷ n(YB)
(SL)

n(XA)÷ n(YA) = n(XB)÷ n(YB)
(TL)
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n(XA)÷n(YA)=n(XB)÷n(YB) n(XA)÷n(YA)=n(XB)÷n(YB)→P (XA)=P (XB)

D1 : P (XA) = P (XB)
(→Rem)

The Level-2 children’s reasoning, n(XA)÷n(YA)=n(XB)÷n(YB)→P (XA)=P (XB), is
not correct in terms of probability. It does have a certain generality, as in this reasoning the
ratio n(XA) to n(YA) extended to the ratio n(XA) to n(SA) and the ratio n(XB) to n(YB)
extended to the ratio n(XB) to n(SB). It is accordingly a mathematically correct concept
in special cases, but its generality is not guaranteed. In the following, we show in terms of
propositional logic the process of obtaining n(XA)÷n(YA)=n(XB)÷n(YB)→P (XA)=P (XB).

(OI)∗1
1÷ (n(XA)÷ n(YA)) = 1× n(YA)÷ (n(XA)÷ n(YA)× n(YA))

= n(YA)÷ n(XA)

(OI)∗2
1 + n(YA)÷ n(XA) = n(XA)÷ n(XA) + n(YA)÷ n(XA)

= (n(XA) + n(YA))÷ n(XA)

(OI)∗3
n(XA)× (n(XA)+n(YA))÷n(XA) = (n(XA)+n(YA))×n(XA)÷n(XA)

= (n(XA) + n(YA))× 1
= n(XA) + n(YA)

1 = 1

n(XA) = 3 n(YA) = 3

n(XA)÷ n(YA) = 3÷ 3
(==)

n(XA)÷ n(YA) = 1
(OI)

1÷ (n(XA)÷ n(YA)) = 1÷ 1
(==)

1÷ (n(XA)÷ n(YA)) = 1
(OI)

n(YA)÷ n(XA) = 1
(OI)∗1

1 = 1 n(YA)÷ n(XA) = 1

1 + n(YA)÷ n(XA) = 1 + 1
(==)

(n(XA) + n(YA))÷ n(XA) = 1 + 1
(OI)∗2

n(XA) = 3 (n(XA) + n(YA))÷ n(XA) = 1 + 1

n(XA)× (n(XA) + n(YA))÷ n(XA) = 3× (1 + 1)
(==)

n(XA)× (n(XA) + n(YA))÷ n(XA) = 3 + 3
(OI)

n(XA) + n(YA) = 3 + 3
(OI)∗3

Thm5 : n(S) = n(X) + n(Y ) n(X) = n(XA) n(Y ) = n(YA) n(S) = n(SA)

n(SA) = n(XA) + n(YA)
(= Sub)

n(XA) = 3

n(XA) + n(YA) = 3 + 3

n(SA) = n(XA) + n(YA)

n(XA) + n(YA) = n(SA)
(SL)

n(SA) = 3 + 3
(= Sub)

n(XA)÷ n(SA) = 3÷ (3 + 3)
(==)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XA) n(S) = n(SA) P (Z) = P (XA)

P (XA) = n(XA)÷ n(SA)
(= Sub)
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n(XA)÷ n(SA) = 3÷ (3 + 3)

P (XA) = n(XA)÷ n(SA)

n(XA)÷ n(SA) = P (XA)
(SL)

P (XA) = 3÷ (3 + 3)
(= Sub)

P (XA) = 1/2
(OI)

1 = 1

n(XB) = 2 n(YB) = 2

n(XB)÷ n(YB) = 2÷ 2
(==)

n(XB)÷ n(YB) = 1
(OI)

1÷ (n(XB)÷ n(YB)) = 1÷ 1
(==)

1÷ (n(XB)÷ n(YB)) = 1
(OI)

n(YB)÷ n(XB) = 1
(OI)∗1

1 = 1 n(YB)÷ n(XB) = 1

1 + n(YB)÷ n(XB) = 1 + 1
(==)

(n(XB) + n(YB))÷ n(XB) = 1 + 1
(OI)∗2

n(XB) = 2 (n(XB) + n(YB))÷ n(XB) = 1 + 1

n(XB)× (n(XB) + n(YB))÷ n(XB) = 2× (1 + 1)
(==)

n(XB)× (n(XB) + n(YB))÷ n(XB) = 2 + 2
(OI)

n(XB) + n(YB) = 2 + 2
(OI)∗3

Thm5 : n(S) = n(X) + n(Y ) n(X) = n(XB) n(Y ) = n(YB) n(S) = n(SB)

n(SB) = n(XB) + n(YB)
(= Sub)

n(XB) = 2

n(XB) + n(YB) = 2 + 2

n(SB) = n(XB) + n(YB)

n(XB) + n(YB) = n(SB)
(SL)

n(SB) = 2 + 2
(= Sub)

n(XB)÷ n(SB) = 2÷ (2 + 2)
(==)

Def : P (Z) = n(Z)÷ n(S) n(Z) = n(XB) n(S) = n(SB) P (Z) = P (XB)

P (XB) = n(XB)÷ n(SB)
(= Sub)

n(XB)÷ n(SB) = 2÷ (2 + 2)

P (XB) = n(XB)÷ n(SB)

n(XB)÷ n(SB) = P (XB)
(SL)

P (XB) = 2÷ (2 + 2)
(= Sub)

P (XB) = 1/2
(OI)

P (XA) = 1/2

P (XB) = 1/2

1/2 = P (XB)
(SL)

D1 : P (XA) = P (XB)
(TL)

(2) Children-specific reasoning As a result of the symbolization of the inferences
performed by the children for all of the test problems and their level and stage classification
as shown in Tables 14 and 15, we found children-specific reasoning to be present in all levels
and stages. Tables 16 and 17 provide a summary of the children-specific reasoning extracted
from the children’s manner of reasoning at each level and stage, and the correct answers
based on probabilistic definitions.
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Level Stage Ratio Comparative quantity Base quantity

0

1 1A Question 2 Question 2 Question 2
Question 1 Question 1 Question 1
Question 3
Question 5

1B Question 6 Question 6 Question 6
Question 4 Question 3

2 Question 4 Question 5
Question 3

Question 5
Question 4

Table 14: Levels and stages of ratio-related conceptual knowledge

Level Stage Ratio Comparative quantity Base quantity

0

1 1A Question 1 Question 1 Question 2
Question 4 Question 4 Question 5

Question 11 Question 7
Question 9 Question 11
Question 10 Question 8
Question 8 Question 9
Question 7 Question 10

Question 12
1B Question 6 Question 2 Question 3

Question 3 Question 5 Question 6
Question 12

1C Question 2
Question 8
Question 9
Question 7

2 Question 5
Question 10
Question 11

Question 6
Question 12
Question 3

Question 1
Question 4

Table 15: Levels and stages of ratio-related procedural knowledge

Level Stage Ratio Comparative quantity Base quantity

0

1 1A ·n(XA) = n(XB) → ·n(YA) = n(YB) → ·n(XA) = n(XB) →
P (XA) = P (XB) n(XA) = n(XB) n(YA) = n(YB)
·n(XA) > n(XB) → ·n(YA) < n(YB) → ·n(XA) > n(XB) →
P (XA) > P (XB) n(XA) > n(XB) n(YA) < n(YB)

1B ·n(XA) = n(XB) → ·n(YA) = n(YB) → ·n(XA) = n(XB) →
n(YA) > n(YB) → P (XA) > P (XB) → P (XA) < P (XB) →
P (XA) < P (XB) n(XA) > n(XB) n(YA) > n(YB)
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2 ·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·W (XA) ∧ L(XB) →
P (XA) > P (XB)
·L(XA) ∧W (XB) →
P (XA) < P (XB)

·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·L(XA) ∧W (XB) →
P (XA) < P (XB)

·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·W (XA) ∧ L(XB) →
P (XA) > P (XB)

·n(XA)÷ n(YA) =
n(XB)÷ n(YB) →
P (XA) = P (XB)
·n(XA)÷ n(YA) >
n(XB)÷ n(YB) →
P (XA) > P (XB)
·n(XA)÷ n(YA) <
n(XB)÷ n(YB) →
P (XA) < P (XB)
·n(XA)÷ n(SA) =
n(XB)÷ n(SB) →
P (XA) = P (XB)
·n(XA)÷ n(SA) >
n(XB)÷ n(SB) →
P (XA) > P (XB)
·n(XA)÷ n(SA) <
n(XB)÷ n(SB) →
P (XA) < P (XB)

·n(XA)÷ n(YA) =
n(XB)÷ n(YB) →
P (XA) = P (XB)
·n(XA)÷ n(YA) <
n(XB)÷ n(YB) →
P (XA) < P (XB)
·n(SA)× P (XA) >
n(SB)× P (XB) →
n(XA) > n(XB)

·n(XA)÷ n(YA) =
n(XB)÷ n(YB) →
P (XA) = P (XB)
·n(XA)÷ n(YA) >
n(XB)÷ n(YB) →
P (XA) > P (XB)
·n(SA)× P (YA) >
n(SB)× P (YB) →
n(YA) > n(YB)

Table 16: Children’s reasoning related to conceptual knowledge

Level Stage Ratio Comparative quantity Base quantity

0 ·n(SA) = n(SB) →
P (XA) = P (XB)

·n(SA) = n(SB) →
n(XA) = n(XB)

·P (XA) = P (XB) →
n(SA) = n(SB)

1 1A ·n(XA) = (nXB) → ·P (XA) = P (XB) → ·n(XA) = n(XB) →
P (XA) = P (XB) n(XA) = n(XB) n(SA) = n(SB)
·n(XA) > n(XB) → ·P (XA) > P (XB) → ·n(XA) > n(XB) →
P (XA) > P (XB) n(XA) > n(XB) n(SA) > n(SB)

·P (XA) < P (XB) → ·n(XA) < n(XB) →
n(XA) < n(XB) n(SA) < n(SB)

1B ·n(XA) = (nXB) → ·P (XA) = P (XB) → ·n(XA) = n(XB) →
n(SA) > n(SB) → n(SA) < n(SB) → P (XA) > P (XB) →
P (XA) < P (XB) n(XA) < n(XB) n(SA) < n(SB)
·n(XA) = (nXB) →
n(SA) < n(SB) →
P (XA) > P (XB)
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1B ·n(YA) > n(YB) →
P (XA) < P (XB)
·n(YA) < n(YB) →
P (XA) > P (XB)

1C
·n(X)=n(Y )→H(X)
·n(X)>n(Y )→W(X)
·n(X)<n(Y )→L(X)
·H(XA) ∧H(XB) →
P (XA) = P (XB)
·L(XA) ∧H(XB) →
P (XA) < P (XB)
·H(XA) ∧W (XB) →
P (XA) < P (XB)

·n(XA)− n(YA) <
·n(XB)− n(YB) →
P (XA) < P (XB)

2 ·n(SA)× a = n(SB)× b
→n(XA)×a=n(XB)×b
→P (XA)=P (XB)
·n(SA)× a = n(SB)× b
→n(XA)×a<n(XB)×b
→P (XA)<P (XB)

·n(XA)÷ n(SA) =
n(XB)÷ n(SB) →
P (XA) = P (XB)
·n(XA)÷ n(SA) <
n(XB)÷ n(SB) →
P (XA) < P (XB)

·n(SA)× P (XA) =
n(SB)× P (XB) →
n(XA) = n(XB)
·n(SA)× P (XA) >
n(SB)× P (XB) →
n(XA) > n(XB)

·n(XA)÷ P (XA) =
n(XB)÷ P (XB) →
n(SA) = n(SB)

Table 17: Children’s reasoning related to procedural knowledge

4 Discussion In reasoning, children consider relations between two sets and relations
within a set, which we refer to here as Between and Within relations, respectively.
For Between relations, such as that of n(XA) and n(XB), they consider the relation between
two quantities with each occurring in a different set. For Within relations, such as that of
n(XA) and n(YA), they consider the relation between two quantities occurring in the same
set.

In comparing the children’s reasoning processes, as shown in Tables 16 and 17, we found
that additive reasoning (including size comparison) for Between relations and multiplicative
reasoning for Within relations occur in relation to both conceptual knowledge and proce-
dural knowledge in all three of the contexts, and that additive reasoning for the Between
relation precedes multiplicative reasoning for the Within relation. We found additive rea-
soning (including size comparison) for the Within relation to occur consistently in relation
to ratio-related conceptual knowledge in all three contexts. In relation to ratio-related
procedural knowledge in the ratio context, we found additive reasoning (including size com-
parison) for the Within relation and multiplicative reasoning for the Between relation, again
with additive reasoning for the Within relation preceding multiplicative reasoning for the
Between relation. These findings indicate that the Between relation is easier for children to
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recognize than the Within relation, and that additive reasoning is easier than multiplica-
tive reasoning. They also indicate that the transitions in reasoning proceed from additive
reasoning for the Between relation to additive reasoning for the Within relation, to multi-
plicative reasoning for the Between relation, and finally to multiplicative reasoning for the
Within relation. Additive reasoning for the Within relation was found to involve the use of
half as a basis strategy. This is in accord with the findings in studies made to present on
the stages of children’s knowledge and development in proportional reasoning.

In cases where the number of winning lots and total number of lots in two sets were
in a double-half (1/2) relation, some of the children considered the related numbers and
performed inferences based on multiplicative reasoning for the Between relation. Even in
problems containing no explicit numbers, some of the children on their own initiative set
up actual numbers that were in the double-half (1/2) relation, e.g., (4, 2), (6, 3), (8, 4),
and (10, 5), for the number of winning and losing lots and performed their inferences based
on multiplicative reasoning for the Within relation. In these cases, they used half as a
ratio rather than as a basis strategy. Their unprompted introduction of the half concept,
in any case, clearly suggests that it holds a key role as a prime mover in the transition
from additive reasoning in the Within relation to multiplicative reasoning in the Between
relation and to multiplicative reasoning in the Within relation.

The occurrence of additive reasoning relating to ratio-related conceptual and procedu-
ral knowledge for Between relations and multiplicative reasoning for Within relations in
all three contexts indicates that in each of the contexts an association is formed between
ratio-related conceptual and procedural knowledge under additive reasoning and the struc-
tural change in the manner of thinking then leads to a formation of a new association under
multiplicative reasoning. The structural change is a basic change from an additive to a mul-
tiplicative algebraic structure that is the foundation of the children’s manner of reasoning
and corresponds to a structural change in level. The emergence of Additive reasoning for
Within relations can also be regarded as a qualitative change from the Between relation to
the Within relation in additive reasoning, and the emergence of multiplicative reasoning for
Between relations can be regarded as a qualitative change from the Between relation to the
Within relation in multiplicative reasoning.

We also found an increase from one to two in the number of events considered in ad-
ditive reasoning for the Between relation, with the proviso that although two events were
considered in all three contexts for ratio-related conceptual and procedural knowledge, in
those cases where equality was established for one event there was a tendency to perform
the determination based only on the other event.

These qualitative changes signify a change in the children’s mode of consideration from
one event to two and from the Between relation to the Within relation, and correspond
to a change in stage. Until the structural change from additive to multiplicative reasoning
occurs, children consistently perform inferences based on additive reasoning. In summary,
the findings indicate that the three contexts do not become integrated in terms of additive
reasoning until after ratio-related conceptual and procedural knowledge become linked in
additive reasoning in each of the three.

Additional note
This work was supported by JSPS KAKENHI Grant Number 25381204.
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Appendix 1
Example test problem for ratio-related conceptual knowledge in the comparative quantity
context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called A lots and lots from
the other group are called B lots . Both groups include winning lots and losing lots.
The total number of lots in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an easy winner .

The total number of A lots is the same as the total number of B lots.
There are more losing B lots than losing A lots.
If just one lot is drawn, it is easier to win with an A lot than with a B lot. (Supposition)
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Which of the A lots or the B lots have a larger number of winning lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct. Note that in some questions, a circle can be drawn in all
of the boxes.

□
There are more
winning A lots.

□
No difference between
the A lots and B lots.

□
There are more
winning B lots. (Conclusion)

Test problem suppositions and correct conclusions for ratio-related conceptual knowledge
in the comparative quantity context

Supposition Correct conclusion
Question 1 A1, C3, D2 B2

Question 2 A1, C1, D1 B1

Question 3 ¬A1, C2, D3 B1, B2, B3

Question 4 ¬A1, C2, D2 B2

Question 5 ¬A1, C2, D1 B2

Question 6 ¬A1, C1, D2 B2

Appendix 2
Example test problem for ratio-related conceptual knowledge in the base quantity context

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called A lots and lots from
the other group are called B lots . Both groups include winning lots and losing lots.
The total number of lots in one group means all the winning and losing lots in that
group. If a winning lot is easy to draw, we call the group an easy winner .

The total number of A lots is the same as the total number of B lots.
There are more winning A lots than winning B lots.
If just one lot is drawn, it is easier to win with an A lot than with a B lot. (Supposition)

Which of the A lots or the B lots have a larger number of losing lots, or is it the same
for the A lots and B lots? Draw a circle in the box above any of the following answers
that you think may be correct. Note that in some questions, a circle can be drawn in all
of the boxes.

□
There are more
losing A lots.

□
No difference between
the A lots and B lots.

□
There are more
losing B lots. (Conclusion)

Test problem suppositions and correct conclusions for ratio-related conceptual knowledge
in the base quantity context
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Supposition Correct conclusion
Question 1 A1, B2, D2 C3

Question 2 A1, B1, D1 C1

Question 3 ¬A1, B2, D3 C2

Question 4 ¬A1, B2, D2 C1, C2, C3

Question 5 ¬A1, B2, D1 C2

Question 6 ¬A1, B1, D3 C2

Appendix 3
Example problem for ratio-related procedural knowledge in the comparative quantity con-
text

Sample question

In this lot drawing, some of the lots are winning lots and some of them are losing lots.
There are two groups of lots. Lots from one group are called A lots and lots from
the other group are called B lots . Both groups include winning lots and losing lots.
The total number of lots in one group means all the winning and losing lots in that
group. We call how easy it is to draw a winning lot chance of winning . If chance of
winning is high, we call the group an easy winner .

The total number of A lots is 5, and chance of winning is 0.6.
The total number of B lots is 5, and chance of winning is 0.2.

(Supposition)

Which of the A lots or the B lots have a larger number of winning lots, or is it the
same for the A lots and B lots? Draw a circle in the box above any of the following
answers that you think may be correct.

□
There are more
winning A lots.

□
No difference between
the A lots and B lots.

□
There are more
winning B lots. (Conclusion)

Test problem suppositions and correct conclusions for ratio-related procedural knowledge
in the comparative quantity context

Supposition Correct conclusion
Question 1 n(SA) = 5, n(SB) = 5, P (XA) = 0.6, P (XB) = 0.2 B2

Question 2 n(SA) = 2, n(SB) = 6, P (XA) = 0.5, P (XB) = 0.5 B3

Question 3 n(SA) = 4, n(SB) = 5, P (XA) = 0.75, P (XB) = 0.6 B1

Question 4 n(SA) = 4, n(SB) = 4, P (XA) = 0.25, P (XB) = 0.75 B3

Question 5 n(SA) = 4, n(SB) = 8, P (XA) = 0.75, P (XB) = 0.75 B3

Question 6 n(SA) = 4, n(SB) = 5, P (XA) = 0.5, P (XB) = 0.4 B1

Question 7 n(SA) = 2, n(SB) = 5, P (XA) = 0.5, P (XB) = 0.8 B3

Question 8 n(SA) = 4, n(SB) = 6, P (XA) = 0.25, P (XB) = 0.5 B3

Question 9 n(SA) = 4, n(SB) = 5, P (XA) = 0.5, P (XB) = 0.6 B3

Question 10 n(SA) = 8, n(SB) = 10, P (XA) = 0.25, P (XB) = 0.3 B3

Question 11 n(SA) = 4, n(SB) = 5, P (XA) = 0.75, P (XB) = 0.8 B3

Question 12 n(SA) = 10, n(SB) = 6, P (XA) = 0.4, P (XB) = 0.5 B2
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THE STRUCTURE OF PROJECTION METHODS FOR
VARIATIONAL INEQUALITY PROBLEMS AND

WEAK CONVERGENCE THEOREMS

RIEKO KUBOTA, WATARU TAKAHASHI, AND YUKIO TAKEUCHI

 

 

 

Abstract. In this paper, we study the structure of projection methods for
variational inequality problems and then prove weak convergence theorems

which generalize Takahashi and Toyoda [W. Takahashi and M. Toyoda, Weak
convergence theorems for nonepxansive mappings and monotone mappings,
J. Optim. Theory Appl. 118 (2003), 417–428] and Nadezhkina and Taka-
hashi [N. Nadezhkina and W. Takahashi, Weak convergence theorem by an

extragradient method for nonexpansive mappings and monotone mappings, J.
Optim. Theory Appl. 128 (2006), 191-201]. Our proofs are different from
them. Furthermore, using these weak convergence theorems, we obtain some
new results.

1. Introduction

Throughout this paper, we denote by R the set of real numbers and by N the
set of positive integers. Let H be a real Hilbert space with the inner product 〈·, ·〉
and the norm ‖ · ‖. Let C be a non-empty subset of H. Let T be a mapping of
C into H. We denote by F (T ) the set of fixed points of T and by A(T ) the set of
attractive points [23] of T , i.e.,

F (T ) = {u ∈ C : Tu = u},
A(T ) = {u ∈ H : ‖Tx − u‖ ≤ ‖x − u‖, ∀x ∈ C}.

A mapping T : C → H is said to be k-Lipschitz continuous if there exists k > 0
such that ‖Tx − Ty‖ ≤ k‖x − y‖ for all x, y ∈ C. If a mapping T : C → H is
1-Lipschitz continuous, it is said to be nonexpansive, i.e., ‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. A mapping T : C → H is called quasi-nonexpansive if F (T ) �= ø
and ‖Tx − v‖ ≤ ‖x − v‖ for all x ∈ C and v ∈ F (T ). We note that the condition
F (T ) ⊂ A(T ) always holds if T is quasi-nonexpansive. We denote by I the identity
mapping on H. A mapping A : C → H is said to be monotone if 〈x−y,Ax−Ay〉 ≥ 0
for all x, y ∈ C. Let α > 0. A mapping A : C → H is said to be α-inverse strongly
monotone if 〈x−y,Ax−Ay〉 ≥ α‖Ax−Ay‖2 for all x, y ∈ C. It is obvious that if A
is α-inverse strongly monotone, then A is monotone and 1/α-Lipschitz continuous.
In the case a ∈ (0, 2α], it is known that I − aA is nonexpansive. In fact, we have
that for any x, y ∈ C

‖(I − aA)x − (I − aA)y‖2 ≤ ‖x − y‖2 − a(2α − a)‖Ax − Ay‖2;
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see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) �=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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PROJECTION METHODS FOR VARIATIONAL INEQUALITY PROBLEMS 3

nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. Preliminaries

Let H be a Hilbert space. When {xn} is a sequence in H, we denote the strong
convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn � x.
From [21] we have that for x, y ∈ H and λ ∈ R

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

We also know that for x, y, u, v ∈ H

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

A Hilbert space satisfies Opial’s condition [18], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn � u and u �= v; see [18]. Let C be a non-empty subset of H. A mapping
T : C → H is called firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for
all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [21]. We also
know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉

for all x, y ∈ H. Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C. This inequality is equivalent to

(2.3) ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2

for all x ∈ H and y ∈ C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C be a non-empty subset of a Hilbert space H. Then a mapping
T : C → H is called generalized hybrid if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C; see also [1]. Such a mapping T is also called (α, β)-generalized
hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized
hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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We note that a nonexpansive mapping and a mapping satisfying Condition (C)
satisfy (2.5) as s = 1 and s = 3, respectively. We also note that (2.5) is stronger
than (2.4). In fact, if (2.5) holds and u ∈ F (T ), then we have that ‖u−Ty‖ ≤ ‖u−y‖
for all y ∈ C. A mapping T is quasi-nonexpansive if T satisfies F (T ) �= ø and (2.4).
We finally note that a generalized hybrid mapping satisfies (2.4). Let C be a non-
empty subset of H and let S be a mapping of C into H. I −S is called demiclosed
at 0 if a sequence {xn} in C converges weakly to u ∈ C and limn ‖Sxn − xn‖ = 0,
then u ∈ F (S). The following lemma was proved by Takahashi, Wong and Yao [25].

Lemma 2.1 ([25].). Let C be a non-empty subset of a Hilbert space H and let S be
a generalized hybrid mapping of C into itself. Let {xn} be a sequence in C which
converges weakly to u ∈ H and satisfies limn ‖Sxn − xn‖ = 0. Then u ∈ A(S). In
addition, if C is closed and convex, then u ∈ F (S).

The following lemma was essentially proved in [19].

Lemma 2.2. Let C be a closed and convex subset of a Hilbert space H and let S be
a mapping of C into itself which satisfies (2.5). Let {xn} be a sequence in C which
converges weakly to u ∈ C and satisfies limn ‖Sxn − xn‖ = 0. Then u ∈ F (S).

Proof. Assume u �= Su. Since {xn} converges weakly to u, from the Opial property
we have lim infn ‖xn − u‖ < lim infn ‖xn − Su‖. We also have that there exists
s ∈ [0,∞) such that

‖xn − Su‖ ≤ s‖xn − Sxn‖ + ‖xn − u‖, ∀n ∈ N.

By limn ‖Sxn − xn‖ = 0, this implies that lim infn ‖xn − Su‖ ≤ lim infn ‖xn − u‖.
We have a contradiction. This completes the proof. �

Let C be a non-empty subset of a Hilbert space H. For a mapping A of C into
H, we define the set vi(C,A) as follows:

vi(C,A) = {v ∈ C : 〈z − v,Az〉 ≥ 0, ∀z ∈ C}.

From [20, Lemma 7.1.7] we have the following:

Lemma 2.3. Let C be a convex subset of a Hilbert space H. Let A be a mapping
of C into H. Then the following hold:

(1) If A is continuous, then vi(C,A) ⊂ V I(C,A).
(2) If A is monotone then 〈y − u,Ay〉 ≥ 〈y − u,Au〉 ≥ 0 for u ∈ V I(C,A) and

y ∈ C. That is, if A is monotone then V I(C,A) ⊂ vi(C,A).
(3) If A is monotone and continuous, then V I(C,A) = vi(C,A).

3. Lemmas

In this section, we present some lemmas which are connected with properties of
projection methods. The following lemma is well-known. For the sake of complete-
ness, we give the proof.

Lemma 3.1. Let C be a non-empty, closed and convex subset of a Hilbert space
H. Let A be a mapping of C into H. Let a ∈ (0,∞) and let Va be a mapping of C
into itself defined by Vax = PC(I − aA)x for all x ∈ C. Then F (Va) = V I(C,A).
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see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) �=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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Proof. Let u ∈ F (Va). Then u = PC(I − aA)u. From the property of PC we have
that for any y ∈ C

0 ≤ 〈y − u, u − (u − aAu)〉 = 〈y − u, aAu〉 = a 〈y − u, Au〉 .

From a > 0 we have that 〈y − u,Au〉 ≥ 0 for all y ∈ C. This implies u ∈ V I(C,A).
The reverse is similar. �
Lemma 3.2. Let c, k > 0 and {an} ⊂ [c,∞). Let C be a non-empty, closed
and convex subset of a Hilbert space H and let A be a monotone and k-Lipschitz
continuous mapping of C into H with V I(C,A) �= ø. Let {Van} be a sequence of
mappings on C defined by Vanx = PC(I − anA)x for all x ∈ C and n ∈ N . Let
{xn} be a bounded sequence in C. If limn ‖Vanxn − xn‖ = 0, then the weak limit of
any weakly convergent subsequence of {xn} is in V I(C,A).

Proof. Let yn = Vanxn for all n ∈ N . Since {xn} is bounded, {xn} has a weakly
convergent subsequence. Let {xnj} be a subsequence of {xn} which converges
weakly to some u ∈ C. By limn ‖Vanxn − xn‖ = 0, we also have that {ynj}
converges weakly to u. We first show 〈z − u, Az〉 ≥ 0 for all z ∈ C. Take z ∈ C.
Since A is monotone, we have that

〈
z − ynj , Az − Aynj

〉
≥ 0 for all j ∈ N , that is,

(3.1)
〈
z − ynj , Az

〉
≥

〈
z − ynj , Aynj

〉
.

Using ynj = PC(xnj − anj Axnj ) and z ∈ C, we also have from the property of PC

that
0 ≥

〈
z − ynj , (xnj − anj Axnj ) − ynj

〉
.

From anj > 0 we have that

(3.2) 0 ≥ 1
anj

〈
z − ynj , xnj − ynj

〉
−

〈
z − ynj , Axnj

〉
.

It follows from (3.1) and (3.2) that
〈
z − ynj , Az

〉
≥ 1

anj

〈
z − ynj , xnj − ynj

〉
+

〈
z − ynj , Aynj − Axnj

〉
.

Since 1/anj ≤ 1/c and A is k-Lipschitz continuous, we have that

(3.3)
〈
z − ynj , Az

〉
≥ −1

c
‖z − ynj‖ ‖xnj − ynj‖ − k‖z − ynj‖ ‖ynj − xnj‖.

Since {ynj} converges weakly to u, we have that 〈z − u,Az〉 ≥ 0. Since z ∈ C is
arbitrary, we have that 〈z − u, Az〉 ≥ 0 for all z ∈ C. By the continuity of A and
Lemma 2.3 (1), we have u ∈ V I(C,A). �
Remark 1. The inequality (3.3) is essential in the proof of Lemma 3.2. In the case
lim j anj = 0, we cannot prove the result. This problem appears when we deal with
Halpern’s type iterations with extragradient methods. We really know that there
are some articles which have mathematical errors for this problem.

The following lemma plays crucial roll in the proof of Theorem 4.1.

Lemma 3.3. Let C be a non-empty, closed and convex subset of a Hilbert space H.
Let A be an α-inverse strongly monotone mapping of C into H with V I(C,A) �= ø.
Let {an} be a sequence in [c, d] as 0 < c ≤ d < 2α. Let {Van} be a sequence of
mappings on C defined by Vanx = PC(I − anA)x for x ∈ C. If {xn} is a sequence
in C such that limn ‖xn − u‖ = limn ‖Vanxn − u‖ for some u ∈ V I(C,A), then
limn ‖Vanxn − xn‖ = 0.
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nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. Preliminaries

Let H be a Hilbert space. When {xn} is a sequence in H, we denote the strong
convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn � x.
From [21] we have that for x, y ∈ H and λ ∈ R

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

We also know that for x, y, u, v ∈ H

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

A Hilbert space satisfies Opial’s condition [18], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn � u and u �= v; see [18]. Let C be a non-empty subset of H. A mapping
T : C → H is called firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for
all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [21]. We also
know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉

for all x, y ∈ H. Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C. This inequality is equivalent to

(2.3) ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2

for all x ∈ H and y ∈ C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C be a non-empty subset of a Hilbert space H. Then a mapping
T : C → H is called generalized hybrid if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C; see also [1]. Such a mapping T is also called (α, β)-generalized
hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized
hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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Proof. Set yn = Vanxn = PC(I − anA)xn for all n ∈ N . By Lemma 3.1, we have
that F (Van) = V I(C,A) for n ∈ N . By our assumptions, {xn} and {yn} are
bounded. Since u ∈ V I(C,A) and A is α-inverse strongly monotone, we have

‖yn − u‖2 = ‖PC(I − anA)xn − PC(I − anA)u‖2

≤ ‖(I − anA)xn − (I − anA)u‖2

≤ ‖xn − u‖2 − an(2α − an)‖Axn − Au‖2

for n ∈ N . From an ∈ [c, d] ⊂ (0, 2α), it follows that for n ∈ N

c(2α − d)‖Axn − Au‖2 ≤ an(2α − an)‖Axn − Au‖2 ≤ ‖xn − u‖2 − ‖yn − u‖2.

By c(2α−d) > 0 and limn ‖xn−u‖ = limn ‖yn−u‖, we have limn ‖Axn−Au‖ = 0.
Since PC is firmly nonexpansive and I − anA is nonexpansive, we have

2‖yn − u‖2 = 2‖PC(I − anA)xn − PC(I − anA)u‖2

≤ 2 〈PC(I − anA)xn − PC(I − anA)u, (I − anA)xn − (I − anA)u〉
= 2 〈yn − u, (I − anA)xn − (I − anA)u〉
= ‖yn − u‖2 + ‖(I − anA)xn − (I − anA)u‖2

− ‖(yn − u) − ((I − anA)xn − (I − anA)u)‖2

≤ ‖yn − u‖2 + ‖xn − u‖2

− ‖(yn − xn) + an(Axn − Au)‖2

= ‖yn − u‖2 + ‖xn − u‖2

− ‖yn − xn‖2 − 2an 〈yn − xn, Axn − Au〉 − a2
n‖Axn − Au‖2

for all n ∈ N . Thus it follows that for n ∈ N

‖yn − xn‖2 ≤ ‖xn − u‖2 − ‖yn − u‖2

− 2an 〈yn − xn, Axn − Au〉 − a2
n‖Axn − Au‖2.

By limn ‖xn − u‖ = limn ‖yn − u‖ and limn ‖Axn − Au‖ = 0, we have

limn ‖yn − xn‖ = limn ‖Vanxn − xn‖ = 0.

This completes the proof. �

Let {an} be a sequence in (0,∞). Let C be a non-empty, closed and convex subset
of a Hilbert space H. Let A be a mapping of C into H such that V I(C,A) �= ø.
Let {Van} be a sequence of mappings on C defined by Vanx = PC(I −anA)x for all
x ∈ C and let {Wn} be a sequence of mappings on C such that F (Wn) ⊂ A(Wn)
for all n ∈ N . Then {Wn} said to satisfy Condition (E) with {Van} if there exist
M1,M2 > 0 such that for any n ∈ N

(E1) ‖Wnx − x‖ ≤ M1‖Vanx − x‖, ∀x ∈ C;

(E2) ‖x − Vanx‖2 ≤ M2(‖x − u‖2 − ‖Wnx − u‖2), ∀x ∈ C, u ∈ V I(C,A).

We note that F (Wn) ⊂ A(Wn) and F (Wn) �= ø if and only if Wn is quasi-
nonexpansive.

Lemma 3.4. Let {an} be a sequence in (0,∞). Let C be a non-empty, closed
and convex subset of a Hilbert space H. Let A be a mapping of C into H with
V I(C,A) �= ø. Let {Van} be a sequence of mappings on C defined by Vanx =
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see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) �=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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PC(I − anA)x for x ∈ C. If {Wn} is a sequence of mappings on C which satisfies
Condition (E) with {Van}, then for each n ∈ N

F (Van) = F (Wn) = V I(C,A).

Proof. Fix n ∈ N arbitrarily. We already know that F (Van) = V I(C,A). Let
v ∈ F (Van) = V I(C,A). From (E1) we have

‖Wnv − v‖ ≤ M1‖Vanv − v‖ = 0.

Then ø �= F (Van) ⊂ F (Wn). Let u ∈ V I(C,A) and w ∈ F (Wn). From (E2) we
have

‖w − Vanw‖2 ≤ M2(‖w − u‖2 − ‖Wnw − u‖2) = M2(‖w − u‖2 − ‖w − u‖2) = 0.

Then F (Wn) ⊂ F (Van). Thus F (Van) = F (Wn) = V I(C,A) for all n ∈ N . �

The following lemma is a result to simplify the proof of Lemma 3.6.

Lemma 3.5. Let C be a non-empty, closed and convex subset of a Hilbert space
H. Let k > 0 and let A be a monotone and k-Lipschitz continuous mapping of C
into H such that V I(C,A) �= ø. Let a ∈ (0, 1/k]. Let x ∈ C, y = PC(x − aAx),
z = PC(x − aAy) and u ∈ V I(C,A). Then the following hold:

(1) 〈y − z, aAy〉 ≥ 〈u − z, aAy〉;
(2) ‖x−z‖2 +2 〈z − y, aAy〉 ≥ (1−a2k2)‖x−y‖2 +(ak‖x−y‖−‖y−z‖)2 ≥ 0;
(3) ‖z − u‖2 ≤ ‖x − u‖2 − (1 − a2k2)‖x − y‖2 ≤ ‖x − u‖2.

Proof. We prove (1). Let u ∈ V I(C,A). Since A is monotone, we have

〈y − u,Ay〉 ≥ 〈y − u,Au〉 ≥ 0.

From a > 0 we have that

〈y − z, aAy〉 − 〈u − z, aAy〉 = a 〈y − u,Ay〉 ≥ a 〈y − u, Au〉 ≥ 0

and hence 〈y − z, aAy〉 ≥ 〈u − z, aAy〉. We prove (2). By y = PC(x − aAx) and
z ∈ C, we have

〈z − y, (x − aAx) − y〉 ≤ 0.

Then the following inequality holds:

〈z − y, x − y〉 − 〈z − y, aAy〉 = 〈z − y, (x − aAx) − y〉 + a 〈z − y,Ax − Ay〉
≤ a 〈z − y,Ax − Ay〉 .

Since A is k-Lipschitz continuous and ak ≤ 1, it follows that

‖x − z‖2 + 2 〈z − y, aAy〉
=

(
‖x − y‖2 + ‖z − y‖2 − 2 〈z − y, x − y〉

)
+ 2 〈z − y, aAy〉

≥ ‖x − y‖2 + ‖z − y‖2 − 2a 〈z − y,Ax − Ay〉
≥ ‖x − y‖2 + ‖y − z‖2 − 2ak‖z − y‖ ‖x − y‖
= (1 − a2k2)‖x − y‖2 + (ak‖x − y‖ − ‖y − z‖)2 ≥ 0.
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nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. Preliminaries

Let H be a Hilbert space. When {xn} is a sequence in H, we denote the strong
convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn � x.
From [21] we have that for x, y ∈ H and λ ∈ R

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

We also know that for x, y, u, v ∈ H

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

A Hilbert space satisfies Opial’s condition [18], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn � u and u �= v; see [18]. Let C be a non-empty subset of H. A mapping
T : C → H is called firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for
all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [21]. We also
know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉

for all x, y ∈ H. Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C. This inequality is equivalent to

(2.3) ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2

for all x ∈ H and y ∈ C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C be a non-empty subset of a Hilbert space H. Then a mapping
T : C → H is called generalized hybrid if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C; see also [1]. Such a mapping T is also called (α, β)-generalized
hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized
hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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We prove (3). Using z = PC(x − aAy), (1), (2) and properties of PC , we have

‖z − u‖2 ≤ ‖(x − aAy) − u‖2 − ‖(x − aAy) − z‖2

= (‖x − u‖2 + ‖aAy‖2 − 2 〈x − u, aAy〉)
− (‖x − z‖2 + ‖aAy‖2 − 2 〈x − z, aAy〉)

= ‖x − u‖2 − ‖x − z‖2 − 2 〈z − u, aAy〉
≤ ‖x − u‖2 − ‖x − z‖2 − 2 〈z − y, aAy〉
≤ ‖x − u‖2 − (1 − a2k2)‖x − y‖2 − (ak‖x − y‖ − ‖z − y‖)2

≤ ‖x − u‖2 − (1 − a2k2)‖x − y‖2 ≤ ‖x − u‖2.

This completes the proof. �

Lemma 3.6. Let C be a non-empty, closed and convex subset of a Hilbert space
H. Let k > 0 and let A be a monotone and k-Lipschitz continuous mapping of C
into H such that V I(C,A) �= ø. Let 0 < d < 1/k and {an} be a sequence in (0, d ].
Let {Van} be a sequence of mappings on C defined by Vanx = PC(I − anA)x for
x ∈ C and let {Uan} be a sequence of mappings on C defined by

Uanx = PC(I − anAVan)x

for x ∈ C. Then each Uan is a quasi-nonexpansive mapping such that F (Van) =
F (Uan) = V I(C,A) and {Uan} satisfies Condition (E) with {Van}.

Proof. We show that {Uan} satisfies Condition (E1). Fix n ∈ N arbitrarily. Since
0 < ank ≤ dk < 1, PC is nonexpansive and A is k-Lipschitz continuous, we have
that for all x ∈ C

‖Uanx − Vanx‖ = ‖PC(x − anAVanx) − PC(x − anAx)‖
≤ ‖(x − x) − an(AVanx − Ax)‖ ≤ ank‖Vanx − x‖

and hence

‖Uanx − x‖ ≤ ‖Uanx − Vanx‖ + ‖Vanx − x‖
≤ ank‖Vanx − x‖ + ‖Vanx − x‖
≤ (1 + ank)‖Vanx − x‖ ≤ 2‖Vanx − x‖.

This implies that {Uan} satisfies Condition (E1) as M1 = 2. We show that {Uan}
satisfies Condition (E2). Fix n ∈ N arbitrarily. Let x ∈ C, u ∈ V I(C,A) and set
y = Vanx. By Uanx = PC(x − anAy) and Lemma 3.5 (3), we have

‖Uanx − u‖2 ≤ ‖x − u‖2 − (1 − a2
nk2)‖x − y‖2 ≤ ‖x − u‖2.

Thus we have that for x ∈ C and u ∈ V I(C,A)

(a) ‖Uanx − u‖ ≤ ‖x − u‖;
(b) (1 − d2k2)‖x − Vanx‖2 ≤ (1 − a2

nk2)‖x − Vanx‖2 ≤ ‖x − u‖2 − ‖Uanx − u‖2.

From (b), it follows that {Uan} satisfies Condition (E2) as M2 = 1/(1 − d2k2). We
have from Lemma 3.4 that F (Van) = F (Uan) = V I(C,A) for each n ∈ N . By (a),
each Uan is a quasi–nonexpansive mapping. This completes the proof. �

2 RIEKO KUBOTA, WATARU TAKAHASHI, AND YUKIO TAKEUCHI

see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) �=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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4. Main Results

We present our main results.

Theorem 4.1. Let C be a closed and convex subset of a Hilbert space H and let
α > 0. Let A be an α-inverse strongly monotone mapping of C into H. Let {an}
be a sequence in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of
C into itself defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a mapping
of C into itself such that F (S) ⊂ A(S) and I − S is demiclosed at 0. Assume
F (S)∩V I(C,A) �= ø. Let {αn} be a sequence in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C
and let {xn} and {yn} be sequences in C defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. Under our assumptions, it follows that each Van is a nonexpansive mapping
such that F (Van) = V I(C,A) �= ø. Since F (S) ⊂ A(S) and F (S) �= ø, S is also
quasi-nonexpansive. Let w ∈ F (S) ∩ V I(C,A). We have that

‖xn+1 − w‖ ≤ αn‖SVanxn − w‖ + (1 − αn)‖xn − w‖
≤ αn‖xn − w‖ + (1 − αn)‖xn − w‖ = ‖xn − w‖

for all n ∈ N . Then {‖xn−w‖} is non-increasing and converges to some s ∈ [0,∞).
It follows that {xn} are bounded. We also have that

αn‖xn+1 − w‖ + (1 − αn)(‖xn+1 − w‖ − ‖xn − w‖)
≤ αn‖SVanxn − w‖ ≤ αn‖Vanxn − w‖ ≤ αn‖xn − w‖.

Since αn ∈ [a, b] and ‖xn+1 − w‖ − ‖xn − w‖ ≤ 0, we have that

‖xn+1 − w‖ + 1
a (‖xn+1 − w‖ − ‖xn − w‖) ≤ ‖Vanxn − w‖ ≤ ‖xn − w‖

for all n ∈ N . This implies limn ‖Vanxn − w‖ = limn ‖xn − w‖ = s. We have from
Lemma 3.3 that limn ‖Vanxn − xn‖ = 0. On the other hand, we have from (2.1)
that for any x, y ∈ H and α ∈ R

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Setting α = αn, x = SVanxn − w, y = xn − w, we have that for any n ∈ N

αn(1 − αn)‖SVanxn − xn‖2

= αn‖SVanxn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

≤ αn‖xn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

= ‖xn − w‖2 − ‖xn+1 − w‖2.

Since {‖xn − w‖} is a convergent sequence and αn ∈ [a, b] for all n ∈ N , we have
that limn ‖SVan

xn − xn‖ = 0. Moreover, since

‖SVanxn − Vanxn‖ ≤ ‖SVanxn − xn‖ + ‖Vanxn − xn‖.
for all n ∈ N , we have that

limn ‖Syn − yn‖ = limn ‖SVanxn − Vanxn‖ = 0.

Since {xn} is bounded, there exists a weakly convergent subsequence. Let
{xnj} be a subsequence of {xn} which converges weakly to some u ∈ C. From
limn ‖Vanxn−xn‖ = 0, {ynj} also converges weakly to u. Since A is monotone and
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nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. Preliminaries

Let H be a Hilbert space. When {xn} is a sequence in H, we denote the strong
convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn � x.
From [21] we have that for x, y ∈ H and λ ∈ R

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

We also know that for x, y, u, v ∈ H

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

A Hilbert space satisfies Opial’s condition [18], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn � u and u �= v; see [18]. Let C be a non-empty subset of H. A mapping
T : C → H is called firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for
all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [21]. We also
know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉

for all x, y ∈ H. Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C. This inequality is equivalent to

(2.3) ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2

for all x ∈ H and y ∈ C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C be a non-empty subset of a Hilbert space H. Then a mapping
T : C → H is called generalized hybrid if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C; see also [1]. Such a mapping T is also called (α, β)-generalized
hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized
hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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1/α-Lipschitz continuous, from lim j ‖Vanj
xnj − xnj‖ = 0 and Lemma 3.2, we have

u ∈ V I(C,A). Since I −S is demi–closed at 0 and limn ‖SVanxn −Vanxn‖ = 0, we
also have u ∈ F (S). Thus u ∈ V I(C,A) ∩ F (S).

Finally, let us show that {xn} converges weakly to u ∈ V I(C,A) ∩ F (S). Let
{xni} and {xnj} be subsequences of {xn} which converge weakly to u, v ∈ V I(C,A)∩
F (S), respectively. To have the result, it is sufficient to show u = v. Assume u �= v.
By the Opial property, we have that

lim i ‖xni − u‖ < lim i ‖xni − v‖ = lim j ‖xnj − v‖
< lim j ‖xnj − u‖ = lim i ‖xni − u‖.

This is a contradiction. Then we have u = v. Therefore we have the desired
result. �

Theorem 4.2. Let C be a closed and convex subset of a Hilbert space H and let
k > 0. Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let
{an} be a sequence in [c,∞) as c ∈ (0,∞). For each n ∈ N , let Van be a mapping of
C into itself defined by Vanx = PC(I−anA)x for all x ∈ C. Let {Wn} be a sequence
of mappings on C with F (Wn) ⊂ A(Wn) such that {Wn} satisfies Condition (E)
with {Van}. Let S be a mapping of C into itself such that F (S) ⊂ A(S) and I − S
is demiclosed at 0. Assume F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in [a, b]
as 0 < a ≤ b < 1. Let x1 ∈ C and let {xn}, {yn}, {zn} be sequences defined by

yn = Vanxn, zn = Wnxn, xn+1 = αnSWnxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. By Lemma 3.4, we know that Wn is quasi-nonexpansive and F (Wn) =
V I(C,A) for all n ∈ N . Since F (S) ⊂ A(S) and F (S) ∩ V I(C,A) �= ø, S is also
quasi-nonexpansive. Let w ∈ F (S) ∩ V I(C,A). We have that

‖xn+1 − w‖ ≤ αn‖SWnxn − w‖ + (1 − αn)‖xn − w‖
≤ αn‖xn − w‖ + (1 − αn)‖xn − w‖ = ‖xn − w‖

for all n ∈ N . Then {‖xn−w‖} is non–increasing and converges to some s ∈ [0,∞).
Thus we have that {xn} are bounded. As in the proof of Theorem 4.1, we also have
that

αn‖xn+1 − w‖ + (1 − αn)(‖xn+1 − w‖ − ‖xn − w‖)
≤ αn‖SWnxn − w‖ ≤ αn‖Wnxn − w‖ ≤ αn‖xn − w‖.

Since αn ∈ [a, b] and ‖xn+1 − w‖ − ‖xn − w‖ ≤ 0, we have

‖xn+1 − w‖ + 1
a (‖xn+1 − w‖ − ‖xn − w‖) ≤ ‖Wnxn − w‖ ≤ ‖xn − w‖

for all n ∈ N . This implies limn ‖Wnxn −w‖ = s. By (E2) of Condition (E), there
is M2 > 0 such that

‖Vanxn − xn‖2 ≤ M2(‖xn − w‖2 − ‖Wnxn − w‖2)

for all n ∈ N . Since limn ‖xn − w‖ = limn ‖Wnxn − w‖ = s, we have that
limn ‖Vanxn −xn‖ = 0. By (E1) of Condition (E), we also have that limn ‖Wnxn−
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see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) �=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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xn‖ = 0. On the other hand, using (2.1), we have that for any n ∈ N

αn(1 − αn)‖SWnxn − xn‖2

= αn‖SWnxn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

≤ αn‖xn − w‖2 + (1 − αn)‖xn − w‖2 − ‖xn+1 − w‖2

= ‖xn − w‖2 − ‖xn+1 − w‖2.

Since {‖xn − w‖} converges and αn ∈ [a, b] for all n ∈ N, we have limn ‖SWnxn −
xn‖ = 0. Moreover, since

‖SWnxn − Wnxn‖ ≤ ‖SWnxn − xn‖ + ‖Wnxn − xn‖.

for all n ∈ N , we have that

limn ‖Szn − zn‖ = limn ‖SWnxn − Wnxn‖ = 0.

Since {xn} is bounded, there exists a weakly convergent subsequence. Let {xnj} be
a subsequence of {xn} which converges weakly to some u ∈ C. By limn ‖Vanxn −
xn‖ = 0 and limn ‖Wnxn − xn‖ = 0, we also have that {ynj} and {znj} converge
weakly to u. Since A is monotone and k-Lipschitz continuous, from lim j ‖Vanj

xnj −
xnj‖ = 0 and Lemma 3.2, we have that u ∈ V I(C,A). Since I − S is demi–
closed at 0 and lim j ‖SWnj xnj − Wnj xnj‖ = 0, we also have u ∈ F (S). Thus u ∈
V I(C,A)∩F (S). To show that {xn} converges weakly to a point of V I(C,A)∩F (S),
let {xni} and {xnj} be subsequences of {xn} which converge weakly to u, v ∈
V I(C,A) ∩ F (S), respectively. To have the result, it is sufficient to show u = v.
Assume u �= v. As in the proof of Theorem 4.1, we have that

lim i ‖xni − u‖ < lim i ‖xni − v‖ = lim j ‖xnj − v‖
< lim j ‖xnj − u‖ = lim i ‖xni − u‖.

This is a contradiction. Then we have the desired result. �

5. Applications

Using Theorems 4.1 and 4.2, we present some new results. The following are
extensions of Theorem 1.1.

Theorem 5.1. Let C be a closed and convex subset of a Hilbert space H. Let A
be an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence
in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of C into
itself defined by Van

x = PC(I − anA)x for all x ∈ C. Let S be a generalized hybrid
mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø. Let {αn} be a sequence
in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. Since S : C → C is generalized hybrid, S satisfies F (S) ⊂ A(S). By
Lemma 2.1 we have that I − S is demiclosed at 0. Then, by Theorem 4.1, we have
the desired result. �
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nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. Preliminaries

Let H be a Hilbert space. When {xn} is a sequence in H, we denote the strong
convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn � x.
From [21] we have that for x, y ∈ H and λ ∈ R

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

We also know that for x, y, u, v ∈ H

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

A Hilbert space satisfies Opial’s condition [18], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn � u and u �= v; see [18]. Let C be a non-empty subset of H. A mapping
T : C → H is called firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for
all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [21]. We also
know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉

for all x, y ∈ H. Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C. This inequality is equivalent to

(2.3) ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2

for all x ∈ H and y ∈ C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C be a non-empty subset of a Hilbert space H. Then a mapping
T : C → H is called generalized hybrid if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C; see also [1]. Such a mapping T is also called (α, β)-generalized
hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized
hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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Theorem 5.2. Let C be a closed and convex subset of a Hilbert space H. Let A
be an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence
in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S : C → C be a mapping such
that, for some s ∈ [0,∞),

(5.1) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.

Assume that F (S)∩V I(C,A) �= ø. Let {αn} be a sequence in [a, b] as 0 < a ≤ b < 1.
Let x1 ∈ C and let {xn} and {yn} be sequences in C defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. Since S is a mapping satisfying (5.1), S satisfies F (S) ⊂ A(S). By Lemma
2.2 we have that I − S is demiclosed at 0. Then, by Theorem 4.1, we have the
desired result. �

Using Theorem 5.2, we have the following result.

Theorem 5.3. Let C be a closed and convex subset of a Hilbert space H. Let A
be an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence
in [c, d] as 0 < c ≤ d < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for x ∈ C. Let S : C → C be a mapping which
satisfies Condition (C). Assume that F (S)∩V I(C,A) �= ø. Let {αn} be a sequence
in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Proof. If a mapping S satisfies Condition (C), then we know that S satisfies (5.1).
Thus we obtain the desired result from Theorem 5.2. �

As in the proofs of Theorems 5.1 and 5.2 we have the following extensions of
Theorem 1.2 from Lemma 3.6 and Theorem 4.2.

Theorem 5.4. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c, d] as 0 < c ≤ d < 1/k. For each n ∈ N , let Van and Uan be mappings
of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C,

respectively. Let S : C → C be a generalized hybrid mapping. Assume that F (S) ∩
V I(C,A) �= ø. Let {αn} be a sequence in [a, b] as 0 < a ≤ b < 1. Let x1 ∈ C and
let {xn}, {yn}, {zn} be sequences defined by

yn = Van
xn, zn = Uan

xn, xn+1 = αnSUan
xn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Theorem 5.5. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
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see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) �=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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nonexpansive mappings. Furthermore, using these weak convergence theorems, we
obtain some new results.

2. Preliminaries

Let H be a Hilbert space. When {xn} is a sequence in H, we denote the strong
convergence of {xn} to x ∈ H by xn → x and the weak convergence by xn � x.
From [21] we have that for x, y ∈ H and λ ∈ R

(2.1) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

We also know that for x, y, u, v ∈ H

(2.2) 2 〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2.

A Hilbert space satisfies Opial’s condition [18], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn � u and u �= v; see [18]. Let C be a non-empty subset of H. A mapping
T : C → H is called firmly nonexpansive if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for
all x, y ∈ C. If a mapping T is firmly nonexpansive, then it is nonexpansive. If
T : C → H is nonexpansive, then F (T ) is closed and convex; see [21]. We also
know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉

for all x, y ∈ H. Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and
y ∈ C. This inequality is equivalent to

(2.3) ‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2

for all x ∈ H and y ∈ C; see, for instance, [20]. Recently, many researchers con-
sidered broad classes of nonlinear mappings which contain nonexpansive mappings.
Kocourek, Takahashi and Yao [9] introduced a class of mappings called generalized
hybrid. Let C be a non-empty subset of a Hilbert space H. Then a mapping
T : C → H is called generalized hybrid if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C; see also [1]. Such a mapping T is also called (α, β)-generalized
hybrid. A (1,0)-generalized hybrid mapping is nonexpansive. A (2,1)-generalized
hybrid mapping is nonspread; see [10, 11]. It is also hybrid in the sense of [22] for
α = 3

2 and β = 1
2 . Suzuki [19] also introduced a new class of nonlinear mappings.

A mapping T of C into itself is said to satisfy Condition (C) if for any x, y ∈ C

1
2‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

It is obvious that if T is nonexpansive, then T satisfies Condition (C). Motivated
by these mappings, Takahashi and Takeuchi [23] considered a class of mappings
which satisfies the following condition:

(2.4) F (T ) ⊂ A(T ).

Falset, Fuster and Suzuki [6] also considered the following class of mappings: There
exists s ∈ [0,∞) such that

(2.5) ‖x − Ty‖ ≤ s‖x − Tx‖ + ‖x − y‖, ∀x, y ∈ C.
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see, for instance, [21]. Assume that C is non-empty, closed and convex. In this case,
for each x ∈ H, there exists a unique x0 ∈ C such that ‖x − x0‖ = min{‖x − y‖ :
y ∈ C}. The mapping PC defined by PCx = x0 for x ∈ H is called the metric
projection of H onto C. Let C be a subset of a Hilbert space H and let A be a
mapping of C into H. We denote by V I(C,A) the set of solutions of the variational
inequality for A, i.e.,

V I(C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0, ∀y ∈ C}.
Let C be a closed and convex subset of a n-dimensional Euclidean space Rn. Let A
be a monotone and k-Lipschitz continuous mapping of C into Rn with V I(C,A) �=
ø. For a ∈ (0, 1/k), let Va and Ua be a self–mappings on C defined by

Vax = PC(I − aA)x, Uax = PC(I − aAVa)x, ∀x ∈ C.

Let x1 ∈ C. Let {xn} and {yn} be sequences in C such that yn = Vaxn and
xn+1 = Uaxn for all n ∈ N . This iterative procedure called the extragradient
method was introduced by Korplevich [8]. Under these conditions, he proved that
both sequences {xn} and {yn} converge to the same point in V I(C,A). In 2003,
Takahashi and Toyoda [24] proved the following theorem; also see [7].

Theorem 1.1. Let C be a closed and convex subset of a Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H. Let {an} be a sequence in
[c1, d1] as 0 < c1 ≤ d1 < 2α. For each n ∈ N , let Van be a mapping of C into itself
defined by Vanx = PC(I − anA)x for all x ∈ C. Let S be a nonexpansive mapping
of C into itself. Assume that F (S) ∩ V I(C,A) �= ø. Let {αn} be a sequence in
[c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn} and {yn} be sequences in C
defined by

yn = Vanxn, xn+1 = αnSVanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn} and {yn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

In 2006, Nadezhkina and Takahashi [17] also proved the following theorem.

Theorem 1.2. Let C be a closed and convex subset of a Hilbert space H and A
be a monotone and k-Lipschitz continuous mapping of C into H. Let {an} be a
sequence in [c1, d1] as 0 < c1 ≤ d1 < 1/k. For each n ∈ N , let Van and Uan be
mappings of C into itself defined by

Vanx = PC(I − anA)x, Uanx = PC(I − anAVan)x, ∀x ∈ C.

Let S be a nonexpansive mapping of C into itself. Assume that F (S)∩V I(C,A) �= ø.
Let {αn} be a sequence in [c2, d2] as 0 < c2 ≤ d2 < 1. Let x1 ∈ C and let {xn},
{yn} and {zn} be sequences in C defined by

yn = Vanxn, zn = Uanxn, xn+1 = αnSUanxn + (1 − αn)xn, ∀n ∈ N.

Then {xn}, {yn} and {zn} converge weakly to a point u ∈ F (S) ∩ V I(C,A).

Motivated by Takahashi and Toyoda [24] and Nadezhkina and Takahashi [17], we
study properties of projection methods for variatinal inequality problems and then
prove weak convergence theorems which generalize Theorems 1.1 and 1.2. Though
almost all techniques in this paper are in Takahashi and Toyoda [24] and Nadezhkina
and Takahashi [16, 17], our proofs are different from them. Our techniques depend
on the structure of projection methods for variatinal inequality problems and our
class of nonlinear mappings S in Theorems 1.1 and 1.2 is a broad class including
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Submission to the SCMJ 
 
In September 2012, the way of submission to Scientiae Mathematicae Japonicae 
(SCMJ) was changed.  Submissions should be sent electronically (in PDF file) to the 
editorial office of International Society for Mathematical Sciences (ISMS).  
 
(1) Preparation of files and Submission 

a. Authors who would like to submit their papers to the SCMJ should make 
source files of their papers in LaTeX2e using the ISMS style file (scmjlt2e.sty) 
Submissions should be in PDF file compiled from the source files.  Send the 
PDF file to s1bmt@jams.jp . 

b. Prepare a Submission Form and send it to the ISMS.  The required items to 
be contained in the form are:  

  1. Editor’s name whom the author chooses from the Editorial Board 
(http://www.jams.or.jp/hp/submission_f.html )and would like to take in 
charge of the paper for refereeing.  

2. Title of the paper.   
3. Authors’ names.   
4. Corresponding author’s name, e-mail address and postal address (affiliation).  
5. Membership number in case the author is an ISMS member.   
 
Japanese authors should write 3 and 4 both in English and in Japanese.  
 
At http://www.jams.or.jp/hp/submission_f.html, the author can find the 
Submission Form. Fulfill the Form and sent it to the editorial office by pushing 
the button “transmission”.  Or, without using the Form, the author may send 
an e-mail containing the items 1-5 to s1bmt@jams.jp 

 
(2) Registration of Papers 

When the editorial office receives both a PDF file of a submitted paper and a 
Submission Form, we register the paper.  We inform the author of the 
registration number and the received date.  At the same time, we send the PDF 
file to the editor whom the author chooses in the Submission Form and request 
him/her to begin the process of refereeing. (Authors need not send their papers to 
the editor they choose.) 
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(3) Reviewing Process 
a. The editor who receives, from the editorial office, the PDF file and the request 

of starting the reviewing process, he/she will find an appropriate referee for 
the paper.   

b. The referee sends a report to the editor.  When revision of the paper is 
necessary, the editor informs the author of the referee’s opinion. 

c. Based on the referee report, the editor sends his/her decision (acceptance of 
rejection) to the editorial office. 

 
(4) a. Managing Editor of the SCMJ makes the final decision to the paper valuing the  

editor’s decision, and informs it to the author. 
b. When the paper is accepted, we ask the author to send us a source file and 

a PDF file of the final manuscript.  
c. The publication charges for the ISMS members are free if the membership dues 

have been paid without delay. If the authors of the accepted papers are not the 
ISMS members, they should become ISMS members and pay ¥6,000 (US$75, 
Euro55) as the membership dues for a year, or should just pay the same 
amount without becoming the members. 

 
 
 
 

Items required in Submission Form 
1. Editor’s name who the authors wish will take in charge of the paper 
2. Title of the paper 
3. Authors’ names 
3’.  3. in Japanese for Japanese authors 
4. Corresponding author’s name and postal address (affiliation) 
4’.  4. in Japanese for Japanese authors 
5. ISMS membership number 
6. E-mail address   
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Call for ISMS Members 
 

Call for Academic and Institutional Members 
 

Discounted subscription price: When organizations become the Academic and Institutional 
Members of the ISMS, they can subscribe our journal Scientiae Mathematicae Japonicae at the 
yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    

 
Invitation of two associate members: We would like to invite two persons from the 

organizations to the associate members with no membership fees. The two persons will enjoy 
almost the same privileges as the individual members.  Although the associate members 
cannot have their own ID Name and Password to read the online version of SCMJ, they can 
read the online version of SCMJ at their organization. 

 
To apply for the Academic and Institutional Member of the ISMS, please use the following 

application form. 
 
----------------------------------------------------------------------------------------------------------- 
 

Application for Academic and Institutional Member of ISMS 
Subscription of SCMJ 

Check one of the two. 

 

□Print               □Print ＋ Online 

(US$225)                 (US$225) 

University (Institution) 

 

 

Department 

 

 

Postal Address 

where SCMJ should be 

sent 

 

E-mail address 

 

 

Person in charge 

Name: 

Signature: 

 

Payment 

Check one of the two. 
□Bank transfer        □Credit Card (Visa, Master) 

Name of Associate Membership 

1.  

 

2.  
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Call for Individual Members 

 
We call for individual members.  The privileges to them and the membership dues are shown 

in “Join ISMS !” on the inside of the back cover. 
 

 
 Items required in Membership Application Form 
   

1. Name 
2. Birth date 
3. Academic background 
4. Affiliation 
5. 4’s address 
6. Doctorate 
7. Contact address 
8. E-mail address 
9. Special fields 
10. Membership category (See Table 1 in “Join ISMS !”) 
 

Individual Membership Application Form 
 
1. Name 
 

 

 
2. Birth date 
 

 

3. 
Academic background 
 

 

 
4. Affiliation 
 

 

 
5. 4’s address 
 
 

 

 
6. Doctorate 
 

 

 
7. Contact address 
 
 

 

  
8.  E-mail address 
 

 

 
9.  Special fields 
 

 

10.  
Membership 

    category 
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Contributions (Gift to the ISMS) 
We deeply appreciate your generous contributions to support the activities of our 

society. 
The donation are used (1) to make medals for the new prizes (Kitagawa Prize, 
Kunugi Prize, and ISMS Prize),  (2) to support the IVMS at Osaka University 
Nakanoshima Center, and (3) for a special fund designated by the contributors. 
 
Your remittance to the following accounts of ours will be very much appreciated. 

 
(1)  Through a post office, remit to our giro account ( in Yen only ): 

         No. 00930-1-11872, Japanese Association of Mathematical Sciences (JAMS ) 
   or send International Postal Money Order (in US Dollar or in Yen) to our 

address: 
       International Society for Mathematical Sciences 

         2-1-18 Minami Hanadaguchi, Sakai-ku, Sakai, Osaka 590-0075, Japan 
 
(2)   A/C 94103518, ISMS 

CITIBANK, Japan Ltd., Shinsaibashi Branch 
           Midosuji Diamond Building 
           2-1-2 Nishi Shinsaibashi, Chuo-ku, Osaka 542-0086, Japan 
 

 
 

******************************************************************************** 
Payment Instructions: 

Payment can be made through a post office or a bank, or by credit card. Members may 
choose the most convenient way of remittance. Please note that we do not accept payment by 
bank drafts (checks). For more information, please refer to an invoice. 
 

Methods of Overseas Payment: 
Payment can be made through (1) a post office, (2) a bank, (3) by credit card, or (4) 
UNESCO Coupons.  

Authors or members may choose the most convenient way of remittance as are shown below. 
Please note that we do not accept payment by bank drafts (checks). 
(1) Remittance through a post office to our giro account No. 00930-1-11872 or send 
International Postal Money Order to our postal address (2) Remittance through a 
bank to our account No. 94103518 at Shinsaibashi Branch of CITIBANK (3) Payment 
by credit cards (AMEX, VISA, MASTER or NICOS), or (4) Payment by UNESCO 
Coupons. 
 

Methods of Domestic Payment: 
Make remittance to: 

(1) Post Office Transfer Account - 00930-3-73982 or  
(2) Account No.7726251 at Sakai Branch, SUMITOMO MITSUI BANKING 
CORPORATION, Sakai, Osaka, Japan. 
All of the correspondences concerning subscriptions, back numbers, individual and 
institutional memberships, should be addressed to the Publications Department, 
International Society for Mathematical Sciences. 
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Join ISMS ! 
ISMS Publications: We published Mathematica Japonica (M.J.) in print, 

which was first published in 1948 and has gained an international reputation in 
about sixty years, and its offshoot Scientiae Mathematicae (SCM) both online 
and in print. In January 2001, the two publications were unified and changed to 
Scientiae Mathematicae Japonicae (SCMJ), which is the “21st Century New 
Unified Series of Mathematica Japonica and Scientiae Mathematicae” and 
published both online and in print.  Ahead of this, the online version of SCMJ 
was first published in September 2000.  The whole number of SCMJ exceeds 270, 
which is the largest amount in the publications of mathematical sciences in 
Japan. The features of SCMJ are: 
1) About 80 eminent professors and researchers of not only Japan but also 20 

foreign countries join the Editorial Board. The accepted papers are 
published both online and in print. SCMJ is reviewed by Mathematical 
Review and Zentralblatt from cover to cover. 

2) SCMJ is distributed to many libraries of the world. The papers in SCMJ 
are introduced to the relevant research groups for the positive exchanges 
between researchers. 

3) ISMS Annual Meeting: Many researchers of ISMS members and 
non-members gather and take time to make presentations and discussions 
in their research groups every year. 

 
The privileges to the individual ISMS Members:  
(1) No publication charges 
(2) Free access (including printing out) to the online version of SCMJ 

 (3) Free copy of each printed issue  
 
The privileges to the Institutional Members:  
Two associate members can be registered, free of charge, from an institution.  

 
 
Table 1: Membership Dues for 2013 
Categories Domestic Overseas Developing 

countries 
1-year Regular 
member 

     ￥6,000  US$75 ,  €55 US$45,  €33 
 

1-year Student 
member 

     ￥4,000 US$50,  €37 US$30,  €22 
Life member* Calculated  

as below* 
       NA    NA 

 
Honorary member     Free        Free    Free 

 
 
* Regular member between 63 - 73 years old can apply the category. 
   (73－age ) × ¥3,000 
Regular member over 73 years old can maintain the qualification and the 
privileges of the ISMS members, if they wish. 
 
Categories of 3-year members were abolished. 
  
 

INTERNATIONAL SOCIETY FOR MATHEMATICAL SCIENCES
Scientiae Mathematicae Japonicae, Notices from the ISMS

The International Society for Mathematical Sciences (ISMS) is an international soci-
ety consisting of mathematical scientists throughout the world.

The main activities of the ISMS are to publish (1) the (print and online) journal
Scientiae Mathematicae Japonicae (SCMJ) and (2) Notices from the ISMS and to
hold assembly meeetings in Japan and international internet meetings (distance
symposium) of mathematical sciences (IVMS) accessible from all over the world.

SCMJ is the 21st Century New Unified Series of Mathematica Japonica (MJ) and
Scientiae Mathematicae (SCM). MJ was first published in 1948 and was one of the
oldest mathematical journals in Japan. SCM was an online and print journal started in
1998 in celebration of the semi-centurial anniversary and received 26000 visits per month
from 50 countries in the world. SCMJ contains original papers in mathematical sciences
submitted from all over the world and receives 38000 visits per month now. Not only
papers in pure and applied mathematics but those devoted to mathematical statistics,
operations research, informatics, computer science, biomathematics, mathematical eco-
nomics and other mathematical sciences are also welcome. The journal is published in
January, March, May, July, September, and November in each calendar year.

The ISMS has enhanced the journal, begining from July 1995, by including excel-
lent Research-Expository papers in the section “International Plaza for Mathematical
Sciences ” as well as original research papers. The section provides papers dealing with
broad overviews of contemporary mathmatical sciences, written by experts mainly at
our invitation. Papers shedding lights on open problems or new directions or new break-
throughs for future research are especially welcome.

As is shown in the Editorial Board of SCMJ, we have invited many distin-
guished professors of 20 countries as editors, who will receive and referee the papers
of their special fields with their high standard.

Beginning from 2007, we make the online version of SCMJ more readable and conve-
nient to the readers by adding the specialized contents. By this, the readers can access
to the online version, in which the papers appear in the order of acceptance, from (i)
the contents of the printed version, and (ii) the specialized contents of a volume. From
2007, the subscription fee of the printed version plus the online version of SCMJ becomes
lower and the same of the printed version only. Therefore, the subscribers of the printed
version can read the online version without no additional cost.

For benefit of the ISMS members, we publish ”Notices from the ISMS” 6 times a year.
We are enhancing it by adding interesting articles, including book reviewing, written by
eminent professors.

The ISMS has set up a videoconferencing system (IVMS) which can connect up
to twenty sites of a reserch group in the same or different countries in the world.
Using this system, speakers of the session can write on a white board or an OHP sheet
or use PowerPoint. On the other hand participants can ask questions or make comments
from any connected site in the world. All these are performed similarly to the traditional
meetings.

To connect with our system, you can use your own videoconferencing system only if
it satisfies the International Telecommunication Union-Technical Committee Standards
(ITU-T Standard).

Copyright Transfer Agreement

A copyright transfer agreement is required before a paper is published in this journal.
By submitting a paper to this journal, authors are regarded to certify that the manuscript
has not been submitted to nor is it under consideration for publication by another journal,
conference proceedings or similar publication.

For more information, please visit http://www.jams.or.jp.

Copyright Copyright c©2014 by International Society for Mathematical Sciences.
All rights reserved.

Categories Domestic Overseas Developing 
countries

1-year� Regular
member ￥8,000 �US$80�，Euro75 �US$50，�Euro47

1-year� Students�
member ￥4,000 �US$50�，Euro47 �US$30�，Euro28

Life�member* Calculated
as�below* �US$750�，Euro710 �US$440，�Euro416

Honorary�member Free Free Free

Membership Dues for ２０１５

　(Regarding submitted papers,we apply above presented new fee after April 15 in 
2015 on registoration date.) * Regular member between 63 - 73 years old can apply 
the category.
(73－age ) × ￥3,000
Regular member over 73 years old can maintain the qualification and the privileges 
of the ISMS members, if they wish.

Categories of 3-year members were abolished.
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