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Abstract. In this paper we apply the concept of intuitionistic fuzzy sets to n-racks,

n ≥ 2. Several related results are established. In particular, we discuss some properties

of normality and maximality of intuitionistic fuzzy n-racks using their (α, β)-cut sets.

 

1 Introduction In [3], the author introduced the category of n-racks as a generalization

of racks [6], and studied n-subracks in [4]. Intuitionistic fuzzy sets were introduced by

Krassimiri T. Atanassov [1] as a generalization of the concept of fuzzy sets introduced

by Zadeh [9] in the 60s. They have been applied to several algebraic concepts such as

equivalence relations [2], congruences [7] and groups [8]. In this work, we develop this

concept on n-racks. In particular we extend some results established in [5] on fuzzy n-racks

to intuitionistic fuzzy n-racks.

Let us recall a few definitions. A n-rack1[3] (R, [−, . . . ,−]R) is a set R endowed with an

n-ary operation [−, . . . ,−]R : R×R× . . .×R −→ R such that

•
[
x1, . . . , xn−1, [y1, . . . , yn−1]R

]
R
=

[
[x1, . . . , xn−1, y1]R, . . . , [x1, . . . , xn−1, yn]R

]
R

(This is the left distributive property of n-racks)

• For a1, . . . , an−1, b ∈ R, there is a unique x ∈ R with [a1, . . . , an−1, x]R = b.

If in addition there is a distinguish element 1 ∈ R, such that [1, . . . , 1, y]R = y and

[x1 . . . , xn−1, 1]R = 1 for all x1, . . . , xn−1 ∈ R, then (R, [−, . . . ,−]R, 1) is said to be a

pointed n-rack.

• A n-rack R is involutive if it further satisfies
[
x1, . . . , xn−1, [x1, . . . , xn−1, y]

]
= y for all x1, . . . , xn−1, y ∈ R.

• A n-rack R is trivial if it further satisfies [x1, x2, . . . , xn−1, y]R = y for all xi, y ∈ R.

• A n-rack is a n-quandle if it further satisfies [x1, x2, . . . , xn−1, y]R = y if xi = y for

some i ∈ {1, 2, . . . , n− 1}.

• A non empty subset S of a n-rack (resp. pointed n-rack) R is called n-semisubrack

of R if S is closed under the n-rack operation. S is called n-subrack of R if it has a

n-rack structure (resp. pointed n-rack structure).
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2 intuitionistic fuzzy n-subracks Recall from [1] that for a set R, an intuitionistic

fuzzy set S in R is an object S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
, where µS : R → [0, 1]

and νS : R → [0, 1] are two functions satisfying 0 ≤ µS(x) + νS(x) ≤ 1 for all x ∈ R.

Also µS(x) and νS(x) define respectively the degree of membership and the degree of non-

membership of x ∈ R. We say that S is constant if µS or νS is constant. Note that when

µS(x) + νS(x) = 1 for all x ∈ R, S is a fuzzy set. Also for two intuitionistic fuzzy sets

S1 =
{
〈x, µS1(x), νS1(x)〉 : x ∈ R

}
and S2 =

{
〈x, µS2(x), νS2(x)〉 : x ∈ R

}
, one says that

S1 ⊆ S2 if and only if µS1
(x) ≤ µS2

(x) and νS1
(x) ≥ νS2

(x) for all x ∈ R. Throughout the

paper, we consider only intuitionistic fuzzy sets that are not fuzzy sets.

Definition 2.1. Let R be a n-rack. An intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈

R
}
in R is said to be an intuitionistic fuzzy n-semisubrack of R if for any x1, . . . , xn ∈ R,

i) µS([x1, . . . , xn]) ≥ min{µS(x1), . . . , µS(xn)}

ii) νS([x1, . . . , xn]) ≤ max{νS(x1), . . . , νS(xn)}

iii) µS(1) ≥ µS(x) and νS(1) ≤ νS(x) for all x ∈ R if the rack is pointed by 1.

Definition 2.2. [8] Let S be an intuitionistic fuzzy set of a set R. The (α, β)− cut of S is

a crisp subset Cα,β(S) of S given by

Cα,β(S) =
{
x ∈ R / µS(x) ≥ α, νS(x) ≤ β

}

where α, β ∈ [0, 1] with α+ β ≤ 1.

The following is a characterization of intuitionistic fuzzy n-semisubracks by means of

(α, β)− cut sets.

Proposition 2.3. Let R be a n-rack. The intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 :

x ∈ R
}

is an intuitionistic fuzzy n-semisubrack of R if and only if for every α, β ∈ [0, 1]

with α+ β ≤ 1, the (α, β)− cut of S is a n-semisubrack of R when it is non empty.

Proof. ⇒) Let α, β ∈ [0, 1]. Assume that Cα,β(S) �= 0 and let {ai}i=1,...,n−1 ⊆ Cα,β(S).

Then as S is an intuitionistic fuzzy n-semisubrack, we have

µS([a1, . . . , an]) ≥ min{µS(a1), . . . , µS(an−1), µS(an)} ≥ α

and

νS([a1, . . . , an]) ≤ max{νS(a1), . . . , νS(an−1), νS(an)} ≤ β,

i.e. [a1, . . . , an−1, an] ∈ Cα,β(S). So Cα,β(S) is closed under the n-rack operation and thus

it is a n-semisubrack of R.

⇐) We proceed by contradiction. Assume S is not an intuitionistic fuzzy n-semisubrack of

R. So there are x1, . . . , xn ∈ R with either µS([x1, . . . , xn]) < min{µS(x1), . . . , µS(xn)} or

νS([x1, . . . , xn]) > max{νS(x1), . . . , νS(xn)}. Without loss of generality, consider the first

case. Then setting

α0 =
min{µS(x1), . . . , µS(xn)}+ µS([x1, . . . , xn])

2

yields to the compound inequality

0 ≤ µS([x1, . . . , xn]) < α0 ≤ min{µS(x1), . . . , µS(xn)} ≤ µS(xi)
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for all i = 1, . . . , n. Choose β0 ∈ [0, 1] such that α0 + β0 ≤ 1 and νS(xi) ≥ β0 for all

i = 1, . . . , n. Hence xi ∈ Cα0,β0(S) for all i = 1, . . . , n and [x1, . . . , xn] /∈ Cα0,β0(S). This

contradicts the fact that Cα0,β0
(S) is a n-semisubrack of R. The proof for the second case

is similar.

Definition 2.4. Let R be a n-rack. An intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈

R
}
in R is said to be an intuitionistic fuzzy n-subrack of R if for any x1, . . . , xn−1, y ∈ R,

i) µS(y) ≥ min{µS([x1, . . . , xn−1, y]), µS(x1), . . . , µS(xn−1)}

ii) νS(y) ≤ max{νS([x1, . . . , xn−1, y]), νS(x1), . . . , νS(xn−1)}

iii) µS(1) ≥ µS(x) and νS(1) ≤ νS(x) for all x ∈ R if the rack is pointed by 1.

Example 2.5. Consider the (t, s)−n-rack M of example 2.3 in [3] with n = 4, s = 1 , t = 0

and M = N. Then M is a 4-rack with rack operation [x1, x2, x3, x4] = x1 + x2 + x3. Define

on M the intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
by

µS(x) =

{
1
4 , if x is odd

0, if x is even
and νS(x) =

{
0, if x is odd
1
4 , if x is even

.

A case by case checking shows that S is an intuitionistic fuzzy 4-semisubrack. However, S

is not an intuitionistic fuzzy 4-subrack because for x1 = 1, x2 = 3, x3 = 5 and x4 = 2, we

have µS([x1, x2, x3, x4]) = µS(9) =
1
4 and so

µS(x4) = 0 < 1
4 = min{µS([x1, x2, x3, x4]), µS(x1), µS(x2), µS(x3)}.

Example 2.6. Consider the quandle (containing the dihedral rack D = {a, b, c} as a sub-

quandle) (R = {1, a, b, c}, ◦) whose Cayley table is given by:

◦ 1 a b c

1 1 a b c

a 1 a c b

b 1 c b a

c 1 b a c

It is easy to show that the intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
on R

defined by

µS(x) =

{
1
2 , if x = 1, a
1
8 , if x = b, c

and νS(x) =

{
1
2 , if x = 1, a
3
4 , if x = b, c

is an intuitionistic fuzzy subrack of R.

Theorem 2.7. [4] A n-semisubrack S of a pointed n-rack (R, [−, . . . ,−], 1) is a n-subrack

if and only if for all b ∈ R, [a1, a2, . . . , an−1, b] ∈ S and {ai}i=1,...,n−1 ⊆ S implies b ∈ S.

The following is a characterization of intuitionistic fuzzy n-subracks by means of (α, β)−
cut sets.

Proposition 2.8. Let R be a n-rack. The intuitionistic fuzzy set S =
{
〈x, µS(x), νS(x)〉 :

x ∈ R
}
is an intuitionistic fuzzy n-subrack of R if and only if for every α, β ∈ [0, 1] with

α+ β ≤ 1, the (α, β)− cut of S is a n-subrack of R when it is non empty.
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Proof. ⇒) Let α, β ∈ [0, 1]. Assume that Cα,β(S) �= 0 and let {ai}i=1,...,n−1 ⊆ Cα,β(S) with

[a1, . . . , an−1, b] ∈ Cα,β(S). Then µS([a1, . . . , an−1, b]) ≥ α, µS(ai) ≥ α and νS([a1, . . . , an−1, b]) ≤
β, νS(ai) ≤ β for i = 1, . . . , n − 1. Now as S is an intuitionistic fuzzy n-subrack of R, we

have

µS(b) ≥ min{µS([a1, . . . , an−1, b]), µS(a1), . . . , µS(an−1)} ≥ α

and

νS(b) ≤ max{νS([a1, . . . , an−1, b]), νS(a1), . . . , νS(an−1)} ≤ β,

i.e. b ∈ Cα,β(S). So Cα,β(S) is a n-subrack of R.

⇐) We proceed by contradiction. Assume S is not an intuitionistic fuzzy n-subrack of R.

So there are x0
1, . . . , x

0
n−1, y0 ∈ R with either

µS(y0) < min{µ([x0
1, . . . , x

0
n−1, y0]), µ(x

0
1), . . . , µ(x

0
n−1)}

or

νS(y0) > max{ν([x0
1, . . . , x

0
n−1, y0]), ν(x

0
1), . . . , ν(x

0
n−1)}.

Without loss of generality, consider the first case. Setting

α0 =
min{µS([x

0
1, . . . , x

0
n−1, y0]), µS(x

0
1), . . . , µS(x

0
n−1)}+ µS(y0)

2

yields to the compound inequality

0 ≤ µS(y0) < α0 ≤ min{µS([x
0
1, . . . , x

0
n−1, y0]), µS(x

0
1), . . . , µS(x

0
n−1)} ≤ µS(x

0
i ).

Choose β0 ∈ [0, 1] such that α0 + β0 ≤ 1 and νS(x
0
i ) ≥ β0 for all i = 1, . . . , n − 1. So

[x0
1, . . . , x

0
n−1, y0] ∈ Cα0,β0

(S), x0
i ∈ Cα0,β0

(S) for all i = 1, . . . , n − 1 and y0 /∈ Cα0,β0
(S).

This contradicts by theorem 2.7 the fact that Cα0,β0(S) is a n-subrack of R. The proof for

the second case is similar.

Remark 2.9. If R is an involutive n-subrack, one shows by theorem 2.7 that n-semisubracks

and n-subracks coincide. It follows by proposition 2.8 and proposition 2.3 that intuitionistic

fuzzy n-subracks and intuitionistic fuzzy n-semisubracks coincide in involutive n-racks (thus

in trivial n-racks).

Proposition 2.10. Let S be a n-subrack of R. Then S can be realized as a (α, β)− cut of

some intuitionistic fuzzy n-subrack of R.

Proof. Choose r, s ∈ [0, 1] with s < r. Consider the fuzzy set on R defined by

µS(x) =

{
r, if x ∈ S

s, else.
and νS(x) =

{
s, if x ∈ S

r, else.

We claim that the set S̃ =
{
〈x, µS , νS〉 : x ∈ R

}
is an intuitionistic fuzzy n-subrack of R.

In fact, a case by case checking shows that the inequalities

µS(xn) ≥ min{µS([x1, . . . , xn−1, xn]), µS(x1), . . . , µS(xn−1)} and

νS(xn) ≤ max{νS([x1, . . . , xn−1, xn]), νS(x1), . . . , νS(xn−1)} fail only if xn /∈ S, [x1, . . . , xn] ∈
S and xi ∈ S for all i = 1, . . . , n−1. But this can’t occur by theorem 2.7 as S is a n-subrack

of R. Moreover, it is clear that for any choice of α, β ∈ [0, 1] with α + β ≤ 1, α ≤ r and

β ≥ s, we have Cα,β(S̃) = S.
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Corollary 2.11. Let S be a n-subrack of R. For each α, β ∈ (0, 1] with α+ β ≤ 1, there is

an intuitionistic fuzzy n-subrack S̃ =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
of R with Cα,β(S̃) = S.

Proof. The result follows by the proof of Proposition 2.10.

3 Normal and Maximal Intuitionistic Fuzzy n-Subracks Throughout this section,

R denotes a pointed n-rack.

Definition 3.1. A normal intuitionistic fuzzy n-subrack of R is an intuitionistic fuzzy n-

subrack S =
{
〈x, µS(x), νS(x)〉 : x ∈ R

}
of R such that 1 ∈ (µ−1

S + ν−1
S )(1).

Proposition 3.2. Every intuitionistic fuzzy n-subrack of R can be embedded into a normal

intuitionistic fuzzy n-subrack of R.

Proof. Let S be an intuitionistic fuzzy n-subrack of R. If S is normal, there is nothing to

prove. Otherwise, let p, q ∈ [0, 1] such that µS(1) ≤ p, νS(1) ≥ q and p+ q = 1. Consider on

R the functions ζS and ζ ′S defined by ζS(x) = µS(x)−µS(1)+p and ζ ′S(x) = νS(x)−νS(1)+q.

Clearly, ζS and ζ ′S are well-defined, (ζS + ζ ′S)(1) = 1, ζS(x) ≥ µS(x) and ζ ′S(x) ≤ νS(x) for

all x ∈ R. Also, for x1, x2, . . . , xn ∈ R we have

ζS(xn) = µS(xn)− µS(1) + p

≥ min{µS([x1, . . . , xn]), µS(x1), . . . , µS(xn−1)} − µS(1) + p

≥ min{µS([x1, . . . , xn])− µS(1) + p, µS(x1)− µS(1) + p, . . . , µS(xn−1)− µS(1) + p}
≥ min{ζS([x1, . . . , xn]), ζS(x1), . . . , ζS(xn−1)},

ζ ′S(xn) = νS(xn)− νS(1) + q

≤ max{νS([x1, . . . , xn]), νS(x1), . . . , νS(xn−1)} − νS(1) + q

≤ max{νS([x1, . . . , xn])− νS(1) + q, νS(x1)− νS(1) + q, . . . , νS(xn−1)− νS(1) + q}
≤ max{ζ ′S([x1, . . . , xn]), ζ

′
S(x1), . . . , ζ

′
S(xn−1)},

and ζS(1) ≥ ζS(x) and ζ ′S(1) ≤ ζ ′S(x) for all x ∈ R since µS(1) ≥ µS(x) and νS(1) ≤ νS(x)

for all x ∈ R.

Hence the set
{
〈x, ζS(x), ζ ′S(x)〉 : x ∈ R

}
is a normal intuitionistic fuzzy n-subrack

containing S.

Definition 3.3. Let S1 and S2 be two intuitionistic fuzzy n-subracks of R. We say2 that

S1 ⊆ae S2 if the set
{
x ∈ R / µS1

(x) ≥ µS2
(x), νS1

(x) ≤ νS2
(x)

}
= {1}.

Remark 3.4. It is not hard to check that this relation is an order. Under this relation,

the intuitionistic fuzzy set
{
〈x, ζS(x), ζ ′S(x)〉 : x ∈ R

}
above in the proof of proposition

3.2 is the smallest normal intuitionistic fuzzy n-subrack of R containing S. Denote it S̄ ={
〈x, µ̄S(x), ν̄S(x)〉 : x ∈ R

}
.

Definition 3.5. When p = 1
2 and q = 1

2 , S̄ is called the normal closure of S.

Definition 3.6. A non constant intuitionistic fuzzy n-subrack of R is said to be maximal

if its normal closure is maximal among normal intuitionistic fuzzy n-subracks of R.

Theorem 3.7. Every maximal intuitionistic fuzzy n-subrack of R is normal.

2Read S1 ⊆ae S2 as “S1 ⊆ S2” almost everywhere
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Proof. Let S be a maximal intuitionistic fuzzy n-subrack of R. If µS(1)+ νS(1) = 1, then S

is normal and S = S̄. Assume µS(1)+ νS(1) �= 1 and define an intuitionistic fuzzy set S0 on

R by S0 =
{
〈x, ζS0

(x), ζ ′S0
(x)〉 : x ∈ R

}
with ζS0

(x) = µS(x)+µS(1)
2 and ζ ′S0

(x) = νS(x)+νS(1)
2 .

Clearly, S0 is an intuitionistic fuzzy n-subrack of R since for x1, x2, . . . , xn ∈ R we have

ζS0
(xn) =

µS(xn) + µS(1)

2

≥
min

{
µS([x1, . . . , xn]), µS(x1), . . . , µS(xn−1)

}
+ µS(1)

2

≥ min
{µS([x1, . . . , xn]) + µS(1)

2
,
µS(x1) + µS(1)

2
, . . . ,

µS(xn−1) + µS(1)

2

}

≥ min
{
ζS0

([x1, . . . , xn]), ζS0
(x1), . . . , ζS0

(xn−1)
}
,

ζ ′S0
(xn) =

νS(xn) + νS(1)

2

≤
max

{
νS([x1, . . . , xn]), νS(x1), . . . , νS(xn−1)

}
+ νS(1)

2

≤ max
{νS([x1, . . . , xn]) + νS(1)

2
,
νS(x1) + νS(1)

2
, . . . ,

νS(xn−1) + νS(1)

2

}

≤ max
{
ζ ′S0

([x1, . . . , xn]), ζ
′
S0
(x1), . . . , ζ

′
S0
(xn−1)

}
.

and ζS0
(1) ≥ ζS0

(x) and ζ ′S0
(1) ≤ ζ ′S0

(x) for all x ∈ R since µS(1) ≥ µS(x) and νS(1) ≤
νS(x) for all x ∈ R. Moreover, ζS0

(1) = µS(1), ζ
′
S0
(1) = νS(1) and µS(x0) < µS(1) and

νS(x0) > νS(1) for some x0 ∈ R as S is non constant. Let S̄0 =
{
〈x, ζ̄S0

(x), ζ̄ ′S0
(x)〉 : x ∈ R

}
be the normal closure of S0. Then

ζ̄S0
(x0) = ζS0

(x0)− ζS0
(1) +

1

2
= ζS0

(x0)− µS(1) +
1

2
> µS(x0)− µS(1) +

1

2
= µ̄S(x0)

and

ζ̄ ′S0
(x0) = ζ ′S0

(x0)− ζ ′S0
(1) +

1

2
= ζ ′S0

(x0)− νS(1) +
1

2
< νS(x0)− νS(1) +

1

2
= ν̄S(x0).

This contradicts the maximality of S̄ among the normal intuitionistic fuzzy n-subracks of

R. Hence µS(1) + νS(1) = 1 and S is normal.

Theorem 3.8. If S is a maximal intuitionistic fuzzy n-subrack of R, then

Im(µs + νS) = {0, 1}.

Proof. Assume S is a maximal intuitionistic fuzzy n-subrack of R. Then µS(1) + νS(1) = 1

and S = S̄ by theorem 3.7. Now let x ∈ R with 0 < µS(x) + νS(x) < 1. Define an

intuitionistic fuzzy set S0 on R by S0 =
{
〈x, ζS0

(x), ζ ′S0
(x)〉 : x ∈ R

}
with ζS0

(x) =
µS(x)+ 1

2

2

and ζ ′S0
(x) =

νS(x)+ 1
2

2 . Clearly, S0 is an intuitionistic fuzzy n-subrack of R by the proof of

theorem 3.7. Moreover S0 is normal as S is normal. In addition, ζ̄S0
(x) = ζS0

(x) > µS(x) =

µ̄S(x) since 0 < µS(x) < 1
2 for all x ∈ R, and ζ̄ ′S0

(x) = ζ ′S0
(x) < νS(x) = ν̄S(x) since

νS(x) >
1
2 for all x ∈ R. Thus S̄ ⊆ae S̄0 because the set

{
x ∈ R / ζ̄S0

(x) ≥ µ̄S2
(x), ζ̄ ′S0

(x) ≤
ν̄S2

(x)
}
�= {1}. This contradicts the maximality of S̄ among the normal intuitionistic fuzzy

n-subracks of R. Hence µS(1) + νS(1) = 0 or µS(1) + νS(1) = 1.
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Fixed points of multifunctions on COTS

with end points ∗

Devender Kumar Kamboj, Vinod Kumar, Satbir Singh

Abstract. We prove that if F and G are multifunctions from X to Y , with connected
values, where X is connected, Y a space admitting a continuous bijection to a connected
space Z with endpoints, and Z is T0 whenever |Z| = 2 such that both F, G are either
upper semicontinuous with compact values, or, are lower semicontinuous with one of F
and G onto, then F (w)∩G(w) �= ∅ for some w ∈ X. We proved that if a multifunction
F on a connected space X with endpoints such that X is T0 whenever |X| = 2, has a
connected multigraph, then there exists some w ∈ X such that w ∈ F (w).

1 Introduction COTS (=connected ordered topological space), defined by Khalim-
sky, Kopperman and Meyer [6], is an integral part of any study of cut points. Topological
spaces are assumed to be connected for any consideration of cut points. By Theorem 2.7
of [6], there are two total orders (or linear orders) on every COTS and each of these orders
is the reverse of the other. A COTS can have at most two endpoints [6, Proposition 2.5].
A set with a total order has a topology called interval topology. A topological space is a
LOTS (=linearly ordered topological space) if its topology equals some interval topology.
Multifunctions are considered on LOTS by Park in [8]. The main result (Theorem 1) of Park
[8] about fixed point requires the space to be a connected LOTS having two end points. It
can be seen that every LOTS is Hausdorff (without assuming it to be connected). As noted
in Proposition 2.9 of [6], the topology of a T1 COTS is finer than the interval topology given
by any of its two orders, so a COTS need not be a LOTS. The concept of COTS does not
require any separation axiom. In view of the applications of cut points (see e.g. [6]) and
the fact that the many connected topological spaces used for cut points like the Khalimsky
line, are not T1, the assumption of separation axioms is avoided as far as possible. There
is the concept of strong cut points for connected topological spaces. Without assuming cut
points to be strong cut points, a topological space with endpoints is defined in [2]. Since by
Theorem 3.4 of [2], H(i) connected topological spaces have at least two non-cut points, it
follows from Remark 4.5 of [2] that such topological spaces with at most two non-cut points
turn out to be COTS with endpoints. It is shown in [3] that a connected topological space
with endpoints is a COTS with endpoints. It is proved in [4] that a connected topological
space is a COTS with endpoints iff it admits a continuous bijection onto a topological space
with endpoints. In [4] and [5] there are obtained several classes of connected topological
spaces where the members are COTS with endpoints. In this paper, we study multifunction
on COTS with endpoints.

Notation, definitions and preliminaries are given in Section 2. The main results of the
paper appear in Section 3. In Section 3, we prove that if F and G are multifunctions from
X to Y , with connected values, where X is connected, Y a space admitting a continuous
bijection to a connected space Z with endpoints and Z is T0 whenever |Z| = 2 has only two
points such that both F, G are either upper semicontinuous with compact values, or, are
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lower semicontinuous with one of F and G onto, then F (w) ∩ G(w) �= ∅ for some w ∈ X.
It is proved that if, for a connected space X with endpoints such that X is T0 whenever
|X| = 2, F is a multifunction from X to X with connected multigraph, then there exists
some w ∈ X such that w ∈ F (w). This gives a sort of fixed point theorem. Some results
are obtained in the presence of a connected space with endpoints and/or multifunctions.

2 Notation, definitions and preliminaries Some of the standard notation and
definitions have been included here for completeness sake. Let X be a space. X is called
T1/2([6]) if every singleton set is either open or closed. Let Δ = {(x, x) : x ∈ X} and
Δ(O) = {(x, x) : x ∈ X, {x} is open in X}. Let A ⊂ X. For K ⊂ X, if need be, A+K is
used for the set A ∪ K, and A−K for the set A − K. If X is disconnected, a separation of
X is denoted by A|B, and each one of A and B is a called a separating set of X. If A is a
separating set of X and K ⊂ X is connected, if need be, we write A(K) for A if K ⊂ A,
and A(−K) for A if K ⊂ X − A. If K = {x} for some x ∈ X, then A+x, A−x, A(x) and
A(−x) are respectively used for A+K , A−K , A(K) and A(−K). For x ∈ X, if the depen-
dence of a separation A|B of X−x on x is to be specified, then A|B is denoted by Ax|Bx.
Let x ∈ X. x is called a cut point of X if X−x is disconnected. x is called strong cut
point of X, if X−x has a separation with connected separating sets. ctX is used to denote
the set of all cut points of X. A space X is called COTS (=connected ordered topological
space) ([6]) if it is connected and has the property: if Y is a three-point subset of X, then
there is a point x in Y such that Y meets two connected components of X−x. Let X be
a space. Let a, b ∈ X. A point x ∈ X − {a, b}, is said to be a separating point between
a and b or x separates a and b if there exists a separation A|B of X−x with a ∈ A and
b ∈ B. S(a, b) is used to denote the set of all separating points between a and b. Clearly
S(a, b) ⊂ ctX. If we adjoin the points a and b to S(a, b), then the new set is denoted
by S[a, b]. A space X is called a space with endpoints if there exist a and b ∈ X such that
X = S[a, b]. For x ∈ S(a, b), we shall write X−x = A(a)∪B(b) for a separation A|B of X−x.

For spaces X and Y , a multifunction ([7]) from X to Y is a function F from X to P (Y )
(= the set of all subsets of Y ) with F (x) �= ∅ for every x ∈ X, (written as F : X-◦Y ).
Let F : X-◦Y be a multifunction. F has compact (connected) values if F (x) is com-
pact (connected) for every x ∈ X. For V ⊂ Y, F⊂(V ) (resp. F∩(V )) denotes the set
{x ∈ X : F (x) ⊂ V } (resp. {x ∈ X : F (x) ∩ V �= ∅}). For A ⊂ X, F (A) denotes the
subset ∪{F (x) : x ∈ A} of Y . For a subset A of X, multigraph of F over A is the subset
{(x, y) ∈ X × Y : x ∈ A, y ∈ F (x)} =

⋃{{x} × F (x) : x ∈ A}, it is denoted by mgrA, or
F -mgrA(F -mgrA(Y )) if the dependence on F (F and Y ) is to be specified; multigraph of
F over X is called the multigraph of F . F is said to be lower (resp upper) semicontinuous
([7]) if for each open (resp. closed) set V of Y , the set F∩(V ) is open (resp. closed) in X. F
is called a connectivity multifunction ([8]) if its multigraph over each connected subset of X
is a connected set. F is called closed ([8]) if multigraph of F is closed in X × Y ; F is called
compact ([8]) if clY (F (X)) is a compact subset of Y . For sets X and Y , let p1 : X×Y → X,
and p2 : X × Y → Y be the projection maps. Let T ⊂ X × Y . For a multifunction F from
X to Z (resp. G from Y to Z), F 1 (resp. G2) denotes the multifunction F ◦ p1 from T to
Z (resp. G ◦ p2 from T to Z).

For a set X, a multifunction F from X to X is called a multifunction on X. A multi-
function F on X is said to have a fixed point if there exists some w ∈ X such that w ∈ F (w).
The multifunction on X taking x ∈ X to {x} is denoted by iX .

Remark 2.1 Let F be multifunction from X to Y . (i) For A ⊂ Y, F∩({A}) =
⋃{F∩({y}) :

y ∈ A}. (ii) For A ⊂ X, p2(F -mgrA) = F (A).
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Let h : Y → Z. Define hp : P (Y ) → P (Z) as hp(A) = h(A) for A ∈ P (Y ). Let F be a
multifunction from X to Y . hp ◦ F is a multifunction from X to Z.
Let X, Y and Z be spaces. Let F be a multifunction from X to Y and G a multifunction
from X to Z. For x ∈ X, if we define (F×G)(x) = F (x)×G(x)(∈ P (Y )×P (Z) ⊂ P (Y ×Z)),
then F × G is a multifunction from X to Y × Z.

Let F and G be multifunctions from X to Y . (hp ◦ F ) × (hp ◦ G) : X → P (Z × Z).
The following lemma is a modified version of some results (i.e., Theorems 7.3.12, 7.3.14 and
7.4.4) of [7] in our notation.

Lemma 2.2 Let X, Y and Z be spaces. For a function h : Y → Z and multifunctions F, G
from X into Y , let H = (hp ◦ F ) × (hp ◦ G). Let h be continuous.
(a) If F, G are lower semicontinuous, then F × G and H are lower semicontinuous.
(b) If F and G are upper semicontinuous with compact values, then F ×G and H are upper
semicontinuous with compact values.
(c) Let F and G be with connected values. Then H has connected values.

Let X and Y be spaces and T a subset of X × Y . For x ∈ X, let Tm(x) = {y ∈ Y : (x, y) ∈
T}. Tm(x) may not be non-empty for every x ∈ X. For Tm to be a multifunction, Tm(x)
should be non-empty for every x ∈ X. For this we may consider only those x ∈ X such that
(x, y) ∈ T for some y ∈ Y . Let XT = p1(T ) = {x ∈ X : (x, y) ∈ T for some y ∈ Y }. Then
Tm is a multifunction from XT to Y and T ⊂ XT × Y . In order that concepts concerning
a multifunction make sense for Tm, we need to consider XT in place of X. For y ∈ Y , let
Ty = {x ∈ X : (x, y) ∈ T}. Let YT = p2(T ) = {y ∈ Y : (x, y) ∈ T for some x ∈ X}. Note
that T ⊂ XT × YT .

Lemma 2.3 Let X, Y be two spaces, and let T be a subset of X × Y .
(a) If T is closed in XT × Y , then for every compact subset A of XT , Tm(A) is a closed
subset of Y .
(b) If T is closed in XT × Y , then Tm∩(B) is closed in XT for every compact subset B of
Y .

Now we note that every multifunction is of the form Tm. Let F be a multifunction from
X to Y . Let TF = F -mgrX = {(x, y) : x ∈ X, y ∈ F (x)}. Let x ∈ X. Since F (x) �= ∅,
(TF )m is a multifunction from X to Y .

Remark 2.4 (a) F = (TF )m.
(b) p2(TF ) = F (X).

Proof. (a) Let x ∈ X. For y ∈ Y, y ∈ (TF )m(x) iff (x, y) ∈ TF , i.e iff y ∈ F (x).
(b) Since TF = F -mgrX, by Remark 2.1(ii), p2(TF ) = F (X).

We note the following before the next observation.
Let F be a multifunction from X to Y . For F (X) ⊂ Z ⊂ Y , F is a multifunction from X
to Z, and F -mgrX(Y ) = F -mgrX(Z).

Lemma 2.5 For spaces X and Y , with X connected, let F be a multifunction from X to
Y with connected values. Then the multigraph of F is connected if one of the following
conditions hold:
(i) F is a connectivity multifunction.
(ii) F is lower semicontinuous.
(iii) F is upper semicontinuous with compact values.
(iv) F∩({y}) is open in X for y ∈ Y .
(v) F is a closed compact multifunction.
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Proof. (i) Since F is a connectivity multifunction and X is connected, F has connected
multigraph.
(ii) and (iii). By Theorem 3.2 of [1], multigraph of F is connected.
(iv) By Remark 2.1(i), (iv)⇒(ii).
(v) Let Z = clY (F (X)), F be a compact multifunction form X to Z. Since TF = F -
mgrX, TF is closed. Now by Lemma 2.3(b) and Remark 2.4(a), F is upper semicontinuous.
By (a) of Lemma 2.3, F has compact values. Now by (iii), multigraph of F is connected.

3 Connected spaces with endpoints and Multifunctions Let X be a set with
a total order < on it. For x ∈ X, let L(x) = {y ∈ X : y < x}, U(x) = {y ∈ X : x < y} [6].
Let L = {(s, t) ∈ X × X : t < s} and U = {(s, t) ∈ X × X : s < t}. Then it can be seen
that L =

⋃{{s} × L(s) : s ∈ X} =
⋃{U(s) × {s} : s ∈ X} and U =

⋃{{s} × U(s) : s ∈
X} =

⋃{L(s) × {s} : s ∈ X}.

We denote the cardinality of a set X by |X|.
Lemma 3.1 Let X be a COTS such that X is T0 whenever |X| = 2. Then U ∪ Δ(O) and
L ∪ Δ(O) are open in X × X.

Proof. Case (i): |X| = 2, i.e., X has only two points. Since X is a connected non-indiscrete
space, it follows that X = {s, t}, with a Sierpinski topology, say {∅, {t}, X} and s < t. Then
U ∪ Δ(O) = X × {t}, which is open in X × X. That L ∪ Δ(O) is open is proved similarly.

Case (ii): |X| > 2, i.e., X has at least three points. Let (s, t) ∈ U ∪ Δ(O). Then X is
T1/2 by Proposition 2.9 of [6]. Now if {s} and {t} are open in X, then {(s, t)} = {s} × {t}
is open in X ×X. If {s} is open and {t} is closed, using Theorem 2.7 and Lemma 2.8 of [6],
{s} × (U(s))+s is open in X × X and (s, t) ∈ {s} × (U(s))+s ⊂ U ∪ Δ(O). If {s} is closed
and {t} is open, using Theorem 2.7 and Lemma 2.8 of [6], (L(t))+t × {t} is open in X × X
and (s, t) ∈ (L(t))+t × {t} ∈ U ∪ Δ(O). In the case when {s} and {t} are closed, there is
some point y of X such that s < y < t by Lemma 2.8(b) and (c) of [6]. Since {y} is either
open or closed in X, by Theorem 2.7 and Lemma 2.8 of [6], either (U(y))+y and (L(y))+y

or U(y) and L(y) are open in X. So either (L(y))+y × (U(y))+y or L(y) × U(y) is open in
X × X and (s, t) ∈ L(y) × U(y) ⊂ (L(y))+y × (U(y))+y ⊂ U ∪ Δ(O). Thus U ∪ Δ(O) is
open in X ×X. Since, in a COTS there are two total orders and each of these orders is the
reverse of the other, L ∪ Δ(O) is open in X × X.

Theorem 3.2 For two multifunctions F, G from a space X to a connected space Y with
endpoints such that Y is T0 whenever |Y | = 2, one of which is onto, if either (F × G)(X)
is connected or F × G has a connected multigraph, then there exists some w ∈ X such that
F (w) ∩ G(w) �= ∅.
Proof. In view of Remark 2.4(b), we prove the result by contradiction under the assumption
that (F × G)(X) is connected. Suppose not; then F (w) ∩ G(w) = ∅ for every w ∈ X. By
the given condition Y is a space with endpoints, so Y = S[a, b]. Let H = F × G. Since,
by Theorem 3.2 of [3], Y is a COTS with end points a and b (with a < b),H(X) ⊂ L ∪ U
in Y × Y . So (L ∪ Δ(O)) ∩ H(X) = L ∩ H(X) and (U ∪ Δ(O)) ∩ H(X) = U ∩ H(X).
Using Lemma 3.1, L ∪ Δ(O) and U ∪ Δ(O) are open in Y × Y . By given condition, either
F (X) = Y or G(X) = Y . First assume that F (X) = Y . Then we pick xa, xb ∈ X such
that a ∈ F (xa) and b ∈ F (xb). Let ya ∈ G(xa) and yb ∈ G(xb). Since F (xa) ∩ G(xa) = ∅,
so a < ya. Similarly yb < b. This implies that (a, ya) ∈ U ∩ H(X) and (b, yb) ∈ L ∩ H(X).
Thus we get a separation of H(X) as L∩H(X) and U ∩H(X) are disjoint non-empty open
subsets of H(X). This gives a contradiction as H(X) is connected by Remark 2.4(b). Thus
F (X) �= Y . Similarly we have G(X) �= Y . This leads to again a contradiction to the given
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condition. The proof is complete.

Theorem 1 of [8] gives a sort of fixed point theorem for a multifunction on a connected
LOTS with two end points. Every connected LOTS with end points is a connected space
with endpoints, but the converse need not be true. The following theorem and corollary
are about a connected space with endpoints; so they strengthen Theorems 1 and 2 of [8]
respectively.

Theorem 3.3 Let X be a connected space with endpoints such that X is T0 whenever |X| =
2. Let F be a multifunction on X with connected multigraph. Then there exists some w ∈ X
such that w ∈ F (w).

Proof. The theorem follows by taking X = Y and G(x) = {x} for x ∈ X in Theorem 3.2.

Corollary 3.4 Let X be a connected space with endpoints such that X is T0 whenever
|X| = 2. Let F be a multifunction on X with connected values. Then there exists some
w ∈ X such that w ∈ F (w), if one of the following conditions hold:

(i) F is a connectivity multifunction.
(ii) F is lower semicontinuous.
(iii) F is upper semicontinuous with compact values.
(iv) F∩(y) is open in X for y ∈ X.
(v) F is a closed compact multifunction.

Proof. The result follows by Lemma 2.5 and Theorem 3.3.

The following two theorems respectively strengthen Theorems 2.1 and 2.2 of [9] because
here [0, 1] is replaced by a connected space with endpoints (with no separation axioms as-
sumed).

Theorem 3.5 Let X be a connected space and Y be a space admitting a continuous bijection
to a connected space Z with endpoints such that Z is T0 whenever |Z| = 2. Let F, G be two
multifunctions from X to Y , with connected values and one of which is onto. Assume that
both F and G are either upper semicontinuous with compact values, or lower semicontinuous.
Then there exists some w ∈ X such that F (w) ∩ G(w) �= ∅.
Proof. By the given condition we have a connected space Z with endpoints, say a and b
and a one-one, onto and continuous function h : Y → Z. Let H = (hp ◦ F ) × (hp ◦ G). By
Lemmas 2.2 and 2.5, multigraph of H is connected. Now by Theorem 3.2, there exists some
w ∈ X such that h(F (w))∩h(G(w)) �= ∅. This implies that F (w)∩G(w) �= ∅ as h is one-one.

Below we have some results in which we assume a subset of a product space of two spaces to
be connected. It may be added that Theorem 2.5 of [9] is handy to know the connectedness
of a given set in a product space.

Theorem 3.6 Let X, Y be two spaces, with Y admitting a continuous bijection to a con-
nected space Z with endpoints such that Z is T0 whenever |Z| = 2, and let T be a connected
subset of X × Y . Let Φ be a multifunction from X to Y , with connected values. Assume
that Φ is either upper semicontinuous with compact values, or lower semicontinuous.

(i) If YT = Y or Φ(XT ) = Y , then T ∩ (Φ-mgrX) �= ∅.
(ii) If XT = X and Φ is onto, then T ∩ (Φ-mgrX) �= ∅.

Proof. (i) F = (iY )2(= iY ◦ p2) and G = Φ1(= Φ ◦ p1) are multifunctions from T to Y . So
using the given condition, F and G are either upper semicontinuous with compact values, or
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lower semicontinuous. Also F and G have connected values and so by the given condition,
one of F and G is onto. Now by applying Theorem 3.5 to F and G, the result follows.

(ii) It follows from the assumption of (ii) that the hypothesis Φ(XT ) = Y of (i) is satisfied.

The following particular case of theorem 3.6 is about fixed point of a multifunction.

Corollary 3.7 Let X be a space admitting a continuous bijection to a connected space Z
with endpoints such that Z is T0 whenever |Z| = 2. Let Φ be a multifunction from X to X,
with connected values. Assume that Φ is either upper semicontinuous with compact values,
or lower semicontinuous. If Δ is a connected set of X × X, then there exists some x0 ∈ X
such that x0 ∈ Φ(x0).

Proof. Since XΔ = X, the result follows by taking Y = X and T = Δ in Theorem 3.6.
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Abstract.

We discuss the idea of peripheral spectrum and related concepts such as Maximum
modulus set, peak sets etc. for a function algebra. We study the interrelation of them.
We further study these concepts for the Cartesian product A × B of two function
algebras.

1 Introduction The spectrum of an element of a Banach algebra unveils the algebraic
structure of the Banach algebras. However, sometimes a subset, the peripheral spectrum of
the spectrum suffices for the purpose. This concept was introduced in [1].

We shall assume throughout that A is a function algebra on a compact Hausdorff
space X.

Definition 1.1 Let A be a function algebra on X. For f ∈ A, the peripheral spectrum is
the set, σπ(f) = σ(f) ∩ {z ∈ C : |z| = ‖f‖}, where σ(f) is the spectrum of f , and the set
{z ∈ C : |z| = ‖f‖} is the circle centered at origin and having radius ‖f‖, denoted by Γ‖f‖.

To emphasize on the algebra we denote the peripheral spectrum with respect to algebra
A by σπA

(f).

Remarks 1.2 (1) σπ(f) is a nonempty compact subset of σ(f).
(2) The concept of peripheral spectrum can be defined for any Banach algebra. However, it
is non-empty only if the spectral radius r(f) equals the norm ‖f‖.
e.g. Take A = C1[0, 1] with norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞ and f(t) = t, t ∈ [0, 1].

2 Peripheral spectrum and peaking functions We have studied certain prop-
erties for the Cartesian product of two function algebras [2]. Let A and B be func-
tion algebras on X and Y respectively. Then A × B with coordinatewise operations and
‖(f, g)‖ = max{‖f‖∞, ‖g‖∞} is a function algebra on X + Y . It was proved in general set-
ting [3], that σ((f, g)) = σ(f) ∪ σ(g), ∀f ∈ A, g ∈ B. Here we discuss peripheral spectrum
and related concepts for A × B.

Theorem 2.1 For h = (f, g) ∈ A × B,
(a) σπA×B

(h) ⊂ σπA
(f) ∪ σπB

(g)
(b) σπA×B (h) = σπA(f) ∪ σπB (g) iff ‖f‖ = ‖g‖

(c) σπA×B (h) =
{

σπA(f), if ‖f‖ > ‖g‖;
σπB

(g), if ‖f‖ < ‖g‖.
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lower semicontinuous. Also F and G have connected values and so by the given condition,
one of F and G is onto. Now by applying Theorem 3.5 to F and G, the result follows.

(ii) It follows from the assumption of (ii) that the hypothesis Φ(XT ) = Y of (i) is satisfied.

The following particular case of theorem 3.6 is about fixed point of a multifunction.

Corollary 3.7 Let X be a space admitting a continuous bijection to a connected space Z
with endpoints such that Z is T0 whenever |Z| = 2. Let Φ be a multifunction from X to X,
with connected values. Assume that Φ is either upper semicontinuous with compact values,
or lower semicontinuous. If Δ is a connected set of X × X, then there exists some x0 ∈ X
such that x0 ∈ Φ(x0).

Proof. Since XΔ = X, the result follows by taking Y = X and T = Δ in Theorem 3.6.
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Proof. (a) Let λ ∈ σπA×B
(h). Now

σπA×B (h) = σA×B((f, g)) ∩ {z ∈ C : |z| = ‖(f, g)‖}
= [σA(f) ∪ σB(g)] ∩ {z ∈ C : |z| = ‖(f, g)‖}

Then λ ∈ σA(f) or λ ∈ σB(g). Also |λ| = ‖f‖ or |λ| = ‖g‖ or |λ| = ‖f‖ = ‖g‖. Sup-
pose λ ∈ σA(f) and ‖(f, g)‖ = ‖f‖. Then clearly λ ∈ σπA

(f). If ‖(f, g)‖ = ‖g‖, then
|λ| = ‖g‖ ≥ ‖f‖ and as λ ∈ σA(f), |λ| ≤ ‖f‖. So |λ| = ‖f‖. So λ ∈ σπA(f). Thus whenever
λ ∈ σA(f), λ ∈ σπA

(f).
Similarly, if λ ∈ σB(g), then λ ∈ σπB (g).
Thus λ ∈ σπA

(f) ∪ σπB
(g). Hence σπA×B

(h) ⊂ σπA
(f) ∪ σπB

(g).
(b) Now assume that σπA×B (h) = σπA(f) ∪ σπB (g). If λ ∈ σπA(f), then |λ| = ‖f‖ and also
|λ| = ‖h‖, as λ ∈ σπA×B

(h). So ‖f‖ = ‖h‖. Similarly, if λ ∈ σπB
(g), we get ‖g‖ = ‖h‖.

Thus ‖f‖ = ‖g‖.
Conversely, suppose ‖f‖ = ‖g‖. Then clearly ‖f‖ = ‖g‖ = ‖h‖. Now if λ ∈ σπA

(f),
then λ ∈ σA(f) and |λ| = ‖f‖. But then λ ∈ σA×B(h) with |λ| = ‖h‖. So λ ∈ σπA×B (h).
Hence σπA

(f) ⊂ σπA×B
(h).

Similarly, we get σπB (g) ⊂ σπA×B (h). Thus σπA(f)∪σπB (g) ⊂ σπA×B (h). Combining
with (a), we get σπA×B

(h) = σπA
(f) ∪ σπB

(g).
(c) Suppose ‖f‖ > ‖g‖. Then ‖h‖ = ‖f‖ > ‖g‖. So Γ‖f‖ = Γ‖h‖ = Γ (say). Now

σπA×B
(h) = σA×B(h) ∩ Γ

= [σA(f) ∪ σB(g)] ∩ Γ
= [σA(f) ∩ Γ] ∪ [σB(g) ∩ Γ]
= σπA

(f)

as σB(g) ∩ Γ = ∅, because ‖g‖ < ‖f‖ = ‖h‖.
Similarly, σπA×B

(h) = σπB
(g), if ‖f‖ < ‖g‖.

Definition 2.2 [1] Let A be a function algebra on a compact Hausdorff space X. Then for
f ∈ A, the peripheral range, RanπA

(f) is defined as,

RanπA
(f) = f(X) ∩ {z ∈ C : |z| = ‖f‖}

= f(X) ∩ Γ‖f‖,

where f(X) is the range of f .

Remarks 2.3 (1) Since σπA
(f) ⊂ bdσA(f) ⊂ f̂(∂A) = f(∂A) ⊂ f(X) for a function alge-

bra A on X, we have σπA
(f) = RanπA

(f), ∀f ∈ A [1], where ∂A is the Šilov boundary for A.
(2) Suppose A and B are function algebras on X with A ⊂ B. Then for f ∈ A, σB(f) ⊂ σA(f)
and the inclusion may be proper. However, by (1) above, σπB

(f) = σπA
(f), ∀f ∈ A.

Definition 2.4 [4] Let A be a function algebra on X and f ∈ A. The set of all x in X at
which f attains its maximum modulus is called the maximum modulus set and is denoted
by E(f), i.e.,

E(f) = {x ∈ X : |f(x)| = ‖f‖}.

Remark 2.5 It is clear from the Definitions 1.1 and 2.4 that E(f) = f−1(σπA(f)), for
f ∈ A.
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Theorem 2.6 For h = (f, g) ∈ A × B,
(a) E(h) ⊂ E(f) ∪ E(g)
(b) E(h) = E(f) ∪ E(g) iff ‖f‖ = ‖g‖

(c) E(h) =
{

E(f), if ‖f‖ > ‖g‖;
E(g), if ‖f‖ < ‖g‖.

Proof. (a) Let z0 ∈ E(h) = {z ∈ X + Y : |h(z)| = ‖h‖}. Then |h(z0)| = ‖h‖. If z0 ∈ X,
then h(z0) = f(z0). Therefore |f(z0)| = |h(z0)| = ‖h‖ ≤ ‖f‖ ≤ ‖h‖. Therefore we must
have |f(z0)| = ‖f‖. So z0 ∈ E(f).

Similarly, if z0 ∈ Y , then z0 ∈ E(g). Thus E(h) ⊂ E(f) ∪ E(g).
(b) Suppose that E(h) = E(f) ∪ E(g). Also assume that ‖f‖ > ‖g‖. Then ‖h‖ = ‖f‖. Let
y ∈ E(g). Then |h(y)| = |g(y)| = ‖g‖ < ‖h‖, i.e., y /∈ E(h) which is not possible. Therefore
we must have ‖f‖ = ‖g‖ = ‖h‖.

Conversely, suppose that ‖f‖ = ‖g‖ = ‖h‖ and let z0 ∈ E(f) ∪ E(g). If z0 ∈ E(f),
then z0 ∈ X ⊂ X + Y and |h(z0)| = |f(z0)| = ‖f‖ = ‖h‖, i.e., z0 ∈ E(h).

Similarly, if z0 ∈ E(g), then z0 ∈ E(h). Thus E(f) ∪ E(g) ⊂ E(h). Combining with
(a), we get E(h) = E(f) ∪ E(g).
(c) Suppose ‖f‖ > ‖g‖. Then ‖h‖ = ‖f‖. Let z0 ∈ E(h). Then if z0 ∈ Y , we get
‖h‖ = |h(z0)| = |g(z0)| ≤ ‖g‖ < ‖f‖ which is a contradiction. So we must have z0 ∈ X. So
z0 ∈ E(f). Thus E(h) ⊂ E(f).

Conversely, let z0 ∈ E(f). Then as above, we get E(f) ⊂ E(h). Hence E(f) = E(h).
Thus E(f) = E(h), if ‖f‖ > ‖g‖.

Similarly, E(h) = E(g), if ‖f‖ < ‖g‖.

Remark 2.7 Since E(f) = f−1(σπA(f)), we can prove Theorem 2.6 using Theorem 2.1,
directly also.

Definition 2.8 [4] Let A a function algebra on X. For x ∈ X define,

Ex(A) = {f ∈ A : |f(x)| = ‖f‖} = {f ∈ A : x ∈ E(f)}.

For a fixed f ∈ A and g ∈ B we define, Ag = {f ∈ A : ‖f‖ ≤ ‖g‖} and Bf = {g ∈ B : ‖g‖ ≤ ‖f‖}.

Theorem 2.9 For z ∈ X+Y , Ez(A×B) =
{ ⋃

{(f, g) : f ∈ Ez(A), g ∈ Bf}, if z ∈ X;⋃
{(f, g) : g ∈ Ez(B), f ∈ Ag}, if z ∈ Y .

Proof. Let h = (f, g) ∈ Ez(A × B). Then |h(z)| = ‖h‖. If z ∈ X, then h(z) = f(z). So
|f(z)| = |h(z)| = ‖h‖ = ‖f‖. Thus |f(z)| = ‖f‖. So f ∈ Ez(A) and ‖h‖ = ‖f‖ ≥ ‖g‖, i.e.,
g ∈ Bf . Thus Ez(A × B) ⊂

⋃
{(f, g) : f ∈ Ez(A), g ∈ Bf}.

Conversely, suppose that h = (f, g) ∈
⋃
{(f, g) : f ∈ Ez(A), g ∈ Bf}. Then

|f(z)| = ‖f‖ and ‖f‖ ≥ ‖g‖. Now |h(z)| = |f(z)| = ‖f‖ = ‖h‖. So h ∈ Ez(A × B). Thus
Ez(A × B) =

⋃
{(f, g) : f ∈ Ez(A), g ∈ Bf}.

Similarly, if z ∈ Y , then Ez(A × B) =
⋃
{(f, g) : g ∈ Ez(B), f ∈ Ag}.

Next we relate peaking function of A and B with that of A × B.

Definition 2.10 [1] Let A be a function algebra on X. An element f ∈ A is called a
peaking function for A if σπA(f) = {1}, i.e., ‖f‖ = 1 and |f(x)| < 1 whenever f(x) �= 1.

In this case, E(f) = {x ∈ X : f(x) = 1} = f−1{1} is called the peak set of f .
The set of all peaking functions in A is denoted by P(A).

In general, P(A×B) �= P(A)×P(B), as the following example shows. Let A = B = (C, |.|)
and h = (f, g) = (1, 1

2 ) ∈ A × B. Then σπA×B (h) = {1}. So h ∈ P(A × B) and
σπA

(f) = {1}, σπB
(g) = { 1

2}. Hence f ∈ P(A) but g /∈ P(B). So h /∈ P(A) × P(B).
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Hence P(A × B) �= P(A) × P(B).
Thus P(A × B) �⊂ P(A) × P(B). However, we get P(A × B) ⊃ P(A) × P(B)

from the following result.
Now let us denote UA = {f ∈ A : ‖f‖ ≤ 1}, SA = {f ∈ A : ‖f‖ = 1},

UB = {g ∈ B : ‖g‖ ≤ 1}, SB = {g ∈ B : ‖g‖ = 1}.

Theorem 2.11 P(A × B) = [P(A) × (UB \ SB)] ∪ [(UA \ SA) × P(B)] ∪ [P(A) × P(B)].

Proof. Let h = (f, g) ∈ P(A×B). Then σπA×B (h) = {1}, i.e., ‖h‖ = 1. If ‖f‖ > ‖g‖, then
‖f‖ = ‖h‖ = 1 and ‖g‖ < 1. Therefore g ∈ UB \ SB and σπA

(f) = {1}, by Theorem 2.1
(c), i.e., f ∈ P(A). Thus h ∈ P(A) × (UB \ SB).

If ‖f‖ < ‖g‖, then by similar argument we get h ∈ (UA \ SA) × P(B).
If ‖f‖ = ‖g‖, then also by similar argument we get h ∈ P(A) × P(B).
Thus P(A × B) ⊂ [P(A) × (UB \ SB)] ∪ [(UA \ SA) × P(B)] ∪ [P(A) × P(B)].
Conversely, let h ∈ [P(A) × (UB \ SB)] ∪ [(UA \ SA) × P(B)] ∪ [P(A) × P(B)].

Suppose h = (f, g) ∈ P(A) × (UB \ SB) with f ∈ P(A) and g ∈ (UB \ SB). Then
σπA(f) = {1}, i.e., ‖f‖ = 1 and ‖g‖ < 1. So ‖h‖ = 1. Thus ‖f‖ > ‖g‖. Then by Theorem
2.1 (c), σπA×B

(h) = {1}. So h ∈ P(A × B).
Similarly, if h ∈ (UA \ SA) × P(B), then also h ∈ P(A × B).
Suppose h = (f, g) ∈ P(A)×P(B). Then σπA

(f) = {1} = σπB
(g), i.e., ‖f‖ = ‖g‖ = 1.

Hence ‖h‖ = 1. Then by Theorem 2.1 (b), σπA×B (h) = {1}, i.e., h ∈ P(A × B).
Hence P(A × B) ⊃ [P(A) × (UB \ SB)] ∪ [(UA \ SA) × P(B)] ∪ [P(A) × P(B)]. Hence
the result.

Note that in above result the sets on right hand side are mutually disjoint.
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Abstract.

We discuss the idea of peripheral spectrum and related concepts such as Maximum
modulus set, peak sets etc. for a function algebra. We study the interrelation of them.
We further study these concepts for the Cartesian product A × B of two function
algebras.

1 Introduction The spectrum of an element of a Banach algebra unveils the algebraic
structure of the Banach algebras. However, sometimes a subset, the peripheral spectrum of
the spectrum suffices for the purpose. This concept was introduced in [1].

We shall assume throughout that A is a function algebra on a compact Hausdorff
space X.

Definition 1.1 Let A be a function algebra on X. For f ∈ A, the peripheral spectrum is
the set, σπ(f) = σ(f) ∩ {z ∈ C : |z| = ‖f‖}, where σ(f) is the spectrum of f , and the set
{z ∈ C : |z| = ‖f‖} is the circle centered at origin and having radius ‖f‖, denoted by Γ‖f‖.

To emphasize on the algebra we denote the peripheral spectrum with respect to algebra
A by σπA

(f).

Remarks 1.2 (1) σπ(f) is a nonempty compact subset of σ(f).
(2) The concept of peripheral spectrum can be defined for any Banach algebra. However, it
is non-empty only if the spectral radius r(f) equals the norm ‖f‖.
e.g. Take A = C1[0, 1] with norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞ and f(t) = t, t ∈ [0, 1].

2 Peripheral spectrum and peaking functions We have studied certain prop-
erties for the Cartesian product of two function algebras [2]. Let A and B be func-
tion algebras on X and Y respectively. Then A × B with coordinatewise operations and
‖(f, g)‖ = max{‖f‖∞, ‖g‖∞} is a function algebra on X + Y . It was proved in general set-
ting [3], that σ((f, g)) = σ(f) ∪ σ(g), ∀f ∈ A, g ∈ B. Here we discuss peripheral spectrum
and related concepts for A × B.

Theorem 2.1 For h = (f, g) ∈ A × B,
(a) σπA×B

(h) ⊂ σπA
(f) ∪ σπB

(g)
(b) σπA×B (h) = σπA(f) ∪ σπB (g) iff ‖f‖ = ‖g‖

(c) σπA×B (h) =
{

σπA(f), if ‖f‖ > ‖g‖;
σπB

(g), if ‖f‖ < ‖g‖.

2010 Mathematics Subject Classification. Primary 46J10.
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Abstract. We treat a zero-sum two-person game, what is called, a search game
between the hider and the seeker, in which there is a cost for searching a region. If the
seeker searches two regions, it is usual that the total cost for two regions is the sum of
each cost for a region. However, there may be a saving of the setup cost for the second
region when the seeker decides in advance two regions efficiently, and plans to change
from one region to another region efficiently. If we take into mind this kind of saving,
the cost may not be non-additive. In this paper, we analyze a search game when the
cost is not necessarily additive.

1 Introduction In this paper we treat a zero-sum two-person game, what is called, a
search game between the hider and the seeker. In a search game, there is a cost for searching
a region. If the seeker searches two regions, it is usual that the total cost for two regions is
the sum of each cost for a region. In this sense the cost is additive. It is possible to consider
that each search cost for a region includes a setup cost. It is likely, however, that there is a
saving of the setup cost for the second region when the seeker decides in advance two regions
efficiently, and plans to change from one region to another region efficiently. If we take into
mind this kind of saving, the cost may not be non-additive. In this paper, we analyze a
search game when the cost is not necessarily additive. [4] considers an additive search cost
but multiple objects. [2] constructs and analyzes another search game with non-additive
costs. There exists an extensive literature on search games. For example, see [1] and [3].

2 Model and properties. Let N = {1, . . . , n} be the set of boxes. Define a search game
on N . The hider chooses a box i ∈ N and hides an (immobile) object in that box. Without
knowing the hider’s choice, the seeker chooses an ordered partition S = {S1, . . . , Sk} of N ,
first inspects the set of boxes S1 , and he finds an object if i is in S1. If i is not in S1,
then he does not find and he inspects the set of boxes S2, and so on. We assume he finds
an object certainly (with probability 1) if he examines the right set of boxes. Associated
with an inspection of S ⊆ N is the inspection cost c(S). An interpretation of an inspection
of a set of boxes is as follows. The cost c({i}) for i ∈ N may include some setup cost for
beginning the search of the box i. If the searcher can save this setup cost by considering
a set of boxes and by devising the method of search, then the cost for a set of boxes could
be defined. Under this kind of consideration, it is reasonable to assume c(∅) = 0 and to
assume

c(S) + c(T ) ≥ c(S ∪ T ), ∀S, T ⊆ N,S, T ̸= ∅, S ∩ T = ∅,
c(S) ≥ c(T ) ≥ 0, ∀T ⊆ S ⊆ N,T ̸= ∅.

(1)

The first inequality in (1) says that there may be some saving in cost by considering a
search for the sets S and T simultaneously. The second is very usual.

2010 Mathematics Subject
Classification. Primary 90B40,91A05,91A12.
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The set of all ordered partitions of N is denoted by Σ which is the set of all strategies
for the seeker. The set of all strategies for the hider is N . When the hider and the seeker
use strategies i ∈ N and S = {S1, . . . , Sk} ∈ Σ, and if i ∈ Sj , 1 ≤ j ≤ k, the cost for the

seeker is f(i,S) =
∑j

ℓ=1 c(Sℓ). The hider wishes to maximize it and the seeker wishes to
minimize it by choosing i ∈ N and S ∈ Σ respectively. We have a two-person zero-sum
game Γ(N, c) which can be expressed by a finite matrix. A mixed strategy for the hider is
p = (p1, . . . , pn) which is a probability distribution over N where

∑
i∈N pi = 1, pi ≥ 0 for

all i ∈ N . We use the notation p(S) ≡
∑

i∈S pi and p|S ≡ {pi/p(S)} for all S ⊆ N . We
let p(∅) = 0. A mixed strategy for the seeker is a probability distribution over Σ, that is,
q = {q(S)}S∈Σ where

∑
S∈Σ q(S) = 1 and q(S) ≥ 0 for all S ∈ Σ. When the hider and the

seeker use strategies p, q, the expected cost is expressed as f(p, q).

Example 1.
In this example, for simplicity we restrict strategies for the seeker to ordered partitions

S = {S1, . . . , Sk} such that

i ∈ Sα, j ∈ Sβ , α < β =⇒ i < j.(2)

We assume that the hider knows this. Let n = 2. From (2) the strategies for the seeker
are1 S1 = {1, 2},S2 = {12}. The payoff matrix for the hider is

Table 1

S1 S2

1 c(1) c(12)
2 c(1) + c(2) c(12)

By (1), a pair of optimal strategies is (2,S2) and the value is c(12).

Let n = 3. The strategies for the seeker are S1 = {1, 2, 3},S2 = {12, 3},S3 = {1, 23},S4 =
{123}. The payoff matrix for the hider is

Table 2

S1 S2 S3 S4

1 c(1) c(12) c(1) c(123)
2 c(1) + c(2) c(12) c(1) + c(23) c(123)
3 c(1) + c(2) + c(3) c(12) + c(3) c(1) + c(23) c(123)

By (1), a pair of optimal strategies is (3,S4) and the value is c(123).

From the observation on n = 2, 3 in Example 1 we see easily a solution for n ≥ 2 as follows.

Proposition 2.1. Let n ≥ 2. Restrict the strategies for the seeker to ordered partitions
which satisfy (2). A pair of optimal strategies is (n, {N}) and the value is c(N). If f(n,S) >
c(N) for all S ∈ Σ \ {{N}} then it is unique.

Proof: For any S = {S1, . . . , Sk} which satisfies (2),

f(n,S) =
k∑

j=1

c(Sj) ≥ c(N),(3)

by (1). On the other hand, for any i ∈ N , it holds f(i, {N}) = c(N). So a strategy pair
(n, {N}) is a saddle point in the payoff matrix for the hider. Next assume that f(n,S) >

1For simplicity, we write {1}, {1, 2}, etc. as 1, 12, etc.
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c(N) for all S ∈ Σ \ {{N}}. Suppose (i, T ) is another saddle point. If i = n then T ̸= {N}
and f(n, T ) > c(N) = f(n, {N}) which contradicts the fact that (i, T ) is a saddle point. If
i ̸= n then f(i, T ) ≥ f(n, T ) > f(n, {N}) = f(i, {N}), which implies f(i, T ) > f(i, {N}),
contradicting the fact that (i, T ) is a saddle point. �

We can see the solution when the inspection cost is additive. This is an extreme case of
the cost function.

Proposition 2.2. Assume the inspection cost is additive, that is, it satisfies

(4) c(S) =
∑
i∈S

c(i), for all S ⊆ N.

An optimal strategy for the hider is

pi =
c(i)∑

j∈N c(j)
, ∀i ∈ N.(5)

An optimal strategy for the seeker is to choose at random an ordered partition from the set
Σ1 ≡ {{{π(1)}, . . . , {π(n)}} : π is a permutation on N}. The value of the game is

1∑
j∈N c(j)

n∑
i=1

i∑
j=1

c(i)c(j).(6)

Proof: For any S = {S1, . . . , Sk}, let Sj = {ij1, . . . , ijsj}, i
j
1 < . . . < ijsj for all j = 1, . . . , k.

Define S ′ by S ′ = {{i11}, . . . , {i1s1}, . . . , {i
j
1}, . . . , {ijsj}, . . . , {i

k
1}, . . . , {iksk}}. For any i ∈ N,

if i = ijt ∈ Sj , then

f(i,S) = c(S1) + . . .+ c(Sj−1) + c(Sj)

= c(S1) + . . .+ c(Sj−1) +

sj∑
ℓ=1

c(ijℓ)

≥ c(S1) + . . .+ c(Sj−1) +
t∑

ℓ=1

c(ijℓ) = f(i,S ′).

(7)

This implies that S is dominated by S ′. So the seeker chooses from the set Σ1. The hider
knows this, and if he takes p defined by (5), then f(p,S) equals to the quantity given in (6).
If the seeker takes q which means that he chooses from the set Σ1 at random, the expected
inspection cost f(i, q) is equals to the quantity given in (6) for all i ∈ N . �

In general, the inspection cost is not always additive. Suppose that p is a strategy for
the hider. Suppose the seeker can guess this strategy. Let

(8) Fp(N) ≡ min{f(p,S ′) : S ′ ∈ Σ}.

with Fp(∅) = 0. By the theory of dynamic programming, we have

(9) Fp(N) = min{c(S) + p(N \ S)Fp|N\S (N \ S) : S ⊆ N,S ̸= ∅},

where p|N\S is a posteriori probability distribution on N \S after the seeker searches S. As
an initial condition we have

(10) Fp({i}) = c({i}), ∀i ∈ N.
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If we can guess an optimal strategy for the hider, then by (9) and (10), we could calculate
a best reply of the seeker, as in the next example.

Example 2. Assume that the inspection cost depends on the number of boxes in the
set,that is,

(11) c(S) = C(|S|), ∀S ⊆ N,

where C(•) is a function on {0, 1, . . . , n}. From (1), C(•) satisfies

C(s) + C(t) ≥ C(s+ t), ∀s, t : s+ t ≤ n,

C(s) ≥ C(t), ∀s, t : n ≥ s ≥ t ≥ 0.
(12)

Then an optimal strategy for the hider is pe ≡ ( 1n , . . . ,
1
n ). We write as F (s) ≡ Fpe(S) for

all S ⊆ N such that |S| = s, since F depends only on the number of elements in S for every
S ⊆ N . The equations (9) and (10) become

F (n) = min{C(s) +
n− s

n
F (n− s) : 1 ≤ s ≤ n},

F (1) = C(1), F (0) = 0.
(13)

Let G(s) ≡ sF (s) for 1 ≤ s ≤ n. Then (13) becomes

G(n) = min{nC(s) +G(n− s) : 1 ≤ s ≤ n}, G(1) = C(1), G(0) = 0.(14)

Case 1. C(s) =
√
s. By (14), we see

G(n) =

{
n
√
n, if 1 ≤ n ≤ 3; (s = n)

n
√
n− 1 + 1, if 4 ≤ n ≤ 11. (s = n− 1)

(15)

For n ≥ 12 we could calculate sequentially by (14).

Case 2. C(s) = log (s+ 1). By (14), G(n) = n logn+ log 2 for 1 ≤ n ≤ 5, by s = n− 1.

3 A search game with strictly monotonic cost function. In this section we analyze
an optimal strategy for the hider when the costs are strictly monotonic with respect to
inclusion relation.

Proposition 3.1. For i ∈ N , assume the inspection cost satisfies

c(S) > c(S \ {i}), for all S such that i ∈ S.(16)

Let p be an optimal strategy for the hider. Then pi > 0.

Proof: Assume that the inspection cost satisfies (16) but pi = 0. Let S = {S1, . . . , Sk} be
a best reply to p. Suppose i ∈ Sj . Let S ′ = {S1, . . . , Sj−1, Sj \{i}, Sj+1, . . . , Sk, {i}}. Since
S is a best reply, we have

0 ≥ f(p,S)− f(p,S ′) = [c(Sj)− c(Sj \ {i})][p(Sj \ {i}) +
k∑

ℓ=j+1

p(Sℓ)],(17)
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while, by (16), c(Sj)− c(Sj \ {i}) > 0. This and (17) imply p(Sj \ {i})+
∑k

ℓ=j+1 p(Sℓ) = 0.
This implies p(Sj) = p(Sj+1) = . . . = p(Sk) = 0. Define p′ by

p′x =




px − ε, if px > 0;

px, if x ̸= i, px = 0;

κε, if x = i,

(18)

where κ ≡ |X| and X ≡ {x : px > 0}. We note X ⊂ S1 ∪ · · · ∪ Sj−1, p
′(Sj) = κε and

p′(Sj+1) = . . . = p′(Sk) = 0.

f(p′,S) =
k∑

ℓ=1

p′(Sℓ)
ℓ∑

m=1

c(Sm)

=

j−1∑
ℓ=1

[p(Sℓ)− |Sℓ ∩X|ε]
ℓ∑

m=1

c(Sm) + κε[

j−1∑
m=1

c(Sm) + c(Sj)]

=

j−1∑
ℓ=1

p(Sℓ)
ℓ∑

m=1

c(Sm)

+ ε[κ

j−1∑
m=1

c(Sm) + κc(Sj)−
j−1∑
ℓ=1

|Sℓ ∩X|
ℓ∑

m=1

c(Sm)]

=

j−1∑
ℓ=1

p(Sℓ)
ℓ∑

m=1

c(Sm)

+ ε[κ

j−1∑
m=1

c(Sm) + κc(Sj)−
j−1∑
m=1

c(Sm)

j−1∑
ℓ=m

|Sℓ ∩X|]

=

j−1∑
ℓ=1

p(Sℓ)

ℓ∑
m=1

c(Sm)

+ ε[

j−1∑
m=1

c(Sm)[κ−
j−1∑
ℓ=m

|Sℓ ∩X|] + κc(Sj)]

>

j−1∑
ℓ=1

p(Sℓ)
ℓ∑

m=1

c(Sm) = f(p,S).

(19)

Let T = {T1, . . . , Tb} be any pure strategy for the seeker. If f(p, T ) > f(p,S), then
f(p′, T ) > f(p,S) by making ε > 0 sufficiently small. If f(p, T ) = f(p,S) then T is
a best reply to p, and there is a such that i ∈ Ta. For the same reason as in S, we
have p(Ta) = . . . = p(Tb) = 0. Changing j, k to a, b and S to T in (19), we can see
f(p′, T ) > f(p, T ) = f(p,S). Since the number of pure strategies for the seeker is finite,
we obtain a better strategy p′ for the hider. This contradicts the optimality of p. Hence,
pi > 0. �

It is easy to see that (16) holds for every i ∈ N if and only if the inspection cost is strictly
monotonic, that is, c(S) > c(T ) for all S, T such that T ⊂ S and S ̸= T . In practice,
it is very likely that the inspection cost is strictly monotonic since it costs by all means
if the seeker behaves. Let q = {q(S)}S∈Σ be a mixed strategy for the seeker, where q(S)
is the probability that he chooses S. By the complementary slackness theorem in linear
programming and Proposition 3.1, we obtain
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Corollary 3.2. Assume the inspection cost is strictly monotonic. Let p be an optimal
strategy for the hider. Then pi > 0 for all i ∈ N . Let q be an optimal strategy for the
seeker. Then f(i, q) = v(N) for all i ∈ N , where v(N) is the value of the game.

4 A search game with mass-effective cost function For S ⊆ N , let ΣS be the set
of all ordered partitions of S. A restricted game Γ(S, c)− on S is defined as follows. The
set of strategies for the hider is S, the set of strategies for the seeker is ΣS \ {{S}}, and
the cost for a strategy pair (i,S), i ∈ S,S ∈ ΣS \ {{S}}, is f(i,S). The value of the game
Γ(S, c)− is denoted by v(S)−. In the restricted game on S, the strategy {S} for the seeker
is excluded from the strategy set in the original game Γ(S, c) on S.

Proposition 4.1. Assume c(N) < v(N)−. An optimal strategy for the seeker is {N}. An
optimal strategy for the hider is p which is an optimal strategy for the hider in the restricted
game Γ(N, c)−. The value of the game is c(N).

Proof: For every i ∈ N , we have f(i, {N}) = c(N). Let p be an optimal strategy for
the hider in the restricted game Γ(N, c)−. Then f(p,S) ≥ v(N)− > c(N) for all S ∈
ΣN \ {{N}}. Furthermore, f(p, {N}) = c(N). This completes the proof. �

The discussion in Proposition 4.1 could be extended to the restricted game on every S ⊆ N
if an optimal strategy for the hider has some property. For a mixed strategy p for the hider,
we define a mixed strategy pS for the hider on the game on S ⊆ N by pS = p|S , which is a
projection of p on the strategy space of the game on S.

Proposition 4.2. Suppose p is an optimal strategy for the hider in the game on N . Assume
that pS is an optimal strategy for the hider in the game on S ⊂ N . Assume c(S) < v(S)−.
Then the seeker can exclude from the consideration a strategy such as S = {S1,S2} where
S2 is an ordered partition of N \ S and S1 is an ordered partition of S and S1 ̸= {S}.
Proof: Let S = {S1,S2} be a strategy for the seeker in the statement of Proposition 4.2.

f(p,S) = p(S)
∑
i∈S

pSi f(i,S) +
∑

i∈N\S

pif(i,S)

≥ p(S)v(S)− +
∑

i∈N\S

pif(i,S)

> p(S)c(S) +
∑

i∈N\S

pif(i,S)

= f(p, {{S},S2}).

(20)

This implies S is not a best reply to p. �

5 A game on a star network. In practice, it may cost the absurdity for the change
of the box when we consider whether the seeker searches for another box j after having
searched for a box i. In this case, the seeker will search a box k ̸= j after he has searched
for a box i. This kind of things could be expressed by a network where nodes are boxes.
Edges express changeability between boxes. This situation is expressed as a game on a
network. In this section we treat this model.

Let G = (N,E) be an undirected graph with the node set N and the edge set E. A
subgraph (S,E(S)) is an undirected graph where S ⊆ N and E(S) = {(i, j) ∈ E, i, j ∈
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S} ⊆ E. A subset S ⊆ N is called connected if the subgraph (S,E(S)) is connected. A
subset Σ∗ ⊂ Σ is defined by the set of all ordered partitions of N such that every element
of each ordered partition is connected. Hereafter, we assume that the strategy space for the
seeker is Σ∗ when the game is on a network. If G is a complete graph, then Σ∗ = Σ. Let
G is a linear graph, that is, E = {(i, i + 1) : 1 ≤ i ≤ n − 1}. This model is the same as
Example 1 in Section 1.

In this section we treat the case where the graph G is a tree in which E = {(1, i) : 2 ≤
i ≤ n}. It is easy to see that a subset S is connected if and only if 1 ∈ S. It is possible to
analyze if we assume a symmetry in cost as follows.

Assumption 1.

c(S) = c(S′) and c(S ∪ {1}) = c(S′ ∪ {1}) for all S, S′ ⊆ N \ {1} : |S| = |S′|.(21)

Since nodes in N \ {1} are symmetric both in inspection cost and in position in the tree, it
is easy to see that there is an optimal strategy p = (p1, . . . , pn) for the hider such that

x ≡ p2 = . . . = pn and y ≡ p1 = 1− (n− 1)x, 0 ≤ x ≤ 1

n− 1
.(22)

This strategy is expressed as p = p(x). A pure strategy in Σ∗ for the seeker is expressed as

{{i1}, . . . , {ik}, S, {ik+1}, . . . , {in−|S|}}(23)

where 1 ∈ S and i1, . . . ik, ik+1, . . . , in−|S| is a permutation on N \S. By the same symmetry
as for the hider, it is easy to see that there is an optimal strategy q = {q(S)}S∈Σ∗ such that
q(S) = q(S ′) if S is obtained from S ′ by a permutation on N \ S. From this observation, it
suffices to restrict our attention to pure strategies S where S = {1, . . . , s}, s ≡ |S| and

S = S(s, k) ≡ {s+ 1, . . . , s+ k, S, s+ k + 1, . . . , n},(24)

for k = 0, . . . , n− s and for s = 1, . . . , n.

Lemma 5.1. For each p = p(x),

(25) f(p,S(s, k)) = k[c− xc(S)− (n− s)cx] + c(S) +
(n− s)(n− s+ 1)

2
cx,

where c(i) = c, ∀i /∈ S.

Proof: For p = (p1, . . . , pn),

f(p,S(s, k)) = ps+1c(s+ 1) + · · ·+ ps+k[c(s+ 1) + · · ·+ c(s+ k)]

+ p(S)[c(s+ 1) + · · ·+ c(s+ k) + c(S)]

+ ps+k+1[c(s+ 1) + · · ·+ c(s+ k) + c(S) + c(s+ k + 1)]

+ · · ·
+ pn[c(s+ 1) + · · ·+ c(s+ k) + c(S) + c(s+ k + 1) + · · ·+ c(n)].

(26)

From (21) and (22), we have

f(p,S(s, k)) = xc+ · · ·+ kcx+ p(S)[kc+ c(S)]

+ x[kc+ c(S) + c]

+ · · ·
+ x[kc+ c(S) + (n− s− k)c].

(27)
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Since p(S) = y + (s− 1)x = 1− (n− s)x, from (27), we have (25). �

The hider will consider that the seeker may choose (s, k) so that it minimizes f(p,S(s, k)),
given by (25).

Lemma 5.2. For each p = p(x) and 1 ≤ s ≤ n,

(28) min
0≤k≤n−s

{f(p,S(s, k))} = min{f(p,S(s, 0)), f(p,S(s, n− s))}.

Proof: From (25), if c− xc(S)− (n− s)cx > 0, then k = 0 minimizes (25). If c− xc(S)−
(n− s)cx < 0, then k = n− s minimizes (25). �

For p = p(x), let

a(x) ≡ min
1≤s≤n

{min{f(p,S(s, 0)), f(p,S(s, n− s))}}.(29)

The hider will choose x so that it maximizes a(x). Here we note that f(p,S(s, 0)) is
increasing in x and f(p,S(s, n− s)) is decreasing in x as follows:

f(p,S(s, 0)) = c(S) +
(n− s)(n− s+ 1)

2
cx,

f(p,S(s, n− s)) = (n− s)c+ c(S)− x[(n− s)c(S) +
(n− s)(n− s− 1)

2
c].

(30)

Suppose x∗ maximizes a(x). There are s1 ≤ . . . ≤ sα and t1 ≤ . . . ≤ tβ such that

a(x∗) = f(p(x∗),S(s1, 0)) = · · · = f(p(x∗),S(sα, 0))
= f(p(x∗),S(t1, n− t1)) = · · · = f(p(x∗),S(tβ , n− tβ)).

(31)

By the complementary slackness theorem, there is q such that, for all j ∈ N ,

α∑
i=1

q(S(si, 0))f(j,S(si, 0)) +
β∑

i=1

q(S(ti, n− ti))f(j,S(ti, n− ti)) = a(x∗),

q(S) = 0, for other S.

(32)

In summary we have

Proposition 5.3. Under Assumption 1, an optimal strategy for the hider is p(x∗) which
is defined by (22) and (31). An optimal strategy for the seeker is q defined by (32). The
value of the game is a(x∗).

Let’s illustrate the above argument by an example.

Example 3. Let n = 3 and c(2) = c(3) = 2, c(12) = c(13) = 3, c(123) = 4. By (1), we have
1 ≤ c(1) ≤ 3. By (30),

f(p,S(1, 0)) = c(1) + 6x, f(p,S(1, 2)) = 4 + c(1)− 2[c(1) + 1]x,

f(p,S(2, 0)) = 3 + 2x, f(p,S(2, 1)) = 5− 3x, f(p,S(3, 0)) = 4.
(33)

Suppose c(1) = 2. By drawing a diagram, we see that x∗ = 3
8 maximizes a(x) where

f(p,S(2, 0)) and f(p,S(1, 2)) intersect. a( 38 ) =
15
4 . The first in (32) becomes

f(1, q) = q(2, 3, 1)× 6 + q(3, 2, 1)× 6 + q(12, 3)× 3 + q(13, 2)× 3

f(2, q) = q(2, 3, 1)× 2 + q(3, 2, 1)× 4 + q(12, 3)× 3 + q(13, 2)× 5

f(3, q) = q(2, 3, 1)× 4 + q(3, 2, 1)× 2 + q(12, 3)× 5 + q(13, 2)× 3.

(34)
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We find q so that these three are equal to a( 38 ) =
15
4 :

q(2, 3, 1) = q(3, 2, 1) =
1

8
, q(12, 3) = q(13, 2) =

3

8
.(35)

Then f(1, q) = f(2, q) = f(3, q) = 15
4 = a(x∗).

Suppose c(1) = 1. In the same way as above, we have x∗ = 2
5 and a( 25 ) = 17

5 . The
intersection of lines f(p,S(1, 0)) and f(p,S(1, 2)) is critical. So the seeker will choose

q(2, 3, 1) = q(3, 2, 1) =
3

10
, q(1, 2, 3) = q(1, 3, 2) =

1

5
.(36)

Then f(1, q) = f(2, q) = f(3, q) = 17
5 = a(x∗).

Suppose c(1) = 3. We have x∗ = 2
5 and a( 25 ) =

19
5 . The intersection of lines f(p,S(2, 0)), f(p,S(2, 1))

and f(p,S(1, 2)) is critical. So the seeker will choose

q(2, 3, 1) = q(3, 2, 1), q(3, 12) = q(2, 13), q(12, 3) = q(13, 2),

q(12, 3) =
3

2
q(3, 12) + 4q(2, 3, 1),

10q(2, 3, 1) + 5q(3, 12) = 1.

(37)

Then f(1, q) = f(2, q) = f(3, q) = 19
5 = a(x∗).
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Abstract. We consider conditions on a k-graph Λ, a semigroup S and
a functor η : Λ → S that ensure that the C∗-algebra of the skew-product
graph Λ×η S is simple. Our results give some necessary and sufficient
conditions for the AF-core of a k-graph C∗-algebra to be simple.

1 Introduction In [24] Robertson and Steger investigated C∗-algebras that
they considered to be higher-rank versions of the Cuntz-Krieger algebras. Sub-
sequently in [9] Kumjian and Pask introduced higher-rank graphs, or k-graphs,
as a graphical means to provide combinatorial models for the Cuntz-Krieger
algebras of Robertson and Steger. They showed how to construct a C∗-algebra
that is associated to a k-graph. Since then k-graphs and their C∗-algebras have
attracted a lot of attention from many authors (see [1,3–5,9,12–14,17–19,21,
23]).

Roughly speaking, a k-graph is a category Λ together with a functor d :
Λ → Nk satisfying a certain factorisation property. A 1-graph is then the
path category of a directed graph. Given a functor η : Λ → S, where S is a
semigroup with identity, we may form the skew product k-graph Λ×ηS. Skew
product graphs play an important part in the development of k-graph C∗-
algebras. For example [9, Corollary 5.3] shows that C∗(Λ×dZk) is isomorphic
to C∗(Λ) ×γ Tk where γ : Tk → AutC∗(Λ) is the canonical gauge action.
Skew product graphs feature in nonabelian duality: In [13] it is shown that
if a right-reversible semigroup (Ore semigroup) S acts freely on a k-graph Λ
then the crossed product C∗(Λ)×S is stably isomorphic to C∗(Λ/S). On the
other hand if S is a group G then C∗(Λ ×η G) is isomorphic to the crossed
product C∗(Λ)×δη G where δη is the coaction of G on C∗(Λ) induced by η.

The main purpose of this paper is to investigate necessary and sufficient
conditions for the C∗-algebra of a skew product k-graph to be simple. We
will be particularly interested in the specific case when S = Nk and η = d. It
can be shown that simplicity of C∗(Λ×d Nk) is equivalent to simplicity of the
fixed point algebra (AF core) C∗(Λ)γ. This is important as many results in
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the literature apply particularly when AF core is simple; see [8, Proposition
3.8] for example.

We begin by introducing some basic facts we will need during this paper.

2 Background

2.1 Basic facts about k-graphs All semigroups in this paper will be
countable, cancellative and have an identity, hence any semigroup may be
considered as a category with a single object. The semigroup Nk is freely gener-
ated by {e1, . . . , ek} and comes with the usual order structure: if n =

∑k
i=1 niei

and m =
∑k

i=1 miei then m > n (resp. m ≥ n) if mi > ni (resp. mi ≥ ni)
for all i. For m,n ∈ Nk we define m ∨ n ∈ Nk by (m ∨ n)i = max{mi, ni} for
i = 1, . . . , k.

A directed graph E is a quadruple (E0, E1, r, s) where E0, E1 are countable
sets of vertices and edges. The direction of an edge e ∈ E1 is given by the
maps r, s : E1 → E0. A path λ of length n ≥ 1 is a sequence λ = λ1 · · ·λn of
edges such that s(λi) = r(λi+1) for i = 1, . . . , n−1. The set of paths of length
n ≥ 1 is denoted En. We may extend r, s to En for n ≥ 1 by r(λ) = r(λ1)
and s(λ) = s(λn) and to E0 by r(v) = v = s(v).

A higher-rank graph or k-graph is a combinatorial structure, and is a k-
dimensional analogue of a directed graph. A k-graph consists of a countable
category Λ together with a functor d : Λ → Nk, known as the degree map,
with the following factorisation property: for every morphism λ ∈ Λ and every
decomposition d(λ) = m+n, there exist unique morphisms µ, ν ∈ Λ such that
d(µ) = m, d(ν) = n, and λ = µν.

For n ∈ Nk we define Λn := d−1(n) to be those morphisms in Λ of degree
n. Then by the factorisation property Λ0 may be identified with the objects
of Λ, and are called vertices. For u, v ∈ Λ0 and X ⊆ Λ we set

uX = {λ ∈ X : r(λ) = u} Xv = {λ ∈ X : s(λ) = v} uXv = uX ∩Xv.

A k-graph Λ is visualised by a k-coloured directed graph EΛ with vertices Λ0

and edges �k
i=1Λ

ei together with range and source maps inherited from Λ called
its 1-skeleton. The 1-skeleton is provided with square relations CΛ between
the edges in EΛ, called factorisation rules, which come from factorisations of
morphisms in Λ of degree ei + ej where i �= j. By convention the edges of
degree e1 are drawn blue (solid) and the edges of degree e2 are drawn red
(dashed). For more details about the 1-skeleton of a k-graph see [21]. On the
other hand, if G is a k-coloured directed graph with a complete, associative
collection of square relations C completely determines a k-graph Λ such that
EΛ = G and CΛ = C (see [6]).
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A k-graph Λ is row-finite if for every v ∈ Λ0 and every n ∈ Nk, vΛn is
finite. A k-graph has no sources if vΛn �= ∅ for all v ∈ Λ0 and nonzero n ∈ Nk.
A k-graph has no sinks is Λnv �= ∅ for all v ∈ Λ0 and nonzero n ∈ Nk.

For λ ∈ Λ and m ≤ n ≤ d(λ), we define λ(m,n) to be the unique
path in Λn−m obtained from the k-graph factorisation property such that
λ = λ′(λ(m,n))λ′′ for some λ′ ∈ Λm and λ′′ ∈ Λd(λ)−n.

Examples 2.1. (a) In [9, Example 1.3] it is shown that the path category E∗ =
∪i≥0E

i of a directed graph E is a 1-graph, and vice versa. For this reason
we shall move seamlessly between 1-graphs and directed graphs.

(b) For k ≥ 1 let Tk be the category with a single object v and gener-
ated by k commuting morphisms {f1, . . . , fk}. Define d : Tk → Nk by
d(fn1

1 . . . fnk
k ) = (n1, . . . , nk) then it is straightforward to check that Tk is

a k-graph. We frequently identify Tk with Nk via the map fn1
1 · · · fnk

k �→
(n1, . . . , nk).

(c) For k ≥ 1 define a category ∆k as follows: Let Mor∆k = {(m,n) ∈
Zk × Zk : m ≤ n} and Obj∆k = Zk; structure maps r(m,n) = m,
s(m,n) = n, and composition (m,n)(n, p) = (m, p). Define d : ∆k → Nk

by d(m,n) = n−m, then one checks that (∆k, d) is a row-finite k-graph.
We identify Obj∆k with {(m,m) : m ∈ Zk} ⊂ Mor∆k.

(d) For n ≥ 1 let n = {1, . . . , n}. For m,n ≥ 1 let θ : m × n → m × n a
bijection. Let F2

θ be the 2-graph which has 1-skeleton which consists of
with single vertex v and edges f1, . . . , fm, g1, . . . , gn, such that fi have the
same colour (blue) for i ∈ m and gj have the same colour (red) for j ∈ n
together with complete associative square relations figj = gj′fi′ where
θ(i, j) = (i′, j′) for (i, j) ∈ m× n (for more details see [3, 4, 19]).

2.2 Skew product k-graphs Let Λ be a k-graph and η : Λ → S a functor
into a semigroup S. We can make the cartesian product Λ×S into a k-graph
Λ×η S by taking (Λ×η S)

0 = Λ0 × S, defining r, s : Λ×η S → (Λ×η S)
0 by

(1) r(λ, t) = (r(λ), t) and s(λ, t) = (s(λ), tη(λ)),

defining the composition by

(λ, t)(µ, u) = (λµ, t) when s(λ, t) = r(µ, u) (so that u = tη(λ) ),

and defining d : Λ×ηS → Nk by d(λ, t) = d(λ). As in [13] it is straightforward
to show that this defines a k-graph.

Remark 2.2. If Λ is row-finite with no sources and η : Λ → S a functor then
Λ×η S is row-finite with no sources.
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A k-graph morphism is a degree preserving functor between two k-graphs.
If a k-graph morphism is bijective, then it is called an isomorphism.

Examples 2.3. (i) Let Λ be a k-graph and η : Λ → S a functor, where S is a
semigroup and Λ×ηS the associated skew product graph. Then the map
π : Λ×η S → Λ given by π(λ, s) = λ is a surjective k-graph morphism.

(ii) For � ≥ 1 the map (�,m) �→ (m, � + m) gives an isomorphism from
Tk ×d Zk to ∆k.

Definition 2.4. Let Λ,Γ be row-finite k-graphs. A surjective k-graph mor-
phism p : Λ → Γ has r-path lifting if for all v ∈ Λ0 and λ ∈ p(v)Γ there is
λ′ ∈ vΛ such that p(λ′) = λ. If λ′ is the unique element with this property
then p has unique r-path lifting.

Example 2.5. Let Λ be a row-finite k-graph and η : Λ → S a functor where
S is a semigroup, and Λ ×η S the associated skew product graph. The map
π : Λ×η S → Λ described in Examples 2.3(i) has unique r-path lifting.

2.3 Connectivity A k-graph Λ is connected if the equivalence relation on
Λ0 generated by the relation {(u, v) : uΛv �= ∅} is Λ0 × Λ0. The k-graph Λ is
strongly connected if for all u, v ∈ Λ0 there is N > 0 such that uΛNv �= ∅. If
Λ is strongly connected, then it is connected and has no sinks or sources. The
k-graph Λ is primitive if there is N > 0 such that uΛNv �= ∅ for all u, v ∈ Λ0.
If Λ is primitive then it is strongly connected.

Examples 2.6. The graphs Tk and F2
θ in Examples 2.1 are primitive as they

have one vertex.

The connectivity of a k-graph may also be described in terms of its com-
ponent matrices as defined in [9, §6]: Given a k-graph Λ, for 1 ≤ i ≤ k
and u, v ∈ Λ0, we define k non-negative Λ0 × Λ0 matrices Mi with entries
Mi(u, v) = |uΛeiv|. Using the k-graph factorisation property, we have that
|uΛei+ejv| = |uΛej+eiv| for all u, v ∈ Λ0, and so MiMj = MjMi. For m =
(m1, . . . ,mk) ∈ Nk and u, v ∈ Λ0, we have |uΛmv| = (Mm1

1 · · ·Mmk
k )(u, v) =

Mm(u, v), using multiindex notation. The following lemma follows directly
from the above definitions.

Lemma 2.7. Let Λ be a row-finite k-graph with no sources.

(a) Then Λ is strongly connected if and only if for all pairs u, v ∈ Λ0 there is
N ∈ Nk such that MN(u, v) > 0.

(b) Then Λ is primitive if and only if there is N > 0 such that MN(u, v) > 0
for all pairs u, v ∈ Λ0.
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Remarks 2.8. Following [18, §4], a primitive 1-graph Λ is strongly connected
with period 1; that is, the greatest common divisor of all n such that vΛnv �= ∅
for some v ∈ Λ0 is 1.

Lemma 2.9. Let Λ be a k-graph with no sinks, and Λ0 finite. Then for all
v ∈ Λ0, there exists w ∈ Λ0 and α ∈ wΛw such that d(α) > 0 and wΛv �= ∅.

Proof. Let p = (1, . . . , 1) ∈ Nk. Since v is not a sink, there exists β1 ∈ Λpv.
Since r(β1) is not a sink, there exists β2 ∈ Λpr(β1). Inductively, there exist
infinitely many βi such that d(βi) = p and r(βi) = s(βi+1). Since Λ0 is finite,
there exists w ∈ Λ0 such that r(βi) = w for infinitely many i. Suppose
r(βn) = w = r(βm) with m > n. Then α = βm . . . βn+1 has the requisite
properties, and wΛv �= ∅, since βn . . . β1 ∈ wΛv.

2.4 The graph C∗-algebra Let Λ be a row-finite k-graph with no sources,
then following [9], a Cuntz-Krieger Λ-family in a C∗-algebra B consists of
partial isometries {Sλ : λ ∈ Λ} in B satisfying the Cuntz-Krieger relations :

(CK1) {Sv : v ∈ Λ0} are mutually orthogonal projections;

(CK2) SλSµ = Sλµ whenever s(λ) = r(µ);

(CK3) S∗
λSλ = Ss(λ) for every λ ∈ Λ;

(CK4) Sv =
∑

{λ∈vΛn} SλS
∗
λ for every v ∈ Λ0 and n ∈ Nk.

The k-graph C∗-algebra C∗(Λ) is generated by a universal Cuntz-Krieger Λ-
family {sλ}. By [9, Proposition 2.11] there exists a Cuntz-Krieger Λ-family
such that each vertex projection Sv (and hence by (CK3) each Sλ) is nonzero
and so there exists a nonzero universal k-graph C∗-algebra for a Cuntz-Krieger
Λ-family. Moreover,

C∗(Λ) = span{sλs∗µ : λ, µ ∈ Λ, s(λ) = s(µ)} (see [9, Lemma 3.1]).

We will use [23, Theorem 3.1] by Robertson and Sims when considering the
simplicity of graph C∗-algebras:

Theorem 2.10 (Robertson-Sims). Suppose Λ is a row-finite k-graph with no
sources. Then C∗(Λ) is simple if and only if Λ is cofinal and aperiodic.

We now focus on the two key properties involved in the simplicity criterion
of Theorem 2.10, namely aperiodicity and cofinality. Our attention will be
directed towards applying these conditions on skew product graphs.
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3 Aperiodicity Our definition of aperiodicity is taken from Robertson-
Sims, [23, Theorem 3.2].

Definitions 3.1. A row-finite k-graph Λ with no sources has no local period-
icity at v ∈ Λ0 if for all m �= n ∈ Nk there exists a path λ ∈ vΛ such that
d(λ) ≥ m ∨ n and

λ(m,m+ d(λ)− (m ∨ n)) �= λ(n, n+ d(λ)− (m ∨ n)).

Λ is called aperiodic if every v ∈ Λ0 has no local periodicity.

Examples 3.2. (a) The k-graph ∆k is aperiodic for all k ≥ 1. First observe
that there is no local periodicity at v = (0, 0). Given m �= n ∈ Nk,
let N ≥ m ∨ n; then λ = (0, N) is the only element of v∆k. Then
λ(m,m) = (m,m) �= (n, n) = λ(n, n). A similar argument applies for any
other vertex w = (n, n) in ∆k and so there is no local periodicity at w for
all w ∈ ∆0

k.

(b) The k-graph Tk is not aperiodic for all k ≥ 1. For all n ∈ Nk one checks
that fn1

1 · · · fnk
k is the only element of vT n

k . Hence given m �= n ∈ Nk it
follows that for all λ ∈ vΛN with N ≥ m ∨ n we have

λ(m,m+ (m ∨ n)) = λ(n, n+ (m ∨ n)).

Since the map π : Λ ×η S → Λ has unique r-path lifting, we wish to know if
we can deduce the aperiodicity of Λ ×η S from that of Λ. A corollary of our
main result Theorem 3.3, shows that this is true.

Theorem 3.3. Let Λ,Γ be row-finite k-graphs with no sources and p : Λ → Γ
have r-path lifting. If Γ is aperiodic, then Λ is aperiodic.

Proof. Suppose that Γ is aperiodic. Let v ∈ Λ0 and m �= n ∈ Nk. Since Γ
is aperiodic, there exists λ ∈ p(v)Γ with d(λ) ≥ m ∨ n such that λ(m,m +
d(λ)− (m∨ n)) �= λ(n, n+ d(λ)− (m∨ n)). By r-path lifting there is λ′ ∈ vΛ
with p(λ′) = λ such that d(λ′) ≥ m ∨ n and

λ′(m,m+ d(λ)− (m ∨ n)) �= λ′(n, n+ d(λ)− (m ∨ n)),

and so Λ is aperiodic.

The converse of Theorem 3.3 is false:

Example 3.4. The surjective k-graph morphism p : ∆k → Tk given by p(m,m+
ei) = fi for all m ∈ Zk and i = 1, . . . , k has r-path lifting. However by
Examples 3.2 we see that ∆k

∼= Tk ×d Zk is aperiodic but Tk is not.
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Corollary 3.5. Let Λ be a row-finite k-graph with no sources, η : Λ → S a
functor where S is a semigroup and Λ×η S the associated skew product graph.
If Λ is aperiodic then Λ×η S is aperiodic.

Proof. Follows from Theorem 3.3 and Example 2.5.

In some cases the aperiodicity of a skew product graph Λ×η S can be deduced
directly from properties of η.

Proposition 3.6. Suppose S is a semigroup, Λ is a row-finite k-graph with
no sources, η : Λ → S is a functor, and there exists a map φ : S → Zk such
that d = φ ◦ η. Then Λ×η S is aperiodic.

Proof. Fix (v, s) ∈ (Λ ×η S)
0 and m �= n ∈ Nk. Let λ ∈ (v, s)(Λ ×η S) be

such that d(λ) ≥ m ∨ n. Observe that λ(m,m) = s(λ(0,m)), λ(m,m) is of
the form (w, sη(λ(0,m))) for some w ∈ Λ0. Similarly, λ(n, n) is of the form
(w′, sη(λ(0, n))) for some w′ ∈ Λ0.

We claim λ(m,m) �= λ(n, n): Suppose, by hypothesis, η(λ(0, n)) = η(λ(0,m)).
Then n = φ◦η(λ(0, n)) = φ◦η(λ(0,m)) = m, which provides a contradiction,
and m �= n. Then η(λ(0,m)) �= η(λ(0, n)), and so λ(m,m) �= λ(n, n), and
hence λ(m,m+ d(λ)− (m ∨ n)) �= λ(n, n+ d(λ)− (m ∨ n)).

Corollary 3.7. Suppose Λ is a row-finite k-graph with no sources. Then
Λ×d Nk and Λ×d Zk are aperiodic.

Proof. Apply Proposition 3.6 with η = d and S = Nk,Zk respectively.

4 Cofinality We will use the Lewin-Sims definition of cofinality, [12, Re-
mark A.3]. By [12, Appendix A] this definition is equivalent to the other
standard definitions of cofinality:

Definition 4.1. A row-finite, k-graph Λ with no sources is cofinal if for all
pairs v, w ∈ Λ0 there exists N ∈ Nk such that vΛs(α) �= ∅ for every α ∈ wΛN .

Lemma 4.2. Let Λ be a row-finite k-graph with no sources.

(a) If Λ is cofinal then Λ is connected.

(b) Suppose that for all pairs v, w ∈ Λ0 there exists N ∈ Nk such that
vΛs(α) �= ∅ for every α ∈ wΛN . Then for n ≥ N we have vΛs(α) �= ∅ for
every α ∈ wΛn.
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Proof. Fix v, w ∈ Λ0. If Λ is cofinal it follows that there is α ∈ wΛ such
that wΛs(α) and vΛs(α) are non-empty. It then follows that (v, w) belongs
to the equivalence relation described in Section 2.3. Since v, w were arbitrary
it follows that the equivalence relation is Λ0 × Λ0 and so Λ is connected.

Fix v, w ∈ Λ0, then there is N ∈ Nk such that vΛs(α) �= ∅ for every
α ∈ wΛN . Let n ≥ N and consider β ∈ wΛn then β′ = β(0, N) ∈ wΛN and so
by hypothesis there is λ ∈ vΛs(β′). Then λβ(N, n) ∈ vΛs(β) and the result
follows.

Lemma 4.3. Let Λ be a row-finite k-graph with no sources with skeleton EΛ.
If EΛ is cofinal then Λ is cofinal. Furthermore, Λ is strongly connected if and
only if EΛ strongly connected

Proof. Fix v, w ∈ Λ0 = E0
Λ. As EΛ is cofinal there is n ∈ N with vEΛs(α) �= ∅

for all α ∈ wEn
Λ. Let N ∈ Nk be such that

∑k
i=1 Ni = n. Then for all

α′ ∈ wΛN we have α′ ∈ En
Λ and so vΛNs(α′) �= ∅.

Suppose that Λ is strongly connected and v, w ∈ E0
Λ = Λ0. As Λ is strongly

connected there is α ∈ vΛw with d(α) > 0. Let n =
∑n

i=1 d(α)i then n > 0
and vEΛw �= ∅, so EΛ is strongly connected. Suppose that EΛ is strongly
connected, and v, w ∈ Λ0 = E0

Λ. As Λ has no sources, there is α ∈ vEk
Λ which

uses an edge of each of the k-colours. Let u = s(α). Since EΛ is strongly
connected there is β ∈ uEn

Λw. Let λ be the element of Λ which may be
represented by αβ ∈ EΛ. Then λ ∈ vΛw and d(λ) > 0 and so Λ is strongly
connected.

Remark 4.4. The converse to the first part of Lemma 4.3 is not true: Let Λ
be the 2-graph which is completely determined by its 1-skeleton as shown:

w

v

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

...

...

...

...
..
.

..

.
..
.

..

.
..
.

..

.

Then Λ is cofinal: For example for v, w as shown, N = (1, 0) will suffice.
However EΛ is not cofinal: For example for v, w as shown, for any n ≥ 0 the
vertex which is the source of the vertical path of length n with range w does
not connect to v.

The following result establishes a link between cofinality and strongly connec-
tivity for a row-finite k-graph.
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Proposition 4.5. Suppose Λ is a row-finite k-graph with no sources.

1. If Λ is strongly connected then Λ is cofinal.

2. If Λ is cofinal, has no sinks and Λ0 finite then Λ is strongly connected.

Proof. Suppose Λ is strongly connected. Fix v, w ∈ Λ0 then for N = e1 we
have vΛs(α) �= ∅ for all α ∈ wΛN since Λ is strongly connected, and so Λ is
cofinal.

Suppose Λ is cofinal. Fix u, v ∈ Λ0. Then by Lemma 2.9, there exists
w ∈ Λ0 and α ∈ wΛw such that d(α) > 0 and wΛv �= ∅. Let α′ ∈ wΛv. Given
u, w ∈ Λ0, since Λ is cofinal and has no sources, by Lemma 4.2(ii) there exists
N ∈ Nk such that for all n ≥ N and all α′′ ∈ wΛn, there exists β ∈ uΛs(α′′).
Since d(α) > 0 we may choose t ∈ N such that td(α) > N . Then αt ∈ wΛn

where n > N , and so by cofinality of Λ exists β ∈ uΛs(αt) = uΛw. Hence
βαα′ ∈ uΛv with d(βαα′) > d(α) > 0 and so Λ is strongly connected.

Example 4.6. The condition that Λ0 is finite in Proposition 4.5(2) is essential:
For instance ∆k is cofinal by Lemma 4.3 since its skeleton is cofinal; however
it is not strongly connected by Lemma 4.3 since its skeleton is not strongly
connected.

Since the map π : Λ×η S → Λ has unique r-path lifting, we wish to know
if we can deduce the cofinality of Λ×η S from that of Λ. By Theorem 4.7 the
image of a cofinal k-graph under a map with r-path lifting is cofinal, however
Example 4.9 shows that the converse is not true. For a cofinal k-graph Λ,
we must then seek additional conditions on the functor η which guarantees
that Λ×η S is cofinal. In Definition 4.10 we introduce the notion of (Λ, S, η)
cofinality to address this problem.

Theorem 4.7. Suppose Λ,Γ be row-finite k-graphs with no sources and p :
Λ → Γ have r-path lifting. If Λ is cofinal then Γ is cofinal.

Proof. Suppose that Λ is cofinal. Fix v, w ∈ Γ0. Let v′, w′ ∈ Λ0 be such that
p(v′) = v and p(w′) = w. As Λ is cofinal there is an N such that for all
α′ ∈ w′ΛN there is β′ ∈ v′Λs(α′). Then for α ∈ vΓN there is α′ ∈ v′ΛN with
p(α′) = α. By hypothesis there is β′ ∈ v′Λs(α′), and so β = p(β′) satisfies
s(β) = s(α) and r(β) = v, hence vΛs(α) �= ∅ as required.

Corollary 4.8. Let Λ be a row-finite k-graph with no sources, η : Λ → S a
functor where S is a semigroup and Λ×η S the associated skew product graph.
If Λ×η S is cofinal then Λ is cofinal.

The converse of Theorem 4.7 is false:
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Example 4.9. Consider the following 2-graph Λ with 1-skeleton

.
u

.
v

.
w

e

f

g

h

a

b

c d

t1

t2

and factorisation rules: ec = t1e and ha = t2e for paths from u to v; cf = ft1
and bg = ft2 for paths from v to u. Also hd = t1h and eb = t2h for paths
from w to v; dg = gt1 and af = gt2 for paths from v to w. By Lemma 4.3 Λ
is strongly connected as its skeleton is strongly connected. Note there are no
paths of degree e1 + e2 from a vertex to itself.

Since M1 =
(

0 1 0
1 0 1
0 1 0

)
and M2 =

(
1 0 1
0 2 0
1 0 1

)
, we calculate that M (2j1,j2) =

2j1+j2−1M2 and M (2j1+1,j2) = 2j1+j2+1M1. Hence M
(2j−1,2j−1) =

( 0 4j 0
4j 0 4j
0 4j 0

)
and

M (2j,2j) =
( 4j 0 4j

0 8j 0
4j 0 4j

)
. In particular by Lemma 2.7 (b) Λ is not primitive, even

though it is strongly connected.
We claim that the skew product graph Λ ×d Z2 is not cofinal. Consider

v1 = (v, (m,n)) and v2 = (v, (m + 1, n)) in (Λ ×d Z2)0. We claim that for
all N ∈ N2, for all α ∈ v1(Λ ×d Z2)N , we have v2(Λ ×d Z2)s(α) �= ∅. Let
N = (N1, N2). Suppose N1 is even. Then for all α ∈ v1(Λ ×d Z2)N , s(α) =
(v, (m+N1, n+N2)). In order for this vertex to connect to (v, (m+1, n)), we
have M (N1−1,N2)(v, v) �= 0. But N1− 1 is odd, and this matrix entry is zero. If
N1 is odd, then s(α) = (u, (m+N1, n+N2)) or s(α) = (w, (m+N1, n+N2)).
In order for either of these vertices to connect to (v, (m+1, n)), we must have
M (N1−1,N2)(u, v) �= 0, or M (N1−1,N2)(w, v) �= 0. But N1−1 is even, and so both
of these matrix entries are zero. Hence Λ×d Z2 is not cofinal, even though Λ
is cofinal.

To establish a sufficient condition for Λ ×η S to be cofinal, we need Λ to be
cofinal and an additional condition on η.

Definition 4.10. Let Λ be a row-finite k-graph with no sources and η : Λ → S
a functor, where S is a semigroup. The system (Λ, S, η) is cofinal if for all
v, w ∈ Λ0, a, b ∈ S, there exists N ∈ Nk such that for all α ∈ wΛN , there
exists β ∈ vΛs(α) such that aη(β) = bη(α).

Proposition 4.11. Let Λ be a row-finite k-graph with no sources and η : Λ →
S a functor, where S is a semigroup and Λ ×η S the associated skew product
graph. Then the system (Λ, S, η) is cofinal if and only if Λ×η S is cofinal.
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Proof. Suppose Λ ×η S is cofinal. Fix a, b ∈ S and v, w ∈ Λ0. By hypothesis
there is N ∈ Nk such that (v, a)(Λ×η S)s(α, b) is non-empty for every (α, b) ∈
(w, b)(Λ ×η S)

N . In particular for all α ∈ wΛN there exists β ∈ wΛN such
that aη(β) = bη(α), and so (Λ, S, η) is cofinal.

Now suppose (Λ, S, η) is cofinal. Fix (v, a), (w, b) ∈ (Λ×η S)
0. By hypoth-

esis there exists N ∈ Nk such that for all α ∈ wΛN , there exists β ∈ vΛs(α)
with aη(β) = bη(α). In particular for all (α, b) ∈ (w, b)(Λ ×η S)

N there is
(β, a) ∈ (v, a)Λs(α, b), and so Λ×η S is cofinal.

Theorem 4.12. Let Λ be an aperiodic row-finite k-graph with no sources,
η : Λ → S a functor, where S is a semigroup and Λ×η S the associated skew
product graph. Then C∗(Λ ×η S) is simple if and only if the system (Λ, S, η)
is cofinal.

Proof. If the system (Λ, S, η) is cofinal, then by Proposition 4.11, Λ ×η S is
cofinal. By Corollary 3.5, Λ ×η S is aperiodic and so by [23, Theorem 3.1],
C∗(Λ×η S) is simple.

Now suppose that C∗(Λ×ηS) is simple. Then by [23, Theorem 3.1], Λ×ηS
is cofinal. By Proposition 4.11 this implies that (Λ, S, η) is cofinal.

The condition of (Λ, S, η) cofinality is difficult to check in practice. For
1-graphs it was shown in [18, Proposition 5.13] that Λ ×d Zk is cofinal if Λ
is primitive1. We seek an equivalent condition for k-graphs which guarantees
(Λ, S, η) cofinality.

5 Primitivity and left-reversible semigroups A semigroup S is said to
be left-reversible if for all s, t ∈ S we have sS ∩ tS �= ∅. It is more common to
work with right-reversible semigroups, which are then called Ore semigroups
(see [13]). In analogy with the results of Dubriel it can be shown that a
left-reversible semigroup has an enveloping group Γ such that Γ = SS−1.

In equation (1) we see that functor η : Λ → S multiplies on the right in the
semigroup coordinate in the definition of the source map in a skew product
graph Λ ×η S. This forces us to consider left-reversible semigroups here. In
order to avoid confusion we have decided not to call them Ore.

Examples 5.1. (i) Any abelian semigroup is automatically right- and left-
reversible. Moreover, any group is a both a right- and left-reversible
semigroup.

(ii) Let N denote the semigroup of natural numbers under addition and N×

denote the semigroup of nonzero natural numbers under multiplication.
Let S = N× N× be gifted with the associative binary operation � given

1Actually strongly connected with period 1 which is equivalent to primitive
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by (m1, n1) � (m2, n2) = (m1n2 + m2, n1n2), then one checks that S
is a nonabelian left-reversible semigroup. It is not right-reversible; for
example, S(m,n) ∩ S(p, q) = ∅ when n = q = 0 and m �= p.

(iii) The free semigroup F+
n on n ≥ 2 generators is not an left-reversible

semigroup since for all s, t ∈ F+
n with s �= t we have sF+

n ∩ tF+
n = ∅ as

there is no cancellation, and so not only the left-reversibility but also the
right-reversibility conditions cannot be satisfied.

A preorder is a reflexive, transitive relation ≤ on a set X. A preordered
set (X,≤) is directed if the following condition holds: for every x, y ∈ X, there
exists z ∈ X such that x ≤ z and y ≤ z. A subset Y of X is cofinal if for
each x ∈ X there exists y ∈ Y such that x ≤ y. We say that sets X ≤ Y if
x ≤ y for all x ∈ X and for all y ∈ Y . We say that t ∈ S is strictly positive if
{tn : n ≥ 0} is a cofinal set in S.

The following result appears as [15, Lemma 2.2] for right-reversible semi-
groups.

Lemma 5.2. Let S be a left-reversible semigroup with enveloping group Γ, and
define ≥l on Γ by h ≥l g if and only if g−1h ∈ S. Then ≥l is a left-invariant
preorder that directs Γ, and for any t ∈ S, tS is cofinal in S.

Our first attempt at a condition on η which guarantees cofinality of (Λ, S, η)
is one which ensures that η takes arbitrarily large values on paths which ter-
minate a given vertex.

Definition 5.3. Let Λ be a k-graph with no sources and η : Λ → S be a
functor where S is a left-reversible semigroup. We will say that η is upper dense
if for all w ∈ Λ0 and a, b ∈ S there exists N ∈ Nk such that bη(wΛN) ≥l a.

Lemma 5.4. Let (Λ, d) be a row-finite k-graph with no sources then d is upper
dense for Λ.

Proof. Since Λ has no sources it is immediate that wΛN �= ∅ for all w ∈ Λ0

and N ∈ Nk. For any b, a ∈ Nk we have b + d(wΛN) = b + N ≥ a provided
N ≥ a.

Examples 5.5. (i) Let B2 be the 1-graph which is the path category of the
directed graph with a single vertex v and two edges e, f . Define a functor
η : B2 → N by η(e) = 1 and η(f) = 0. We may form the skew product
B2 ×η N with 1-skeleton:

. . . . . . .
(v, 0) (v, 1) (v, 2) (v, 3)
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Fix a, b ∈ N, then since n ∈ η(vBn
2 ) for all n ∈ N it follows that if we

choose N = a, then b + η(vBN
2 ) ≥ a and so η is upper dense. However

(B2,N, η) is not cofinal: Choose a = 1, b = 0, then for all N ≥ 0 there is
fN ∈ vBN

2 is such that

b+ η(fN) = 0 �= 1 + η(β) for all β ∈ B2v.

(ii) Define a functor η from T2 to N2 such that η(f1) = (2, 0), and η(f2) =
(0, 1). We may form the skew product T2 ×η N2 with the following 1-
skeleton:

.
(0, 0)

.
(0, 1)

.
(0, 2)

.
(0, 3)

.
(0, 4)

.
(0, 1)

.
(1, 1)

.
(1, 2)

.
(1, 3)

.
(1, 4)

.
(0, 2)

.
(1, 2)

.
(2, 2)

.
(3, 2)

.
(4, 2)

.
(0, 3)

.
(1, 3)

.
(2, 3)

.
(3, 3)

.
(4, 3)

We claim that the functor η is not upper dense: Fix b = (b1, b2) and a =
(a1, a2) in N2. Let N1 be such that b1+2N1 ≥ a1 and N2 be such that b2+
N2 ≥ a2 then bη(vTN

2 ) ≥l u where N = (N1, N2). Moreover (T2,N2, η)
is not cofinal: Let b = (0, 0) and a = (1, 0) then since η(fN1

1 fN2
2 ) =

(2N1, N2) it follows that there cannot be N = (N1, N2) ∈ N2 such that
for α ∈ vTN

2 there is β ∈ vT2v with bη(α) = aη(β).

(iii) Taking T2 again, we define a functor η : T2 → N2 by η(f1) = (1, 0) and
η(f2) = (1, 1). The skew product graph has 1-skeleton:

. . . . .

. . . . .

. . . . .

We claim that η is upper dense: Fix b = (b2, b2) and a = (a1, a2) in N2

then there isN1 such that b1+N1 ≥ a1 andN2 such that b2+N1+N2 ≥ a2.
Then with N = (N1, N2) for all α ∈ vTN

2 we have bη(α) ≥l a. In this case
(T2,N2, η) is cofinal: Fix b = (b1, b2) and a = (a1, a2) in N2. Then there
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is N1 such that b1 + N1 = a1 +m1 for some m1 ∈ N and N2 such that
b2 +N1 +N2 = a2 +m2 for some m2 ∈ N. Hence for all α ∈ vTN

2 where
N = (N1, N2) there is β = (fm1

1 , fm2
2 ) ∈ vT2v such that bη(α) = aη(β).

The last two examples show that η being upper dense is not sufficient to guar-
antee cofinality of (Λ, S, η). The following definition allows for the interaction
of the values of η at different vertices of Λ and the following result gives us
the required extra condition.

Definition 5.6. Let Λ be a k-graph and η : Λ → S be a functor where S is
a left-reversible semigroup. We say that η is S-primitive for Λ if there is a
strictly positive t ∈ S such that for all v, w ∈ Λ0 we have vη−1(s)w �= ∅ for all
s ∈ S such that s ≥l t.

Remarks 5.7. (i) The condition that t is strictly positive in the above defi-
nition guarantees that η(vΛw) is cofinal in S for all v, w ∈ Λ0.

(ii) If η : Λ → S is S-primitive for Λ where S is a left-reversible semigroup,
then if we extend η to Γ = SS−1 then η is Γ-primitive for Λ.

Examples 5.8. (i) Let Λ be a k-graph. Then the degree functor d : Λ → Nk

is Nk–primitive for Λ if and only if Λ is primitive as defined in Section
2.3. For this reason we will say that Λ is primitive if d is Nk primitive
for Λ.

(ii) As in Examples 5.5 (i) let η : B2 → N be defined by η(e) = 1, η(f) = 0.
Then the functor η is N-primitive since η−1(n) is nonempty for all n ∈ N.
Hence N-primitivity does not, by itself, guarantee cofinality.

(iii) As in Examples 5.5 (ii) let η be the functor from T2 to N2 such that
η(f1) = (2, 0), and η(f2) = (0, 1). Then the functor η is not N2-primitive
for T2: Take t = (2m,n) ≥ 0 then if s = (2m+1, n) we have vη−1(s)v = ∅
and s ≥l t. Similarly if t = (2m+1) ≥ 0 then if s = (2m+2, n) we have
vη−1(s)v = ∅ and s ≥l t.

(iv) As in Examples 5.5 (iii) let η : T2 → N2 be defined by η(f1) = (1, 0)
and η(f2) = (0, 1). Then η is not N2-primitive for T2 as vη

−1(m,n)v = ∅
whenever n > m.

The last two examples above illustrate that upper density and primitivity
are unrelated conditions on a k-graph. Together they provide a necessary
condition for cofinality.

Proposition 5.9. Let Λ be a k-graph with no sources and η : Λ → S be a
functor where S is a left-reversible semigroup. If (Λ, S, η) is cofinal then η is
upper dense. If η is S-primitive for Λ and upper dense then (Λ, S, η) is cofinal.
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Proof. Suppose that (Λ, S, η) is cofinal. Fix w ∈ Λ0 and a, b ∈ S and let v be
any vertex of Λ. By cofinality of (Λ, S, η) there exists N ∈ Nk such that for
all α ∈ wΛN there is β ∈ vΛs(α) such that aη(β) = bη(α). Then any element
of bη(wΛN) is of the form

bη(α) = aη(β) ≥l a.

Suppose η is S-primitive and upper dense for Λ. Since η is S–primitive for
Λ there exists t ∈ S such that for all v, w ∈ Λ0 we have vη−1(s)w �= ∅ for
all s ≥l t. Fix v, w ∈ Λ0 and a, b ∈ S. Since η is upper dense there exists
N ∈ Nk such that bη(α) ≥l at for all α ∈ wΛN . Since S is left-reversible, it is
directed, and so by definition bη(α) = atu for some u ∈ S. But tu ≥l t and so
since η is S–primitive there exists β ∈ vΛs(α) such that η(β) = tu and hence
bη(α) = aη(β).

Corollary 5.10. Let Λ be a row-finite k-graph such that d is Nk primitive for
Λ then (Λ,Nk, d) is cofinal.

Proof. Since d is Nk primitive for Λ it follows that Λ has no sources. The
result then follows from Lemma 5.4 and Proposition 5.9.

Example 5.11. Let η : T2 → S be any functor, then η(S) is a subsemigroup of
S since T2 has a single vertex; moreover η is η(S)–primitive for T2. Hence if η
is upper dense for T2, it follows that (T2, η(S), η) is cofinal. In particular, in
Example5.5 (ii) one checks that (T2, η(N2, η) is cofinal.

Theorem 5.12. Let Λ be an aperiodic k-graph, η : Λ → S be a functor into
a left-reversible semigroup, and η be S–primitive for Λ. Then C∗(Λ ×η S) is
simple if and only if η is upper dense.

Proof. If η is upper dense then the result follows from Proposition 5.9. On the
other hand if C∗(Λ×η S) is simple then the result follows from Theorem 4.12
and Corollary 3.5.

6 Skew products by a group Let Λ be a row-finite k-graph. A functor
η : Λ → G defines a coaction δη on C∗(Λ) determined by δη(sλ) = sλ ⊗ η(λ).
It is shown in [14, Theorem 7.1] that C∗(Λ×ηG) is isomorphic to C∗(Λ)×δη G.
Hence we may relate the simplicity of the C∗-algebra of a skew product graph
to the simplicity of the associated crossed product. This can be done by using
the results of [20].

Following [14, Lemma 7.9], for g ∈ G the spectral subspace C∗(Λ)g of the
coaction δη is given by

C∗(Λ)g = span{sλs∗µ : η(λ)η(µ)−1 = g}.
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We define sp(δη) = {g ∈ G : C∗(Λ)g �= ∅}, to be the collection of non-empty
spectral subspaces. The fixed point algebra, C∗(Λ)δη of the coaction is defined
to be C∗(Λ)1G . For more details on the coactions of discrete groups on k-graph
algebras, see [14, §7] and [20].

We give necessary and sufficient conditions for the skew product graph C∗-
algebra to be simple in terms of the fixed-point algebra as our main result in
Theorem 6.3. We are particularly interested in the case when η is the degree
functor.

Definition 6.1. Let Λ be a row-finite k-graph, G be a discrete group and
η : Λ → G a functor, then we define

Γ(η) = {g ∈ G : g = η(λ)η(µ)−1 for some λ, µ ∈ Λ with s(λ) = s(µ)}.

Lemma 6.2. Let Λ be a row-finite graph with no sources and η : Λ → G a
functor, where G is a discrete group.

(a) If (Λ, G, η) is cofinal then Γ(η) = G.

(b) sp(δη) = G if and only if Γ(η) = G.

Proof. Fix g ∈ G and write g = b−1a for some a, b ∈ G. Now fix v, w ∈ Λ0;
since (Λ, G, η) is cofinal there exist λ, µ ∈ Λ with s(λ) = s(µ) such that
aη(µ) = bη(λ). Hence b−1a = η(λ)η(µ)−1 and so g ∈ Γ(η). Since g was
arbitrary the result follows.

The second statement follows by definition.

Theorem 6.3. Let Λ be an aperiodic row-finite k-graph with no sources, η :
Λ → G a functor and δη the associated coaction of G on C∗(Λ). Then C∗(Λ×η

G) is simple if and only if C∗(Λ)δη is simple and Γ(η) = G.

Proof. By [14, Theorem 7.1] it follows that C∗(Λ ×η G) is isomorphic to
C∗(Λ)×δη G. Then by [20, Theorem 2.10] C∗(Λ)×δη G is simple if and only if
C∗(Λ)δη is simple and sp(δη) = G. The result now follows from Lemma 6.2.

Example 6.4. Let Λ be a row-finite k-graph with no sources and d : Λ → Nk

be the degree functor. We claim that Γ(d) = Zk. Fix p ∈ Zk, and write
p = m− n where m,n ∈ Nk. Since Λ has no sources, for every v ∈ Λ0 there is
λ ∈ Λmv and µ ∈ Λnv. Then

d(λ)− d(µ) = m− n = p ∈ Γ(d),

and so Γ(d) = Zk. Since Γ(d) = Zk, and (Λ,Zk, d) is aperiodic, we have that
C∗(Λ)δd is simple if and only (Λ,Nk, d) is cofinal.

We seek conditions on Λ that will guarantee (Λ,Nk, d) is cofinal.
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7 The gauge coaction The coaction δd of Zk on C∗(Λ) defined in Section 6
is such that the fixed point algebra C∗(Λ)δd is precisely the fixed point algebra
C∗(Λ)γ for the canonical gauge action of Tk on C∗(Λ) by the Fourier transform
(cf. [2, Corollary 4.9].

By [9, Lemma 3.3] the fixed point algebra C∗(Λ)γ is AF, and is usually
referred to as the AF core. In Theorem 7.2 we use the results of the last two
sections to give necessary and sufficient conditions for the AF core C∗(Λ)γ to
be simple when Λ0 is finite. When there are infinitely many vertices we show,
in Theorem 7.8 that in many cases the AF core is not simple.

The AF core of a k-graph algebra plays a significant role in the development
of crossed products by endomorphisms. Results of Takehana and Katayama [8]
show that when Λ is a finite 1-graph such that the core C∗(Λ) is simple, then
every nontrivial automorphism of C∗(Λ) is outer (see [17, Proposition 3.4]).

We saw in Example 4.9 that a k-graph being strongly connected is not
enough to guarantee that Λ×d Zk is cofinal, and hence by [23, Theorem 3.1]
C∗(Λ×dZk) is not simple and then by Theorem 6.3 the AF core is not simple.
Another condition is required to guarantee that Λ ×d Zk is cofinal, which is
suggested by [18] and was introduced in Section 5:

Theorem 7.1. Let Λ be a row-finite k-graph with no sinks and sources and
Λ0 finite. If (Λ, d,Zk) is cofinal then Λ is primitive.

Proof. We claim that for v ∈ Λ0 there is N(v) ∈ Nk such that for all n ≥ N(v)
we have vΛnv �= ∅. Fix (v, 0) ∈ (Λ ×d Zk)0 then for each w ∈ Λ0, when we
apply the cofinality condition to (w, 0) ∈ (Λ×d Zk)0 we obtain Nw ∈ Nk such
that (v, 0)(Λ ×d Zk)s(α, 0) �= ∅ for all (α, 0) ∈ (w, 0)(Λ ×d Zk)Nw . Define
N = maxw∈Λ0{Nw}, which is finite since Λ0 is finite.

By Proposition 4.5 it follows that Λ is strongly connected, hence there
exists α ∈ vΛv with d(α) = r > 0. Hence, there exists t ≥ 1 such that
tr ≥ N . Let N(v) = tr.

Let m = n − tr ≥ 0. Since Λ has no sources, vΛm �= ∅; hence there
exists γ ∈ vΛm. Let w = s(γ). For (v, 0), (w, 0) ∈ (Λ ×d Zk)0, we have
(αt, 0) ∈ (v, 0)(Λ ×d Zk)tr where tr ≥ N ≥ Nw. By cofinality and Lemma
4.2 (b), there exists (β, 0) ∈ (w, 0)(Λ ×d Zk)(v, tr) as s(αt, 0) = (v, tr). As
β ∈ wΛtrv it follows that γβ ∈ vΛnv, which proves the claim.

The following result generalises results from [18]:

Theorem 7.2. Let (Λ, d) be a row-finite k-graph with no sinks or sources,
and Λ0 finite. Then C∗(Λ)δd is simple if and only if Λ is primitive.

Proof. Suppose that Λ is primitive. Then (Λ,Zk, d) is strongly connected and
cofinal by Remarks 2.8. Hence C∗(Λ×dZk) is simple and so C∗(Λ)δd is simple
by Theorem 6.3.
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Suppose that C∗(Λ)δd is simple. Recall from Example 6.4 that since Λ has
no sources then Γ(d) = Zk. Then by Theorem 6.3, C∗(Λ ×d Zk) is simple,
and hence (Λ, d,Zk) is cofinal by [23, Theorem 3.1] and Proposition 4.11. By
Theorem 7.1 this implies that Λ is primitive.

Example 7.3. Since it has a single vertex it is easy to see that the 2-graph
F2
θ defined in Examples 2.1 (d) is primitive. Hence by Theorem 7.2 we see

that C∗(F2
θ)

γ is simple for all θ. Indeed in [4, §2.1] it is shown that C∗(F2
θ)

γ ∼=
UHF(mn)∞.

We now turn our attention to the case when Λ0 is infinite. We adapt the
technique used in [18] to show that, in many cases the AF core is not simple.

Definition 7.4. Let Λ be a row-finite k-graph with no sources. For v ∈ Λ0,
n ∈ Nk let

V (n, v) = {s(λ) : λ ∈ vΛm,m ≤ n}
FV (n, v) = V (n, v)\ ∪k

i=1 V (n− ei, v).

Remarks 7.5. For v ∈ Λ0, m ≤ n ∈ Nk we have, by definition, that V (m, v) ⊆
V (n, v).

For v ∈ Λ0, n ∈ Nk the set FV (n, v) denotes those vertices which connect
to v with a path of degree n and there is no path from that vertex to v with
degree less than n.

Lemma 7.6. Let Λ be a row-finite k-graph with no sources. For v ∈ Λ0,
n ∈ Nk then V (n, v) is finite and if V (n) = V (n− ei) for some 1 ≤ i ≤ k then
V (n+ rei) = V (n− ei) for all r ≥ 0.

Proof. Fix, v ∈ Λ0, n ∈ Nk, since Λ row-finite it follows that ∪m≤nvΛ
m is

finite and hence so is V (n, v).
Suppose, without loss of generality that V (n) = V (n − e1). Let w ∈

V (n+ e1), then there is λ ∈ vΛn+e1w. Now λ(0, n) ∈ vΛn and so s(λ(0, n)) ∈
V (n) = V (n − e1). Hence there is µ ∈ vΛms(λ(0, n)) for some m ≤ n − e1
and so µλ(n, n + e1) ∈ vΛm+e1 . Since s(µλ(n, e + e1)) = s(λ) = w and
m + e1 ≤ n it follows that w ∈ V (n). As w was an arbitrary element of
V (n+ e1) it follows that V (n+ e1) ⊆ V (n) = V (n− e1). By Remarks 7.5 we
have V (n−e1) ⊆ V (n+e1) and so V (n+e1) = V (n−e1). It then follows that
V (n+ re1) = V (n− e1) for r ≥ 0 by an elementary induction argument.

We adopt the following notation, used in [11]: Let Λ be a k-graph for 1 ≤ i ≤ k
we set ΛNei = ∪r≥0Λ

rei .

Proposition 7.7. Let Λ be a row-finite k-graph with no sources such that for
all w ∈ Λ0 and for 1 ≤ i ≤ k, the set s−1

(
wΛNei

)
is infinite. Then for all

n ∈ Nk, v ∈ Λ0 we have FV (n, v) �= ∅.
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Proof. Suppose, for contradiction, that FV (n, v) = ∅ for some n ∈ Nk and
v ∈ Λ0. Then, without loss of generality we may assume that V (n) = V (e−e1).

Let λ ∈ vΛn, then s(λ) ∈ V (n) = V (n− e1). Fix r ≥ 0, then since Λ has
no sources there is µ ∈ s(λ)Λre1 . Then λµ ∈ vΛn+re1 and so s(λµ) = s(µ) ∈
V (n+re1, v). By Lemma 7.6 it follows that V (n+re1) = V (n−e1) and so for
any µ ∈ s(λ)ΛNe1 we have s(µ) ∈ V (n−e1). By Remarks 7.5 V (n−e1) is finite
and so we have contradicted the hypothesis that s−1

(
wΛNe1

)
is infinite.

Note that k-graphs satisfying the hypothesis of Proposition 7.7 must have
infinitely many vertices. The following result generalises results from [18]:

Theorem 7.8. Let Λ be a row-finite k-graph with no sources such that for all
w ∈ Λ0 and for 1 ≤ i ≤ k, the set s−1

(
wΛNei

)
is infinite. Then Λ ×d Zk is

not cofinal.

Proof. Suppose, for contradiction, that Λ×d Zk is cofinal.
Fix v ∈ Λ0 then since Λ is row-finite and has no sources W = s−1 (vΛe1)

is finite and nonempty. Without loss of generality let W = {w1, . . . , wn}.
Since Λ ×d Zk is cofinal, for 1 ≤ i ≤ n if we consider (wi, 0) and (v, 0) ∈

Λ0 × Zk then there is Ni ∈ Nk such that for all (α, 0) ∈ (wi, 0)
(
Λ×d Zk

)Ni

we have (v, 0)
(
Λ×d Zk

)
(s(α), Ni) �= ∅. Let N = max{N1, . . . , Nn}. By

Proposition 7.7 FV (N + e1, v) �= ∅, hence there is λ ∈ vΛN+e1 such that
there is no path of degree less than N + e1 from s(λ) to v. Without loss of

generality s(λ(0, e1)) = w1, and so (λ(e1, N + e1), 0) ∈ (w1, 0)
(
Λ×d Zk

)N
.

Since N ≥ N1 and Λ has no sources, by Lemma 4.2(ii) there is (α, 0) ∈
(v, 0)

(
Λ×d Zk

)
(s(λ), N) which implies that α ∈ vΛNs(λ), contradicting the

defining property of λ ∈ vΛN+e1 .

Examples 7.9. 1. Let Λ be a strongly connected k-graph with Λ0 infinite,
then Λ has no sources and for all w ∈ Λ0 we have s−1

(
wΛNei

)
is infinite

for 1 ≤ i ≤ k. Hence by Theorem 7.8 it follows that Λ ×d Zk is not
cofinal.

2. Let Λ be a k-graph with Λ0 infinite, no sources and no paths with the
same source and range. Then for all w ∈ Λ0 we have s−1

(
wΛNei

)
is

infinite for 1 ≤ i ≤ k. Hence by Theorem 7.8 it follows that Λ×d Zk is
not cofinal.
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Abstract. Using new properties (Theorem B in Section 2) of the concept of fuzzy
points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1), we first prove
that every fuzzy set λ �= 0 is decomposed by two fuzzy sets λO(X,σf ) and λ∗

PC(X,σf )

(Theorem A;cf. Theorem 2.5(ii)), where (X, σf ) is a specified Chang’s fuzzy space
(Definition 1.2, Remarks 1.3,1.4). Namely, λ = λO(X,σf ) ∨ λ∗

PC(X,σf ) and λO(X,σf ) ∧
λ∗
PC(X,σf ) = 0 hold, and the fuzzy set λO(X,σf ) is fuzzy open in (X, σf ) (Theo-

rem 2.5(iii)). Finally, these results are applied to the case where X = Zn(n > 0)
and σf = (κn)f (Theorem 3.3 and Theorem 3.5), where the topological space (X, σ) is
the digital n-space (Zn, κn) (cf. Section 3).

1 Introduction and preliminaries In 1965, Zadeh [26] introduced the fundamen-
tal concept of fuzzy sets, which formed the backbone of fuzzy mathematics. After his works,
Chang [4] used them to introduce the concept of a fuzzy topology. Throughout the present
paper, the symbol I will denote the unit interval [0, 1] and Y a nonempty set. A fuzzy set
on Y ([26]) is a function with domain Y and values in I, i.e., an element of IY .

We recall some concepts and properties as follows. Let (Y, τY ) be a Chang’s fuzzy
topological space [4].

Definition 1.1 (C.L. Chang [4, Definition 2.2]) A Chang’s fuzzy topological space is a pair
(Y, τY ), where Y is a non-emptyset and τY is a Chang’s fuzzy topology on it, where τY ⊂ IY ,
i.e., a family τY of fuzzy sets satisfying the following three axioms:

(1) 0, 1 ∈ τY ;
(2) if λ ∈ τY and µ ∈ τY , then λ ∧ µ ∈ τY ;
(3) let J be an index set. If λj ∈ τY for each j ∈ J , then

∨
{λj |j ∈ J} ∈ τY .

The elements of τY are called fuzzy open sets of (X, τY ). A fuzzy set µ is called a fuzzy
closed set of (Y, τY ) if the complement µc ∈ τY .

For a Chang’s fuzzy topological space (Y, τY ), a fuzzy set µ on Y is said to be fuzzy preopen
[23] if µ ≤Int(Cl(µ)) holds in (Y, τY ). The fuzzy complement of a fuzzy preopen set is said
to be fuzzy preclosed. Namely, a fuzzy set λ is fuzzy preclosed in (Y, τY ) if and only if
Cl(Int(λ)) ≤ λ holds in (Y, τY ). A fuzzy set λ is said to be fuzzy semi-open [1] in (Y, τY )
if there exists a fuzzy open set ν on Y such that ν ≤ λ ≤Cl(ν) holds in (Y, τY ). It is well
known that a fuzzy set λ is fuzzy semi-open if and only if λ ≤Cl(Int(λ)). For a subset A
of X,χA denotes the characteristic function of A, i.e., χA(y) := 1 if y ∈ A and χA(y) := 0
if y �∈ A. The concept of the ordinary preopen sets (resp. ordinary semi-open sets) was
introduced by [21] (resp. [17], [10]).

Definition 1.2 (e.g., [19, Example II, p.244], [8, p.161]) Let (X,σf ) be a fuzzy topological
space induced by a topological space (X,σ), where X is a nonempty set and σf := {χU |U ∈
σ}; (X,σf ) is an example of a Chang’s fuzzy topological space [4] (cf. Definition 1.1 above).

∗2010 Math. Subject classification–:54A40.
Key words and phrases —Topology; Chang’s fuzzy topological spaces; Fuzzy points; Fuzzy preclosed sets;
Fuzzy open sets; Decompositions of fuzzy sets; The digital n-spaces.
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There is a bijection, say f , between σ and σf which is defined by f(U) = χU for every U ∈ σ,
because an ordinary subset U is open in (X,σ) (i.e., U ∈ σ) if and only if the characteristic
function χU is fuzzy open in (X,σf )(i.e., χU ∈ σf ). However, the below Remark 1.3 and
Remark 1.4 show that the fuzzy topology σf has some interesting and distinct properties
comparing the given ordinary topology σ.

Let SO(X,σ) (resp. FSO(X,σf )) denote the family of all ordinary semi-open sets (resp.
fuzzy semi-open sets) in (X,σ) (resp. (X,σf )); then σ ⊂ SO(X, σ) and σf ⊂ FSO(X, σf )
hold. An extension of f : σ → σf to SO(X,σ), say fs : SO(X,σ) → FSO(X, σf ), is well
defined by fs(A) := χA for every A ∈ SO(X, σ). The following Remark 1.3 shows that
fs : SO(X,σ) → FSO(X,σf ) is not onto.

Remark 1.3 For the following topological space (X, σ), the correspondence fs : SO(X,σ) →
FSO(X, σf ) is not onto, where fs(V ) := χV for every set V ∈ SO(X,σ). Let X := {a, b, c}
and σ := {∅, {a}, {b}, {a, b}, X}. Then, we have SO(X, σ) = σ ∪ {{a, c}, {b, c}}; and
{χU |U ∈ SO(X,σ)} = fs(SO(X,σ)). Let λc be a fuzzy set on X defined by λc(a) =
0, λc(b) = 1, λc(c) = t, where t is a real number with 0 < t < 1. Then, we see that λc is
fuzzy semi-open in (X,σf ), i.e., λc ∈ FSO(X,σf )). Indeed, there exists a fuzzy open set
χ{b} such that χ{b} ≤ λc ≤Cl(χ{b}) hold in (X,σf ), because Cl(χ{b}) = χCl({b}) = χ{b,c}
hold. Since λc(c) = t and 0 < t < 1, we see that λc �= χA for any set A ⊂ X; and so
λc �∈ fs(SO(X,σ)). Namely, fs : SO(X,σ) → FSO(X, σf ) is not onto.

We find an alternative example in [19, (3.5),(III-11)] which is shown on the digital plane
(X,σ) = (Z2, κ2). And, by Remark 3.6 in Section 3, it’s general version for the digital
n-space (Zn, κn) is given.

The below Remark 1.4 shows that a property for a topological space (X, σ) does not be
hereditary to (X,σf ). In order to explain it, we recall some definitions and properties (∗
1)-(∗ 3) as follows.
In 1970, the concept of T1/2-spaces (cf. (∗3) below) was studied initiately by Levine [18]
by introducing the concept of generalized closed sets for a topological space. The work on
generalized closed sets and their related works are developing by many authors until now. A
subset A of (X,σ) is said to be generalized closed [18, Definition 2.1] in (X,σ), if Cl(A) ⊂ O
holds in (X,σ) whenever A ⊂ O and O is open in (X, σ). The complement of a generalized
closed set of (X,σ) is called generalized open [18, Definition 4.1] in (X, σ). It is well known
that:

(∗1) ([18, Theorem 2.4]) the union of two “generalized closed sets” is ”generalized closed”;
and

(∗2) ([18, Example 2.5]) the intersection of two “generalized closed sets” is generally not
“generalized closed”. Moreover, it is well known that every closed set is generalized closed.

(∗3) A topological space (X,σ) is said to be T1/2 [18, Definition 5.1] if every “generalized
closed set” of (X,σ) is closed in (X,σ). By Dunham [6], it was proved that a topological
space (X,σ) is T1/2 if and only if, for each point x ∈ X, {x} is open or closed ([6, Theorem
2.5]).
In 1970, E. Khalimsky [11] studied initiately the concept of the digital line (Z, κ) and it is
also called the Khalimsky line (e.g., Section 3 below; cf. [13] and references there, [12], [14,
p.905, line −5],[15, p.175]; e.g., [7]). The digital line (Z, κ) is an interesting and importante
example of the T1/2-topological space ([5, Example 4.6]) and, moreover, (Z, κ) is a T3/4-space
([5, Definition 4, Theorem 4.1]).

Remark 1.4 The digital line (Z, κ) is a T1/2-topological space ([5, Example 4.6]); however
the induced fuzzy topological space (Z, κf ) from (Z, κ) is not fuzzy T1/2 ([8, Example 4.8]).
Here, a fuzzy topological space (Y, τY ) is said to be fuzzy T1/2 [2] if every fuzzy generalied
closed set is fuzzy closed. The above property shows that the property on such separation
axiom for a topological space (X,σ) does not be hereditary to the corresponding fuzzy
separation axiom for (X,σf ) even if there is a bijectin f : σ → σf .
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One of the purposes in the present paper is to prove the following Theorem A using some
properties on (X,σf ) in Section 2 below. Roughly speaking, when a fuzzy set on X, say
λ, is given, then we can consider a decomposition such that λ = λ1 ∨ λ2(λ1 ∧ λ2 = 0) and
λ1 and λ2 are two fuzzy sets characterized from an induced and specified fuzzy topological
space (X,σf ), where σ is a topology of X. And so, let λ ∈ IX be a given fuzzy set on X;
when we choice many topologies on X, say σ, σ′,...., we can get many decompositions of the
fuzzy set λ , which are characterized from the induced and specified fuzzy topologies on X,
say σf , (σ′)f ,...., respectively. Some analogous decomposition properties of a fuzzy set are
investigated by [19, Theorem 3.1, Corollary 3.7] and [9, Corollary 2.9, Theorem 3.6].

Theorem A (Theorem 2.5 (ii) in Section 2 below) Let λ ∈ IX be a fuzzy set such that
λ �= 0. Let (X,σf ) be a fuzzy topological space induced by (X,σ). Then, we have the
following decomposition of λ:
λ = λO(X,σf ) ∨ λ∗

PC(X,σf ) and λO(X,σf ) ∧ λ∗
PC(X,σf ) = 0.

In Section 3 we have the explicite form of λO(Zn,(κn)f ) and λ∗
PC(Zn,(κn)f ) for the case

where (X,σ) = (Zn, κn) and (X,σf ) = (Zn, (κn)f ) (cf. Corollary 3.1, Theorem 3.5 below).

2 Proof of Theorem A In the present section we prove Theorem A. We need the
concept of fuzzy points in the sense of Pu Pao-Ming and Liu Ying-Ming (Definition 2.1
below), the following notations (Notation I below) and a result (Theorem B below).

In the present paper, for the concept of fuzzy points, we adopt Pu’s definition of a fuzzy
point in the sense of ([22]).

Definition 2.1 (Pu Pao-Ming and Liu Ying-Ming [22, Definition 2.1], e.g., [19, Definition
1.3]) A fuzzy set on a set Y is said to be fuzzy point if it takes the value 0 for all point y ∈ Y
except one point, say x ∈ Y . If it value at x is a (0 < a ≤ 1), we denote this fuzzy point by
xa. We note that supp(xa) = {a} holds and 0 < a ≤ 1. Namely, for a point x ∈ Y and a
real number a ∈ I such that 0 < a ≤ 1,
• a fuzzy point xa ∈ IY is a fuzzy set defined as, for any point y ∈ Y, xa(y) := a if
y = x; xa(y) := 0 if y �= x.

Notation I. For a Chang’s fuzzy topological space (Y, τY ),
(i) FPO(Y, τY ) := {λ ∈ IY | λ is fuzzy preopen in (Y, τY )},

FPC(Y, τY ) := {λ ∈ IY | λ is fuzzy preclosed in (Y, τY )}.
Namely, by definition, FPO(Y, τY ) = {λ ∈ IY |λ ≤ Int(Cl(λ)) holds in (Y, τY )} and
FPC(Y, τY ) = {λ ∈ IY | Cl(Int(λ)) ≤ λ holds in (Y, τY )}.
(ii) For a fuzzy set λ ∈ IY such that λ �= 0 (i.e., supp(λ) := {x ∈ Y |λ(x) �= 0} �= ∅),

O(λ) := {y ∈ supp(λ)| yλ(y) ∈ τY },
PC(λ) := {y ∈ supp(λ)| yλ(y) ∈ FPC(Y, τY )},
PC∗(λ) := {y ∈ supp(λ)| yλ(y) ∈ FPC(Y, τY ) and yλ(y) �∈ τY }.

In the category of fuzzy topological spaces (X,σf ) induced by topological spaces (X, σ),
we know the following theorem [19], say Theorem B in the present paper:
Theorem B (i) ([19, (3.6)(i)]) Every fuzzy point xa is fuzzy open or fuzzy preclosed in
(X, σf ). Namely, for every fuzzy point xa, we have xa ∈ σf ∪ FPC(X, σf ).

(ii) ([19, (3.6)(ii)]) A fuzzy point xa is fuzzy open in (X,σf ) if and only if a = 1 and {x}
is open in (X,σ).

(iii) ([19, (3.2)]) For a fuzzy set λ on X, Cl(λ) = χCl(supp(λ)) holds in (X, σf ); and
Int(λ) = χInt(λ−1({1})) holds in (X,σf ). �

Theorem B (i) above is a fuzzy version of the following property:([3, Lemma 2.4]) for a
topological space (X,σ), every singleton {x} is open or preclosed in (X, σ).
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For a fuzzy set λ on Y and a fuzzy topological space (Y, τY ), we define three fuzzy sets
λO(Y,τY ), λPC(Y,τY ) and λ∗

PC(Y,τY ) as follows.

Definition 2.2 Let λ ∈ IY be a fuzzy set such that λ �= 0 and (Y, τY ) a Chang’s fuzzy
topological space. The following fuzzy sets are well defined: for λ above,

(i) λO(Y,τY ) :=
∨
{xλ(x) ∈ IY | xλ(x) ∈ τY } if O(λ) �= ∅; λO(Y,τY ) := 0 if O(λ) = ∅;

(ii) λPC(Y,τY ) :=
∨
{xλ(x) ∈ IY | xλ(x) ∈ FPC(Y, τY )} if PC(λ) �= ∅; λPC(Y,τY ) := 0 if

PC(λ) = ∅,
(iii) λ∗

PC(Y,τY ) :=
∨
{xλ(x) ∈ IY | xλ(x) ∈ FPC(Y, τY ) and xλ(x) �∈ τY } if PC∗(λ) �= ∅;

λ∗
PC(Y,τY ) := 0 if PC∗(λ) = ∅.

Lemma 2.3 Let λ be a fuzzy set in Y such that λ �= 0, i.e., supp(λ) �= ∅ and (Y, τY ) a
Chang’s fuzzy topological space. Then, we have the following properties:

(i) λO(Y,τY ) = 0 holds if and only if xλ(x) �∈ τY for each point x ∈supp(λ) (i.e., O(λ) = ∅).
(ii) λ∗

PC(Y,τY ) = 0 if and only if xλ(x) �∈ FPC(Y, τY ) or xλ(x) ∈ τY for each point
x ∈supp(λ) (i.e., PC∗(λ) = ∅).

(iii) (a) If O(λ) �= ∅, then λO(Y,τY ) =
∨
{xλ(x)| x ∈ O(λ)}.

(b) If PC(λ) �= ∅, then λPC(Y,τY ) =
∨
{xλ(x)| x ∈ PC(λ)}.

(c) If PC∗(λ) �= ∅, then λ∗
PC(Y,τY ) =

∨
{xλ(x)| x ∈ PC∗(λ)}.

(iv) λ∗
PC(Y,τY ) ≤ λPC(Y,τY ) ≤ λ hold.

Proof. (i) (Necessity) Suppose that there exists a point z ∈supp(λ) such that zλ(z) ∈ τY .
Then, O(λ) �= ∅. For the point z we set Az := {xλ(x)(z) ∈ I|xλ(x) ∈ τY }; and so Az �= ∅.
Then, by Definition 2.2 (i), (λO(Y,τY ))(z) = supAz and so λO(Y,τY )(z) = sup{λ(z), 0} =
λ(z). Indeed, xλ(x)(z) = λ(z) or 0. Thus we have λO(Y,τY ) �= 0; this contradicts the
assumption. (Sufficiency) The proof is obtained by Definition 2.2 (i). (ii) The
sufficiency is obtained by Definition 2.2 (iii). (Necessity) Suppose that there exists a
point z ∈supp(λ) such that zλ(z) ∈ FPC(Y, τY ) and zλ(z) �∈ τY . Then, PC∗(λ) �= ∅. For
the point z, we set B∗

z : ={xλ(x)(z) ∈ I|xλ(x) ∈ FPC(Y, τY ) and xλ(x) �∈ τY } and note
B∗

z �= ∅. Then λ∗
PC(Y,τY )(z) = supB∗

z . Since xλ(x)(z) = λ(z) or 0 and z ∈supp(λ) we have
λ∗
PC(Y,τY )(z) = sup{λ(z), 0} = λ(z) and hence λ∗

PC(Y,τY )(z) > 0 for the point z. Namely,
we have λ∗

PC(Y,τY ) �= 0; this contradicts the assumption. (iii) By using definitions (cf.
Notation I, Definition 2.2), it is shown that {xλ(x)| xλ(x) ∈ τY } = {xλ(x)| x ∈ O(λ)},
{xλ(x)| xλ(x) ∈ FPC(Y, τY )}={xλ(x)| x ∈ PC(λ)} and {xλ(x)| xλ(x) ∈ FPC(Y, τY ), xλ(x) �∈
τY }={xλ(x)| x ∈ PC∗(λ)} hold. Thus we have the required equalities. (iv) It is obvious
that supp(λ) ⊃ PC(λ) ⊃ PC∗(λ) (cf. Notation above). Therefore, we have that λ ≥
λPC(Y,τY ) ≥ λ∗

PC(Y,τY ), because λ =
∨
{xλ(x)| x ∈supp(λ)} holds ([22, Definition 2.2]; e.g.,

[16, Lemma 2.1], [19, Lemma 2.5(i)]) and the equalities (b) and (c) hold in (iii) above. �

Theorem 2.4 Let λ ∈ IX be a fuzzy set such that λ �= 0. For a fuzzy topological space
(X,σf ) induced by a topological space (X,σ), λO(X,σf ) = 0 if and only if λ = λ∗

PC(X,σf ) =
λPC(X,σf ) hold.

Proof. (Necessity) It follows from assumption and Lemma 2.3(i) that xλ(x) �∈ σf for ev-
ery point x ∈supp(λ). Thus, by Theorem B(i) above, it is shown that, for every point
x ∈supp(λ), xλ(x) is fuzzy preclosed in (X,σf ). Thus, we have λ =

∨
{xλ(x)| x ∈supp(λ)} =∨

{xλ(x)| xλ(x) ∈ FPC(X,σf ) and xλ(x) �∈ σf} = λ∗
PC(X,σf ). Therefore, using Lemma 2.3(iv),

we conclude that λ = λ∗
PC(X,σf ) = λPC(X,σf ) hold. (Sufficiency) Assume that

λ = λPC(X,σf )=λ∗
PC(X,σf ) hold. We recall that λ∗

PC(X,σf )=
∨
{xλ(x)|xλ(x) ∈ FPC(X, σf )

and xλ(x) �∈ σf}=
∨
{xλ(x)| x ∈ PC∗(λ)} (cf. Lemma 2.3 (iii)). Suppose PC∗(λ) = ∅.
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Then, λ∗
PC(X,σf ) = 0 ( cf. Definition 2.2(iii)); and so we have λ = 0; this contradicts the

assumption on λ (i.e., supp(λ) �= ∅ ). Thus, we consider the case where PC∗(λ) �= ∅ for
λ. We claime that supp(λ) ⊂ PC∗(λ). Indeed, let w be any point such that w �∈ PC∗(λ).
Then, for each point x ∈ PC∗(λ), we have xλ(x)(w) = 0, because of w �= x. Here, we put
B∗

w := {xλ(x)(w) ∈ I|x ∈ PC∗(λ)}; then B∗
w = {0}; and so we have (λ∗

PC(X,σf ))(w) =sup
B∗

w = 0. By using the assumption of the present Sufficiency, it is shown that λ(w) = 0 and
so w �∈supp(λ). Therefore, we show supp(λ) ⊂ PC∗(λ). Therefore, we have xλ(x) �∈ σf

for every point x ∈supp(λ), because of x ∈ PC∗(λ). By Lemma 2.3(i), it is obtained that
λO(X,σf ) = 0. �

We shall prove Theorem A as follows; Theorem A is included in Theorem 2.5 below (i.e.,
Theorem 2.5 (ii)). First we recall the following notation:
Notation II: for a topological space (X,σ) and a subset E of X,
let Xσ := {x ∈ X| {x} ∈ σ}; and Eσ := E ∩ Xσ. It is obvious that Eσ is open in (X, σ) for
any subset E ⊂ X.
Notation III : for a fuzzy set λ on X and a topological space (X, σ),
(i) λ−1({1}) := {y ∈ X| λ(y) = 1}; then λ−1({1}) is a subset of X, because λ ∈ IX ;
(ii) (λ−1({1}))σ := λ−1({1}) ∩ Xσ (i.e., (λ−1({1}))σ = {y| y ∈ λ−1({1}), {y} is open in
(X, σ)}).

Theorem 2.5 Let λ ∈ IX be a fuzzy set such that λ �= 0. Let (X, σ) be a topological
space and (X,σf ) a fuzzy topological space induced by (X, σ). Then, we have the following
properties of λ:

(i) λ = λO(X,σf ) ∨ λPC(X,σf ).
(ii) λ = λO(X,σf ) ∨ λ∗

PC(X,σf ) and λO(X,σf ) ∧ λ∗
PC(X,σf ) = 0.

(iii) λO(X,σf ) = χE, where E := Xσ ∩ λ−1({1}) = (λ−1({1}))σ; λO(X,σf ) is fuzzy open
in (X,σf ).

Proof. We first recall the following (∗1) with Notation I and we claim the following properties
(∗2) and (∗3):
(∗1) supp(λ) ⊃ PC(λ) ⊃ PC∗(λ) and supp(λ) ⊃ O(λ) hold in (X,σ) (cf. Notation I);
(∗2) supp(λ) = O(λ) ∪ PC(λ) holds in (X,σ);
(∗3) supp(λ) = O(λ) ∪ PC∗(λ) and O(λ) ∩ PC∗(λ) = ∅ hold in (X,σ).

Proof of (∗2). By Theorem B, it is shown that, for a point x ∈ supp(λ), the fuzzy point
xλ(x) is fuzzy open or fuzzy preclosed in (X,σf ), i.e., xλ(x) ∈ σf or xλ(x) ∈ FPC(λ). Thus,
for a point x ∈supp (λ), x ∈ O(λ) or x ∈ PC(λ); and so we have supp(λ) ⊂ O(λ) ∪ PC(λ).
Since O(λ) ⊂supp(λ) and PC(λ) ⊂supp(λ), we have the required equality (∗2). (�)

Proof of (∗3). By definition, it is easily shown that PC∗(λ) ⊂ PC(λ). And, we have
PC∗(λ) = {y ∈supp(λ)| yλ(y) ∈ FPC(X,σf )} ∩ {y ∈supp(λ)| yλ(y) �∈ σf} =PC(λ)∩[supp
(λ) \ O(λ)]; and so PC∗(λ) = PC(λ) ∩ [supp (λ) \ O(λ)]. Thus, we have PC∗(λ) ∪ O(λ) =
[PC(λ)∩(supp(λ) \ O(λ)] ∪ O(λ) =supp(λ) ( cf. (∗2)) and PC∗(λ) ∩ O(λ) ⊂ PC(λ) ∩ [X \
O(λ)] ∩ O(λ) = ∅. �
In the finnal stage, we prove (i), (ii) and (iii) as follows.

(i). For the proof of (i) we consider the following three cases. And it is well known that
λ =

∨
{xλ(x)| x ∈supp(λ)} holds (cf. [22, Definition 2.2], e.g., [16, lemma 2.2],[19, Lemma

2.5(i)]).
Case 1. O(λ) �= ∅, PC(λ) �= ∅: for this case, using (∗2) above and Lemma 2.3 (iii), we

have λ =
∨
{xλ(x)| x ∈supp(λ)}= (

∨
{xλ(x)| x ∈ O(λ)})∨(

∨
{xλ(x)| x ∈ PC(λ)}=λO(X,σf )∨

λPC(X,σf ).
Case 2. O(λ) �= ∅, PC(λ) = ∅: for this case, we have λPC(X,σf ) = 0 (cf. Definition 2.2(ii))

and supp(λ) = O(λ) (cf. (∗2) above). Thus, we have λ =
∨
{xλ(x)| x ∈supp(λ)}=

∨
{xλ(x)| x ∈

O(λ)}=λO(X,σf ) ∨ λPC(X,σf ), because λPC(X,σf ) = 0.
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Case 3. O(λ) = ∅: for this case, by (∗2) above and Lemma 2.3(i), it is shown that
λO(X,σf ) = 0 and supp(λ) = PC(λ); and so PC(λ) �= ∅, because of λ �= 0. Thus, we have
λ =

∨
{xλ(x)| x ∈supp(λ)}=0 ∨ (

∨
{xλ(x)| x ∈ PC(λ)}= λO(X,σf ) ∨ λPC(X,σf ).

Therefore, we show that the equality (i) holds for all cases.
(ii). Since supp(λ) = O(λ) ∪ PC∗(λ) (cf. (∗3)), we are able to conclude that

(ii-1) λ = λO(X,σf ) ∨ λ∗
PC(X,σf ); and (ii-2) λO(X,σf ) ∧ λ∗

PC(X,σf ) = 0.
Proof of (ii-1). We consider the following three cases for the proof.
Case 1. O(λ) �= ∅, PC∗(λ) �= ∅: for this case, using (∗3) above and Lemma 2.3 (iii),

we have λ = {xλ(x)| x ∈supp(λ)}= (
∨
{xλ(x)| x ∈ O(λ)}) ∨ (

∨
{xλ(x)| x ∈ PC∗(λ)}=

λO(X,σf ) ∨ λ∗
PC(X,σf ).

Case 2. O(λ) �= ∅, PC∗(λ) = ∅: for this case, we have λ∗
PC(X,σf ) = 0 (cf. Defini-

tion 2.2(iii)) and supp(λ) = O(λ) (cf. (∗3) above). Thus, we have λ =
∨
{xλ(x)| x ∈supp(λ)}=∨

{xλ(x)| x ∈ O(λ)}=λO(X,σf ) ∨ λ∗
PC(X,σf ), because λ∗

PC(X,σf ) = 0.
Case 3. O(λ) = ∅: for this case, we have λO(X,σf ) = 0 (cf. Definition 2.2(i)). By (∗3),

it is shown that supp(λ) = PC∗(λ); and so PC∗(λ) �= ∅, because of λ �= 0. Thus, we have
λ =

∨
{xλ(x)| x ∈supp(λ)}=0 ∨ (

∨
{xλ(x)|x ∈ PC∗(λ)}= λO(X,σf ) ∨ λ∗

PO(X,σf ). (�)
Proof of (ii-2). For a point y ∈ X, we claim that (λO(X,σf ) ∧ λ∗

PC(X,σf ))(y) = 0; i.e.,
Min{λO(X,σf )(y), λ∗

PC(X,σf )(y)} = 0. For the point y, we consider the following two cases.
Case 1. y ∈ O(λ): for this point y, we have y �∈ PC∗(λ) (cf. (∗3) before the proof of

(i) above). Then, we have that y �= x for each x ∈ PC∗(λ), i.e., xλ(x)(y) = 0 for each
x ∈ PC∗(λ). Thus, if PC∗(λ) �= ∅ , then λ∗

PC(X,σf )(y) = (
∨
{xλ(x)| x ∈ PC∗(λ)})(y)

=sup{xλ(x)(y)| x ∈ PC∗(λ)} =sup{0} = 0 (cf. Lemma 2.3(iii)(c)). And, if PC∗(λ) =
∅, then λ∗

PC(X,σf )(y) = 0 (cf. Definition 2.2(iii)). Thus, for this Case 1, we show that
Min{λO(X,σf )(y), λ∗

PC(X,σf )(y)} = 0.
Case 2. y �∈ O(λ): for the point y, we have that x �= y for each point x ∈ O(λ);

and so xλ(x)(y) = 0 for each point x ∈ O(λ). Thus, if O(λ) �= ∅, then λO(X,σf )(y) =
(
∨
{xλ(x)| x ∈ O(λ)})(y) =sup{xλ(x)(y)| x ∈ O(λ)} =sup{0} = 0 (cf. Lemma 2.3(iii)(a)).

And, if O(λ) = ∅, then λO(X,σf )(y) = 0 (cf. Definition 2.2(i)). Thus, for this Case 2, we
show that Min{λO(X,σf )(y), λ∗

PC(X,σf )(y)} = 0.
Therefore we prove λO(X,σf ) ∧ λ∗

PC(X,σf ) = 0.
(iii). By Theorem B(ii) in the top of the present section, it is well known that a fuzzy

point xa is fuzzy open in (X,σf ) if and only if a = 1 and {x} is open in (X,σ). For a point
x ∈supp(λ), λ(x) > 0 and so a fuzzy point xλ(x) is well defined. Thus, we have that xλ(x)

is fuzzy open in (X,σf ) (i.e., xλ(x) ∈ σf ) if and only if λ(x) = 1 and {x} is open in (X,σ)
(i.e., x ∈ E := λ−1({1}) ∩ Xσ, cf. Notation II, Notation III). Therefore, if E �= ∅, then we
have that λO(X,σf ) =

∨
{xλ(x)| xλ(x) ∈ σf} =

∨
{xλ(x)| x ∈ λ−1({1})∩Xσ} =

∨
{x1| x ∈ E}

=
∨
{χ{x}| x ∈ E} = χF = χE , where F =

∪
{{x}| x ∈ E}, and hence λO(X,σf ) = χE .

If E = ∅, then O(λ) := {y ∈ supp(λ)| yλ(y) ∈ σf} ={y ∈ supp(λ)| λ(y) = 1 and {y} ∈
σ} = {y ∈ supp(λ)|y ∈ E = ∅} = ∅ and so λO(X,σf ) = 0 = χ∅. Therefore, we prove
λO(X,σf ) = χE . For the proof of λO(X,σf ) ∈ σf , it is evident from the openness of E :=
λ−1({1}) ∩ Xσ = (λ−1(1))σ and the definition of σf . �

3 Decompositions of fuzzy sets on (Zn, (κn)f ) Let (Zn, κn) be the digital n-space
and (Zn, (κn)f ) a Chang’s fuzzy topological space induced from (Zn, κn) (cf. Definition 1.2).
In the present section, we have the following decomposition theorem (Corollary 3.1) of a
fuzzy set λ on Zn by two fuzzy sets χE and λ∗

PC(Zn,(κn)f ) with fuzzy topological properties
in (Zn, (κn)f ) and the precise form of λ∗

PC(Zn,(κn)f ) (Theorem 3.5).
We recall that:

• the digital n-space (Zn, κn) (e.g., [15, Definition 4],[7]) is the topological product of n-
copies of the digital line (Z, κ) (cf. this is called the Khalimsky line in the contents between
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Remark 1.4 and (∗3) in Section 1), where n is an integer with n ≥ 2. The digital line (Z, κ) is
the set of the integers, Z, equipped with the topology κ having {{2m−1, 2m, 2m+1}| m ∈ Z}
as a subbace (e.g., [15, p.175]). Some joint papers by the one of the present authors include
a short survey or frequently used properties on (Zn, κn) where n ≥ 1 (cf. [20, Section 3],
[25], [7]). It is well known that a singleton {2m} is closed and not open and {2m + 1} is
open and not closed in (Z, κ), where m ∈ Z; moreover Cl({2s + 1}) = {2s, 2s + 1, 2s + 2}
holds and Int({2s}) = ∅ holds in (Z, κ), where s ∈ Z. We use the following notation (cf. [7,
Section 6], [24, Section 2], [25, Definition 2.1], [20, Definition 3.11]): for n ≥ 1,
• (Zn)κn :={(y1, y2, ..., yn) ∈ Zn| yi is odd for each integer i with 1 ≤ i ≤ n}; for any element
x of (Zn)κn , {x} is an open singleton of (Zn, κn) (cf. Notation II in Section 2 for X := Zn

and σ := κn);
• (Zn)Fn := {(y1, y2, ..., yn) ∈ Zn| yi is even for each integer i with 1 ≤ i ≤ n}; for any
element x of (Zn)Fn , {x} is a closed singleton of (Zn, κn);
• (Zn)mix(r) := {(y1, y2, ..., yn) ∈ Zn| r = #{i ∈ {1, 2, ..., n}| yi is even}}, where 1 ≤ r ≤ n
and #A denotes the cardinality of a set A. Especially, for the case where r = n, we note
(Zn)mix(n) = (Zn)Fn .
• For a nonempty subset E of (Zn, κn), the following subsets Eκn , EFn and Emix(r) are
well defined as follows: Eκn := E ∩ (Zn)κn , EFn := E ∩ (Zn)Fn , Emix(r) := E ∩ (Zn)mix(r)

(1 ≤ r ≤ n). Namely, we have that Eκn := {x ∈ E| {x} is open in (Zn, κn)} ⊂ E and
EFn := {x ∈ E| {x} is closed in (Zn, κn)} ⊂ E; and Eκn is an open subset of (Zn, κn).

First we apply Theorem 2.5 to the digital n-space (Zn, κn); then we have the following
corollary of Theorem 2.5.

Corollary 3.1 Let λ ∈ IZn

be a fuzzy set on Zn such that λ �= 0. Then, we have the
following properties.

(i) λO(Zn,(κn)f ) = χE, where E := (λ−1({1}))κn .
(ii) Any fuzzy set λ has a decomposition: λ = χE∨λ∗

PC(Zn,(κn)f ) and χE∧λ∗
PC(Zn,(κn)f ) =

0, where E := (λ−1({1}))κn .

Proof. (i) (resp. (ii)) By Theorem 2.5(iii) (resp. Theorem 2.5(ii)) for (X, σ) = (Zn, κn), (i)
(resp. (ii)) is obtained. �

In the below, we shall show an exlicite expression of the fuzzy set λ∗
PC(Zn,(κn)f ) above

(cf. Theorem 3.5).

Theorem 3.2 For a fuzzy topological space (Zn, (κn)f ) induced by the digital n-space (Zn, κn),
where n ≥ 1, and a fuzzy point xa in Zn, where x ∈ Zn and 0 < a ≤ 1, we have the following
properties.

(i) (i-1) Let x ∈ (Zn)κn (i.e., x = (2m1 + 1, 2m2 + 1, ..., 2mn + 1), where mi ∈ Z(1 ≤ i ≤
n)). Then,

Cl(xa) = χEo
x
, where Eo

x :=
∏n

i=1{2mi, 2mi + 1, 2mi + 2}.
(i-2) Let x ∈ (Zn)Fn (i.e, x = (y1, y2, ..., yn) for some even integers yi(1 ≤ i ≤ n)).

Then,
Cl(xa) = χ{x}.
(i-3) Suppose that n ≥ 2. Let x := (y1, y2, ..., yn) ∈ (Zn)mix(r)(1 ≤ r ≤ n − 1) and

Em(yi) = {yi}, if yi is even in Z(1 ≤ i ≤ n); Em(yi) = {yi − 1, yi, yi + 1}, if yi is odd in
Z(1 ≤ i ≤ n). Then,

Cl(xa) = χEm
x

, where Em
x :=

∏n
i=1 Em(yi).

(ii) (ii-1) If x ∈ (Zn)κn and a = 1, then Int(xa) = χ{x} = xa holds.
(ii-2) If x ∈ (Zn)κn and a �= 1, then Int(xa) = 0 holds.
(ii-3) If x ∈ (Zn)Fn , then Int(xa) = 0 holds.
(ii-4) If x ∈ (Zn)mix(r) with 1 ≤ r ≤ n − 1, then Int(xa) = 0 holds.
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Proof. (i) (i-1) It is well known that {x} is an open singleton in (Zn, κn) and Cl({x}) =∏n
i=1 Cl({2mi + 1}) =

∏n
i=1{2mi, 2mi + 1, 2mi + 2} = Eo

x in (Zn, κn). Thus, we have
Cl(xa) = χCl({x}) = χEo

x
in (Zn, (κn)f ) for a point x ∈ (Zn)κn , because supp(xa) = {x} (cf.

Theorem B (iii)).
(i-2) We have Cl(xa) = χCl({x}) = χ{x} in (Zn, (κn)f ) (cf. Theorem B (iii)) for a point
x ∈ (Zn)Fn (i.e., {x} is a closed singleton of (Zn, κn)).
(i-3) Let x = (y1, y2, ..., yn) ∈ (Zn)mix(r)(1 ≤ r ≤ n − 1) (i.e., r = #{i| yi is even }). Since
Cl({x}) =

∏n
i=1 Cl(yi) =

∏n
i=1 Em(yi) = Em

x in (Zn, κn), it is shown that Cl(xa) = χEm
x

in
(Zn, (κn)f ) (cf. Theorem B(iii)).

(ii) (ii-1) Since a = 1, we have xa = χ{x} and (xa)−1({1}) = {x}. And, since {x} is an
open singleton of (Zn, κn), it is shown that Int(xa) = χInt(x1)−1({1}) = χInt({x}) (cf. Theorem
B (iii)).
(ii-2) For this fuzzy point xa, where a �= 1, we have (xa)−1({1}) = ∅ and so Int(xa) =
χInt(∅) = 0 in (Zn, (κn)f ) (cf. Theorem B (iii)).
(ii-3) For this fuzzy point xa, we have (∗) Int(xa) = χInt((xa)−1({1})) = χInt({x}) if a = 1;
Int(xa) = χInt((xa)−1({1})) = χ∅ = 0 if a �= 1 (cf. Theorem B (iii)).
Thus, we show (ii-3) for the case where a = 1 only. Since Int({x}) = ∅ in (Zn, κn) for this
point x. we have Int(x1) = χInt({x}) = χ∅ = 0 (cf. Theorem B (iii)).
(ii-4) For this point x, say x = (y1, y2, ..., yn), there exists even integers, say yi(e)(1 ≤ e ≤ r),
where {i(1), i(2), ..., i(r)} ⊂ {1, 2, ..., n}, because 1 ≤ r ≤ n − 1 and r = #{i|1 ≤ i ≤ n, yi is
even}; and Int({yi(e)}) = ∅ for each e with 1 ≤ e ≤ r in (Z, κ). Then, we have Int({x}) =∏n

j=1 Int(yj) = ∅ in (Zn, κn). Thus, if a = 1, then supp(xa) = (x1)−1({1}) = {x} and
so Int(xa) = χInt(supp(x1)) = χInt({x}) = χ∅ = 0 in (Zn, (κn)f ); if a �= 1, then supp(xa) =
(xa)−1({1}) = ∅ and so Int(xa) = χInt(supp(xa)) = χ∅ = 0 in (Zn, (κn)f ) (cf. Theorem B
(iii)). Therefore, for this fuzzy point xa, we show Int(xa) = 0. �

Theorem 3.3 A fuzzy point xa is fuzzy open, otherwise xa is fuzzy preclosed in (Zn, (κn)f ).

Proof. In general, by Theorem B(i) in Section 2, every fuzzy point is fuzzy open or fuzzy
preclosed in (X,σf ), where (X,σ) is a topological space. Then we prove only that non-
existence of fuzzy point xa which is fuzzy open and fuzzy preclosed in (Zn, (κn)f ). Suppose
that there exists a fuzzy point xa such that xa ∈ FPC(Zn, (κn)f ) and xa ∈ (κn)f . Since xa

is fuzzy open in (Zn, (κn)f ), we have a = 1 and {x} is open in (Zn, κn) (cf. Theorem B(ii) in
Section 2). Thus, we can put x := (2m1 + 1, 2m2 + 1, ..., 2mn + 1) ∈ (Zn)κn . For this point
x and fuzzy singleton xa, where a = 1, by Theorem 3.2, Cl(Int(xa))=Cl(xa) = χEO

x
, where

EO
x :=

∏n
i=1{2mi, 2mi + 1, 2mi + 2} in (Zn, (κn)f ). Put x+ := (2m1 + 2, 2m2 + 2, ..., 2mn +

2). Then, we have x �= x+ and so Cl(Int(x1))(x+) = χEO
x

(x+) = 1 �≤ x1(x+) = 0; this
contradicts xa ∈ FPC(Zn, (κn)f ) (cf. Notation I in Section 2). �

Since Zn = (Zn)κn ∪ (Zn)Fn ∪ (
∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}) (disjoint union), we see

obviously that Zn \ (Zn)κn = (Zn)Fn ∪ (
∪
{(Zn)mix(r)|1 ≤ r ≤ n − 1}) holds in the digital

n-space (Zn, κn), where n ≥ 2. And, we see Z \ Zκ = ZF hold in the digital line (Z, κ).

Corollary 3.4 Let xa be a fuzzy point on Zn, where 0 < a ≤ 1. The following properties
are equivalent:

(1) xa ∈ FPC(Zn, (κn)f );
(2) x ∈ E or 0 < a < 1, where E := Zn \ (Zn)κn ;
(2)’ x �∈ (Zn)κn or a �= 1;
(3) xa �∈ (κn)f (i.e., xa is not fuzzy open in (Zn, (κn)f )).

Proof. (1)⇒(2) Suppose that x ∈ (Zn)κn and a = 1. Then, by Theorem B(ii) in Section 2,
xa is fuzzy open; and hence by Theorem 3.3, xa is not fuzzy preclosed in (Zn, (κn)f ); this
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contradicts the assumption (1). Therefore, we showed that x ∈ E or 0 < a < 1. (2)⇔(2)’
It is obvious.
(2)⇒(3) By Theorem B(ii) in Section 2 for (X, σ) = (Zn, κn), xa is not fuzzy open in
(Zn, (κn)f ). (3)⇒(1) It is proved by Theorem 3.3. �

Finally we show some explicite forms of λPC(Zn,(κn)f ).

Theorem 3.5 Let λ be a fuzzy set on Zn with λ �= 0. Then, we have the following properties:
(i) λ∗

PC(Zn,(κn)f ) =λPC(Zn,(κn)f ) holds.
(ii) If supp(λ) ∩ (Zn \ (Zn)κn) �= ∅, then
(ii-1) λPC(Zn,(κn)f ) �= 0;
(ii-2) λPC(Zn,(κn)f ) =

∨
{xλ(x) ∈ IZn | x ∈supp(λ) \ (λ−1({1}))κn}; and

(ii-3) λPC(Zn,(κn)f ) =A(λ)0 ∨ (
∨
{A(λ)r| 1 ≤ r ≤ n}), where

A(λ)0 :=
∨
{xλ(x)| x ∈ ( supp(λ)\λ−1({1}))κn} and A(λ)r :=

∨
{xλ(x)| x ∈ (supp(λ))mix(r)}

for each integer r with 1 ≤ r ≤ n.

Proof. (i) We consider the following two cases for the proof.
Case 1. PC∗(λ) �= ∅: by Definition 2.2(iii) and Corollary 3.4(1)⇔(3), it is obtained that
λ∗
PC(Zn,(κn)f ) :=

∨
{xλ(x)| xλ(x) ∈ FPC(Zn, (κn)f ) and xλ(x) �∈ (κn)f}=

∨
{xλ(x)| xλ(x) ∈

FPC(Zn, (κn)f )}. And so, we have λ∗
PC(Zn,(κn)f ) =λPC(Zn,(κn)f ), because PC∗(λ) ⊂ PC(λ)

and PC(λ) �= ∅ hold.
Case 2. PC∗(λ) = ∅: for this case, λ∗

PC(Zn,(κn)f ) := 0 (cf. Notation I in Section 2,
Definition 2.2(iii)). We claim that PC(λ) = ∅ holds under the assumption of Case 2
(i.e.,PC∗(λ) = ∅). Suppose that PC(λ) �= ∅ (cf. Notation I in Section 2, Definition 2.2(ii)).
Then, there exists a point of Zn, say z ∈ PC(λ), and so zλ(z) ∈ PC(Zn, (κn)f ) and, by
Theorem 3.3, zλ(z) �∈ (κn)f . The above result shows that zλ(z) ∈ PC∗(Zn, (κn)f ) holds, i.e.,
z ∈ PC∗(λ) (cf. Notation I in Section 2); this contradicts the assumption of Case 2 (i.e.,
PC∗(λ) = ∅). Thus, we claimed that if PC∗(λ) = ∅ then PC(λ) = ∅. And, under the
assumption of Case 2, we show that λ∗

PC(Zn,(κn)f ):=0= λPC(Zn,(κn)f ) hold.
Therefore, by Case 1 and Case 2, it is proved that λ∗

PC(Zn,(κn)f ) =λPC(Zn,(κn)f ) holds.
(ii) (ii-1) It follows from the assumption of (ii) that there exists a point z ∈supp(λ)

(i.e., λ(z) > 0) and z �∈ (Zn)κn . By Corollary 3.4(2)’⇔ (1), it is obtained that zλ(z) ∈
FPC(Zn, (κn)f ) and so z ∈ PC(λ) �= ∅ (cf. Notation I). We have that λPC(Zn,(κn)f )

=
∨
{xλ(x)| xλ(x) ∈ FPC(Zn, (κn)f )} (cf. Definition 2.2(ii)) and λPC(Zn,(κn)f )(z) �= 0 for

the point z, i.e., λPC(Zn,(κn)f ) �= 0.
(ii-2) For a fuzzy point xλ(x), we have that λ(x) > 0, i.e., x ∈supp(λ). Then, by using

definitions and Corollary 3.4 (1)⇔(2)’, it is shown that: xλ(x) ∈ FPC(Zn, (κn)f ) if and only
if x ∈supp(λ)\ (λ−1(1))κn . By (ii-1) and Definition 2.2(ii), it is shown that: PC(λ) �= ∅ and
so λPC(Zn,(κn)f ) =

∨
{xλ(x)| x ∈ supp(λ) \ (λ−1({1}))κn}.

(ii-3) We use the well known decomposition of Z: Zn = (Zn)κn∪(
∪
{(Zn)mix(r)| 1 ≤ r ≤

n})(disjoint union) and (Zn)mix(n) = (Zn)Fn . It follows from assumption that supp(λ) �= ∅.
We consider the decomposition of supp(λ) in (Zn, (κn)f ):
supp(λ) = (supp(λ))κn ∪ (

∪
{(supp(λ))mix(r)| 1 ≤ r ≤ n}); then, we have the following

equality in (Zn, (κn)f ) (cf. the right hand side equality in the end of the proof of (ii-2)):
(•) supp(λ) \ (λ−1({1}))κn = (supp(λ) \ λ−1(1))κn ∪ (

∪
{(supp(λ))mix(r))| 1 ≤ r ≤ n}.

Then, using (ii-2), the equality (•) above and a property of fuzzy union of fuzzy points (e.g.
[19, Lemma 2.5(ii)]), we have that:
λPC(Zn,(κn)f ) =

∨
{xλ(x)| x ∈ supp(λ) \ (λ−1({1}))κn}

=[
∨
{xλ(x)| x ∈ ( supp(λ) \ λ−1({1}))κn ] ∨ [

∨
{xλ(x)| x ∈ ( supp(λ))mix(r)| 1 ≤ r ≤ n}]

=A(λ)0 ∨ (
∨
{A(λ)r)| 1 ≤ r ≤ n}); and hence (ii-3) is proved. �
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The following remark is pre-announced in Remark 1.3.

Remark 3.6 (cf. Remark 1.3, [19, (III-12) in Section 3]) The following example also shows
that the correspondence fs : SO(Zn, κn) → FSO(Zn, (κn)f ) is not onto, even if f : κn →
(κn)f is bijective, where fs(U) := χU and f(V ) := χV for every U ∈ SO(Zn, κn) and every
V ∈ κn. We choice the follwing subset A as follows:

A := {y(1), y(2)} ⊂ Zn, where y(1) := (2m1, 2m2, ..., 2mn) and y(2) = (2m1 + 1, 2m2 +
1, ..., 2mn + 1) for some integers mi(1 ≤ i ≤ n); and so y(1) ∈ (Zn)Fn and y(2) ∈ (Zn)κn .
Using the subset A, we define the fuzzy set λA ∈ IZn

as follows:
λA(y(2)) := 1, λA(y(1)) := 1/2 and λA(y) := 0 for every point y ∈ Zn with y �∈ A.

Then, we have that λA ∈ FSO(Zn, (κn)f ); indeed, Cl(Int(λA)) = χCl({y(2)}) ≥ λA hold (cf.
Theorem B(iii)). However, λA �∈ fs(SO(Zn, κn)); indeed, it follows from the definition of fs

that fs(SO(Zn, κn)) = {χU |U ∈ SO(Zn, κn)} and λA �= χU for each U ∈ SO(Zn, κn).

Remark to [19, Definition 1.2 (i)]: the authors of the present paper have this opportunity
of taking notice the following typographical correction in [19, Definition 1.2 (i)].

(•) line +3 from the top of the text of [19, Definition 1.2]:
“ if λ ≤Int(Cl(τY )) ” should be replaced by “ if λ ≤Int(Cl(λ)) ”.

Acknowlegements The authors thank the referee for making several suggestions which
improved the quality of this paper.
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Abstract. The purpose of this paper is to study the notion of relative extreme
amenability for pairs of topological groups. We give a characterization by a fixed point
property on universal spaces. In addition we introduce the concepts of an extremely
amenable interpolant as well as maximally relatively extremely amenable pairs and give
examples. It is shown that relative extreme amenability does not imply the existence
of an extremely amenable interpolant. The theory is applied to generalize results of
[KPT05] relating to the application of Fräıssé theory to theory of Dynamical Systems.
In particular, new conditions enabling to characterize universal minimal spaces of
automorphism groups of Fräıssé structures are given.

1 Introduction The goal of this paper is to study the notion of relative extreme amenabil-
ity : a pair of topological groups H ⊂ G is called relatively extremely amenable if whenever
G acts continuously on a compact space, there is an H-fixed point. This notion was iso-
lated by the second author while investigating transfer properties between Fräıssé theory
and dynamical systems along the lines of [KPT05], and the corresponding results appears in
[NVT13]. We now provide a short description of the contents of the present article and some
of the results. Section 2 contains notation. Subsection 3.1 recalls the notion of universal
spaces. In subsection 3.2 it is shown that (G, H) is relatively extremely amenable if and
only if there exists a universal G-space with a H-fixed point. In subsection 3.3 the notion of
extremely amenable interpolant is introduced and an example of a non trivial interpolant is
given. Subsection 3.4 contains technical lemmas. In subsection 3.5 the notions of maximal
relative extreme amenability and maximal extreme amenability are introduced and illus-
trated. It is also shown that relative extreme amenability does not imply the existence of
an extremely amenable interpolant and that Aut(Q, <) is maximally extremely amenable
in S∞. Subsections 3.6 and 3.7 deal with applications to a beautiful theory developed in
[KPT05] - the application of Fräıssé theory to the theory of Dynamical Systems. In sub-
section 3.6 the following theorem is shown (see subsection for the definitions of the various
terms appearing in the statement):

Theorem 1. Let {<} ⊂ L,L0 = L \ {<} be signatures, K0 a Fräıssé class in L0, K an
order Fräıssé expansion of K in L, F0 = Flim(K0), F = Flim(K). Let G0 = Aut(F0) and
G = Aut(F ). Denote <F =<0 and XK = G0 <0. (G0, G) is relatively extremely amenable
and FixXK

(G) is transitive w.r.t XK if and only if XK is the universal minimal space of
G0.

In subsection 3.7 the weak ordering property is introduced and it is proven that if (G0, G)
is relatively extremely amenable then the weak ordering property implies the ordering prop-
erty. Finally in subsection 3.8 a question is formulated.
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Proof. (1)⇒(2). If (G,H) is relatively extremely amenable, then by definition (G, UG) has
a H-fixed point.

(2)⇒(3). Trivial.
(3)⇒(1). Let X be a minimal G-space. By universality of TG, there exists a surjective

G-equivariant mapping φ : (G,TG) → (G,X). Denote x = φ(t0). Clearly for every h ∈ H,
hx = hφ(t0) = φ(ht0) = φ(t0) = x

It is well-known that a non-compact locally compact group cannot be extremely amenable.
Here is a strengthening of this fact:

Proposition 3.2.4. Let G be a non-compact locally compact group and {e} � H ⊂ G, a
subgroup. The pair (G, H) is not relatively extremely amenable.

Proof. By Veech’s Theorem ([Vee77]) G acts freely on UG. Now use Proposition 3.2.3(2).

3.3 Extremely Amenable Interpolants

Definition 3.3.1. Let G be a topological group and H ⊂ G, a subgroup. An extremely
amenable group E is called an extremely amenable interpolant for the pair (G,H) if
H ⊂ E ⊂ G.

The following lemma is trivial:

Lemma 3.3.2. Let G be a topological group and H ⊂ G, a subgroup. If there exists
an extremely amenable interpolant for the pair (G, H), then (G,H) is relatively extremely
amenable.

Here is an example of a non trivial extremely amenable interpolant E for a pair (G,H),
in the sense that neither E = G, nor E = H:

Example 3.3.3. Let Q be the Hilbert cube. Recall that by a result of Uspenskij (Theorem
9.18 of [Kec95]), Homeo(Q), equipped with the compact-open topology, is a universal Polish
group, in the sense that any Polish group embeds inside it through a homomorphism. Let
Homeo+(I) be the group of increasing homeomorphisms of the interval I, equipped with
the compact-open topology. By a result of Pestov (see [Pes98]) Homeo+(I) is extremely
amenable. Let φ : Homeo+(I) �→ Homeo(Q) be an embedding through a homomorphism.
Let f : I → I given by f(x) = x2. Notice f ∈ Homeo+(I). Denote G = Homeo(Q),
E = φ(Homeo+(I)) and H = φ({fn |n ∈ Z}). Notice H � E � G. E is clearly an
extremely amenable interpolant for (G,H), but G (which acts homogeneously on Q) and H
(which is isomorphic to Z) are not extremely amenable.

A natural question is if any relatively extremely amenable pair has an extremely amenable
interpolant. Theorem 3.5.8 in the next subsection answers the question in the negative.

3.4 Order fixing groups Let S∞ be the permutation group of the integers Z, equipped
with the pointwise convergence topology. Let F be an infinite countable set and fix a
bijection F � Z. Let LO(F ) ⊂ {0, 1}F×F , be the space of linear orderings on F , equipped
with the pointwise convergence topology. Under the above mentioned bijection LO(F )
becomes an S∞-space. By Theorem 8.1 of [KPT05] US∞ = LO(F ). Notice that we consider
F as a set and not a topological space. In this subsection we will use F = Z and F = Q,
considered as infinitely countable sets with convenient enumerations (bijections) and the
corresponding dynamical systems (S∞, LO(Z)) and (S∞, LO(Q)).

Lemma 3.4.1. Let <∈ LO(Z) be the usual linear order on Z, i.e. the order for which
n < n + 1 for every n ∈ Z. Then
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2 Preliminaries We denote by (G,X) a topological dynamical system (t.d.s), where G
is a (Hausdorff) topological group and X is a compact (Hausdorff) topological space. We
may also refer to X as a G-space. If it is desired to distinguish a specific point x0 ∈ X,
we write (G, X, x0). Given a continuous action (G,X) and x ∈ X, denote by StabG(x) =
Stab(x) = {g ∈ G | gx = x} ⊂ G, the subgroup of elements of G fixing x, and for H ⊂ G
denote by FixX(H) = Fix(H) = {x ∈ X | ∀h ∈ H hx = x} ⊂ X, the set of elements of
X, fixed by H. Note that FixX(H) is a closed set. Given a linear order < on a set D, we
denote by <∗ the linear ordering defined on D by a <∗ b ⇔ b < a for all a, b ∈ D.

3 Results

3.1 Universal spaces. Let G be a topological group. The topological dynamical system
(t.d.s.) (G,X) is said to be minimal if X and ∅ are the only G-invariant closed subsets
of X. By Zorn’s lemma each G-space contains a minimal G-subspace. (G, X) is said to
be universal if any minimal G-space Y is a G-factor of X. One can show there exists
a minimal and universal G-space UG unique up to isomorphism. (G, UG) is called the
universal minimal space of G (for existence and uniqueness see for example [Usp02] , or
the more recent [GL13]). (G,X, x0) is said to be transitive if Gx0 = X. One can show there
exists a transitive t.d.s (G,AG, a0), unique up to isomorphism, such that for any transitive
t.d.s (G,Y, y0), there exists a G-equivariant mapping φY : (G, AG, a0) → (G,Y, y0) such
that φ(a0) = y0. (G,AG, a0) is called the greatest ambit. Because any minimal subspace
of AG is isomorphic to the universal minimal space, AG is universal. Note that if AG is not
minimal (e.g., this is the case if AG is not distal see [dV93] IV(4.35)), then it is an example
of a non-minimal universal space.

3.2 A Characterization of Relative Extreme Amenability Recall the following
classical definition (originating in [Mit66]):

Definition 3.2.1. Let G be a topological group. G is called extremely amenable if any
t.d.s (G, X) has a G-fixed point, i.e. there exists x0 ∈ X, such that for every g ∈ G,
gx0 = x0.

It is easy to see that for G to be extremely amenable is equivalent to UG = {∗}. Here
is a generalization of the previous definition which appears in [NVT13]:

Definition 3.2.2. Let G be a topological group and H ⊂ G, a subgroup. The pair (G,H) is
called relatively extremely amenable if any t.d.s (G,X) has a H-fixed point, i.e. there
exists x0 ∈ X, such that for every h ∈ H, hx0 = x0.

Proposition 3.2.3. Let G be a topological group and H ⊂ G, a subgroup. The following
conditions are equivalent:

1. The pair (G, H) is relatively extremely amenable.

2. UG has a H-fixed point.

3. There exists a universal G-space TG and t0 ∈ TG which is H-fixed.
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9.18 of [Kec95]), Homeo(Q), equipped with the compact-open topology, is a universal Polish
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Homeo+(I) be the group of increasing homeomorphisms of the interval I, equipped with
the compact-open topology. By a result of Pestov (see [Pes98]) Homeo+(I) is extremely
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3.4 Order fixing groups Let S∞ be the permutation group of the integers Z, equipped
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bijection F � Z. Let LO(F ) ⊂ {0, 1}F×F , be the space of linear orderings on F , equipped
with the pointwise convergence topology. Under the above mentioned bijection LO(F )
becomes an S∞-space. By Theorem 8.1 of [KPT05] US∞ = LO(F ). Notice that we consider
F as a set and not a topological space. In this subsection we will use F = Z and F = Q,
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Lemma 3.4.1. Let <∈ LO(Z) be the usual linear order on Z, i.e. the order for which
n < n + 1 for every n ∈ Z. Then
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1. StabZ(<) = {Ta| a ∈ Z}, where Ta : Z → Z is given by Ta(x) = x + a.

2. FixLO(Z)(StabZ(<)) = {<,<∗}.

Proof. (1) Let T ∈ Stab(<). Denote a = T (0). Notice that for all x > 1, T (x) > T (1) > a
and for all x < 0, T (x) < a. As T is onto we must have T (1) = a + 1. Similarly for all
x ∈ Z, T (x) = x + a, which implies T = Ta.

(2) Let ≺∈ FixLO(Z)(Stab(<)). We claim that ≺=< or ≺=<∗. Indeed 0 ≺ 1 or 1 ≺ 0.
In the first case applying Ta ∈ Stab(<), we have for all a ∈ Z, a ≺ a + 1. This implies
≺=<. Similarly in the second case for all a ∈ Z, a + 1 ≺ a which implies≺=<∗.

Let <∈ LO(Q) be the usual order on Q. In the following lemma, we follow the standard
convention and write Aut(Q, <) instead of StabS∞(<) ⊂ S∞.

Lemma 3.4.2. Let <∈ LO(Q) be the usual linear order on Q, then

FixLO(Q)(Aut(Q, < )) = {<,<∗}.

Proof. Let ≺∈ FixLO(Q)(Aut(Q, <)). Note that 0 ≺ 1 or 1 ≺ 0. In the first case, let
q1, q2 ∈ Q with q1 < q2 and define T : Q → Q with Tx = (q2 − q1)x + q1. Note that
T ∈ Aut(Q, <). Hence, q1 = T (0) ≺ T (1) = q2. As the argument works for any q′1 < q′2 we
have ≺=<. The second case is similar and implies ≺=<∗ .

3.5 Maximally Relatively Extremely Amenable Pairs

Proposition 3.5.1. Let G be a topological group, then there exists a subgroup H ⊂ G, such
that (G,H) is relatively extremely amenable and there exists no subgroup H ⊂ H ′ ⊂ G,
such that (G,H ′) is relatively extremely amenable.

Proof. By Zorn’s lemma it is enough to show that any chain w.r.t. inclusion {Gα}α∈A such
that (G, Gα) is relatively extremely amenable, has a maximal element. Note that if Gα ⊂
Gα′ , then FixUG

(Gα′) ⊂ FixUG
(Gα). In particular for any finite collection α1, α2, . . . , αn ∈

A, we have
∩n

i=1 FixUG(Gαi) �= ∅, which implies by a standard compactness argument∩
α∈A FixUG

(Gα) �= ∅. This in turn implies that FixUG
(
∪

α∈A Gα) �= ∅, which finally
implies (G,

∪
α∈A Gα) is relatively extremely amenable by Proposition 3.2.3(2).

Definition 3.5.2. A pair (G,H) as in Proposition 3.5.1 is called maximally relatively
extremely amenable.

Similarly to the previous theorem and definition we have:

Proposition 3.5.3. Let G be a topological group, then there exists a subgroup H ⊂ G, such
that H is extremely amenable and there exists no subgroup H ⊂ H ′ ⊂ G, such that H ′ is
extremely amenable.

Proof. By Zorn’s lemma it is enough to show that any chain w.r.t. inclusion {Gα}α∈A such
that Gα ⊂ G and Gα is extremely amenable, has a maximal element. Let (

∪
α∈A Gα, X)

be a dynamical system. By assumption for any α ∈ A, FixX(Gα) �= ∅. In addition if
Gα ⊂ Gα′ , then FixX(Gα′) ⊂ FixX(Gα). We now continue as in the proof of Theorem
3.5.1 to conclude

∪
α∈A Gα is extremely amenable.

Definition 3.5.4. A subgroup H ⊂ G as in Proposition 3.5.3 is called maximally ex-
tremely amenable in G.
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Remark 3.5.5. It was pointed out in [Pes02] that if H is second countable (Hausdorff)
group then there always exists an extremely amenable group G such that H ⊂ G. Indeed by
[Usp90] H ⊂ Iso(U) the group of isometries of Urysohn’s universal complete separable met-
ric space U, equipped with the compact-open topology, and by [Pes02], Iso(U) is extremely
amenable.

Theorem 3.5.6. Let G = S∞ be the permutation group of the integers, equipped with the
pointwise convergence topology. Let < be the usual order on Z and H = StabZ(<) ⊂ G.
The pair (G,H) is maximally relatively extremely amenable.

Proof. By Theorem 8.1 of [KPT05] UG = LO(Z), the space of linear orderings on Z. By
Proposition 3.2.3(2) (G,H) is relatively extremely amenable. Assume that there exists a
subgroup E, with H ⊂ E ⊂ G such that (G, E) is a relatively extremely amenable. Evoking
again Proposition 3.2.3(2), there exists ≺∈ UG, so that E ⊂ Stab(≺). As H ⊂ E ⊂ Stab(≺),
conclude by Lemma 3.4.1(2) that ≺∈ {<,<∗}. As H = Stab(<) = Stab(<∗), we conclude
in both cases E = H.

Lemma 3.5.7. If (G,H) is maximally relatively extremely amenable and neither G nor H
are extremely amenable, then (G,H) does not admit an extremely amenable interpolant.

Proof. Assume for a contradiction that there exists an extremely amenable subgroup E,
with H ⊂ E ⊂ G. Notice that (G,E) is relatively extremely amenable which constitutes a
contradiction with the fact that (G,H) is maximally relatively extremely amenable.

Theorem 3.5.8. There exists a relatively extremely amenable pair (G,H) which which does
not admit an extremely amenable interpolant.

Proof. Let G = S∞ be the permutation group of the integers, equipped with the pointwise
convergence topology. Let < be the usual order on Z and H = Stab(<) ⊂ G. By Theo-
rem 3.5.6 (G,H) is maximally relatively extremely amenable. Clearly G is not extremely
amenable as UG �= {∗}. By Lemma 3.4.1(1) H = {Ta| a ∈ Z} ∼= Z, where the second equiv-
alence is as topological groups. This implies H is not extremely amenable. Now invoke
Lemma 3.5.7.

Theorem 3.5.9. Aut(Q, <) is maximally extremely amenable in S∞.

Proof. By [Pes98] Aut(Q, <) is extremely amenable. Now we can proceed as in the proof
of Theorem 3.5.8 using Lemma 3.4.2.

Remark 3.5.10. Even though the previous result never appeared in print, Todor Tsankov
pointed out that it can be derived from an earlier result by Cameron. Indeed, the article
[Cam76] allows a complete description of the closed subgroups G of S∞ containing Aut(Q)
(essentially, there are only five of them, see [BP11] for an explicit description) and it can
be verified that among those, only Aut(Q) is extremely amenable.

3.6 Applications in Fräıssé Theory The following two sections deal with applications
Fräıssé Theory. Two general references for this theory are [Fra00] and [Hod93]. We follow
the exposition and notation of [KPT05].

Let {<} ⊂ L,L0 = L \ {<} be signatures, K0 a Fräıssé class in L0, K an order Fräıssé
expansion of K0 in L, F = Flim(K) the Fräıssé limit of K. By Theorem 5.2(ii) ⇒ (i) of
[KPT05], if we denote F0 = Flim(K0) then F0 = F |L0. Let G0 = Aut(F0) and G = Aut(F ).
Denote <F =<0, i.e. <0 is the linear order corresponding to the symbol < in F , and let
XK = G0 <0 (XK is called set of K-admissible linear orderings of F in [KPT05]). In
[KPT05], two combinatorial properties for K have considerable importance in order to
compute universal minimal spaces. Those are called ordering property and Ramsey property :
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Definition 3.6.1. Let {<} ⊂ L be a signature, L0 = L \ {<}, K0 a Fräıssé class in L0,
K an order Fräıssé expansion of K0 in L, F = Flim(K) the Fräıssé limit of K. We say
that K satisfies the ordering property (relative to K0) if for every A0 ∈ K0, there is
B0 ∈ K0, such that for every linear ordering ≺ on A0 and linear ordering ≺′ on B0, if
A = 〈A0,≺〉 ∈ K and B = 〈B0,≺′〉 ∈ K , then there is an embedding A �→ B.

Definition 3.6.2. Let {<} ⊂ L be a signature and K be an order Fräıssé class in L. We
say that K satisfies the Ramsey property if, for every positive k ∈ N, every A ∈ K and
every B ∈ K, there exists C ∈ K such that for every k-coloring of the substructures of C
which are isomorphic to A, there is a substructure B̃ of C which is isomorphic to B and
such that all substructures of B̃ which are isomorphic to A receive the same color.

Those two properties are relevant because they capture dynamical properties of XK .
For example, Theorem 7.4 of [KPT05] states that the minimality of XK is equivalent to K
having the ordering property, and Theorem 10.8 of [KPT05] states that XK being universal
and minimal is equivalent to K having the ordering and Ramsey properties. Those results
naturally led the authors of [KPT05] to ask whether XK being universal is equivalent to K
having the Ramsey property. This question is precisely the reason for which the concept of
relative extremely amenability was introduced. Recall that by Theorem 4.7 of [KPT05], the
Ramsey property of K is equivalent to G being extremely amenable. In [NVT13], it is shown
that the universality of XK is equivalent to (G0, G) being relatively extremely amenable.
However, it is still unknown whether (G0, G) being relatively extremely amenable is really
weaker than G being extremely amenable (see Section 3.8 for more about this aspect).

Remark 3.6.3. The reason for which only order expansions (i.e. {<} ⊂ L,L0 = L \ {<},
and < is interpreted as a linear order) were considered in [KPT05] is that, at the time where
the article was written, expanding the signature by such a symbol was sufficient in order to
obtain Ramsey property and ordering property in all known practical cases. However, we
know now that there are some cases where expanding the language with more symbols is nec-
essary (E.g. circular tournaments and boron tree structures, whose Ramsey-type properties
have been respectiveley analyzed by Laflamme, Nguyen Van Thé and Sauer in [LNVTS10],
and by Jasiński in [Jas13]). The description of the corresponding universal minimal spaces
is very similar to what is obtained in [KPT05] and will appear in a forthcoming paper. For
the sake of clarity, we will only treat here the case of order expansions, which extends to
the general case without difficulty.

3.7 The weak ordering property. Theorem 10.8 of [KPT05] states that K has the
ordering and Ramsey properties if and only if XK is the universal minimal space of G0.
The purpose of this section is to show that the combinatorial assumptions made on K can
actually be slightly weakened. We start with a generalization of the notion of transitivity
mentioned in subsection 3.1.

Definition 3.7.1. Let G be a topological group and X a G-space. Y ⊂ X is said to be
transitive w.r.t X if and only if for any y ∈ Y , Gy = X.

Proposition 3.7.2. Let G0 be a topological group and let TG0 be G0-universal. Let x ∈ TG0

and let G = StabG0(x) ⊂ G0. TG0 is minimal if and only if FixTG0
(G) is transitive w.r.t

TG0 .

Proof. If TG0 is minimal then TG0 is transitive w.r.t itself and trivially FixTG0
(G) ⊂ TG0 is

transitive w.r.t TG0 . To prove the inverse direction, let M ⊂ TG0 be a G0-minimal space.
By Proposition 3.2.3(3), (G0, G) is relatively extremely amenable and therefore there exists
t0 ∈ M ∩ FixTG0

(G). As FixTG0
(G) is transitive w.r.t TG0 , conclude TG0 = G0t0 ⊂ M , so

TG0 = M is minimal.
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The previous proposition enables us to prove the following equivalence:

Theorem 3.7.3. (G0, G) is relatively extremely amenable and FixXK (G) is transitive w.r.t
XK if and only if XK is the universal minimal space of G0.

Proof. As indicated previously, the universality of XK is equivalent to the fact that (G0, G)
is relatively extremely amenable. By Proposition 3.7.2, given that XK is universal, the
minimality of XK is equivalent to the fact that FixXK (G) is transitive w.r.t XK .

Remark 3.7.4. By Theorem 3.2.3(3) (S∞, Aut(Q, <)) is relatively extremely amenable.
By Lemma 3.4.2 FixLO(Q)(Aut(Q, <)) = {<,<∗}. As LO(Q) = S∞ < = S∞ <∗, we have
that FixLO(Q)(Aut(Q, <)) is transitive w.r.t LO(Q). By Theorem 3.7.3, it follows that
Aut(Q, <) is extremely amenable. It should be noted that in [KPT05], one obtains the same
results but in reverse order: one concludes LO(Q) is the universal minimal space of G,
using the fact that G0 is extremely amenable.

We are now going to show how to reformulate Theorem 3.7.3 in terms of combinatorics.

Definition 3.7.5. Let {<} ⊂ L be a signature, L0 = L \ {<}, K0 a Fräıssé class in L0,
K an order Fräıssé expansion of K0 in L. We say that (K0,K) has the relative Ramsey
property if for every positive k ∈ N, every A0 ∈ K0 and every B ∈ K, there exists C ∈ K0

such that for every k-coloring of the substructures of C0 isomorphic to A0, there is an
embedding φ : B|L0 �→ C0 such that for any two substructures Ã, Ã′ of B0 isomorphic to
A0, φ(Ã) and φ(Ã′) receive the same color whenever Ã and Ã′ support isomorphic structures
in B.

In what follows, the relative Ramsey property will appear naturally because of the
following fact (see [NVT13]):

Claim 3.7.6. (G0, G) is relatively extremely amenable iff (K0,K) has the relative Ramsey
property.

We will also need the following variant of the notion of ordering property:

Definition 3.7.7. Let {<} ⊂ L be a signature, L0 = L \ {<}, K0 a Fräıssé class in L0,
K an order Fräıssé expansion of K0 in L. We say that K satisfies the weak ordering
property relative to K0 if for every A0 ∈ K0, there is B0 ∈ K0, such that for every
linear ordering ≺ on A0 with A = 〈A,≺〉 ∈ K and linear ordering ≺′∈ FixXK (G) we have
A �→ 〈B0,≺′ |B0〉.

The following claim appears in the proof of Theorem 7.4 of [KPT05]:

Claim 3.7.8. Let < be a linear ordering on F0. Then <0∈ G0 < if and only if for every
A ∈ K there is a finite substructure C0 of F0 such that C = 〈C0, < |C0〉 ∼= A.

Proposition 3.7.9. Assume K satisfies the weak ordering property relative to K0, and that
(K0, K) has the relative Ramsey property. Then K satisfies the ordering property.

Proof. Again, the universality of XK is equivalent to the fact that (G0, G) is relatively
extremely amenable, which is in turn equivalent to (K0,K) having the relative Ramsey
property. By Theorem 7.4 of [KPT05] the minimality of XK is equivalent to the ordering
property of K (relative to K0). By Proposition 3.7.2 in order to establish XK is minimal, it
is enough to show that FixXK

(G) is transitive w.r.t XK . Let <∈ FixXK
(G). It is enough
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to show <0∈ G <. Fix A ∈ K. As K satisfies the weak ordering property, there is B0 as
in Definition 3.7.7 such that A �→ 〈B0, < |B0〉. Using the same argument as in the proof of
Theorem 7.4 of [KPT05], we notice that there is a substructure C of B isomorphic to A.
Denote C0 = C|L0 and notice C = 〈C0, < |C0〉 ∼= A . We now use Claim 3.7.8.

Theorem 3.7.10. K has the weak ordering property and (K0,K) has the relative Ramsey
property if and only if XK is the universal minimal space of G0.

Proof. By Theorem 10.8 of [KPT05], if XK is the universal minimal space of G0 then K
satisfies the ordering property, a fortiori, K satisfies the weak ordering property. In addition
K satisfies the Ramsey property which implies (K0, K) has the relative Ramsey property.
The reverse direction follows from Proposition 3.7.9.

3.8 A question. We mentioned previously that the concept of relative extreme amenabil-
ity was introduced in order to know whether XK being universal is equivalent to K having
the Ramsey property. By Theorem 4.7 of [KPT05], the Ramsey property of K is equivalent
to G being extremely amenable. We still do not know the answer to the following question
from [KPT05]:

Question 3.8.1. Let {<} ⊂ L be a signature, L0 = L \ {<}, K0 a Fräıssé class in L0, K
an order Fräıssé expansion of K0 in L. Does universality for XK imply that G is extremely
amenable (equivalently, that K has the Ramsey property)?

Moreover, in view of the notions we introduced previously, we ask:

Question 3.8.2. Assume the previous question has a negative answer. Does there exist an
extremely amenable interpolant for the pair (G0, G)?

As a final comment, and in view of Remark 3.6.3, it should be mentioned that Question
3.8.1 has a negative answer when K is not an order expansion of K0, see [NVT13].
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SHRINKAGE ESTIMATION FOR THE AUTOCOVARIANCE MATRIX OF
VECTOR-VALUED GAUSSIAN STATIONARY PROCESSES
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Abstract. We discuss the problem of shrinkage estimation for the autocovariance
matrix of a Gaussian stationary vector-valued process to improve on the usual sample
autocovariance matrix with respect to the mean squares error. We propose a kind
of empirical Bayes estimators when the mean of the stochastic process is zero and
non-zero. We show that the shrinkage estimators dominate the usual estimators, and
the asymptotic risk differences are similar to that of scalar-valued Gaussian stationary
processes. This result seems to be useful for the autocovariance estimation with vector-
valued dependent observations.

1 Introduction There have been many discussions on shrinkage estimation to improve
on the sample mean and the sample covariance of independent observations. Stein [6] showed
the inadmissibility of the sample mean for k-dimensional independent normal observations
when k ≥ 3. James and Stein [5] suggested a shrinkage estimator which dominates the
sample mean with respect to the mean squares error when k ≥ 3. Furthermore, in the
univariate case, Stein [7] proposed a truncated estimator and showed the estimator improves
on the usual sample variance. Also in the multivariate case, Haff [2] proposed an empirical
Bayes estimator for the normal covariance matrix and showed the estimator improves on
the sample covariance matrix.

All mentioned above are the discussions for independent normal observations. However,
it is natural that the actual data are dependent. Therefore, it is important to consider
the shrinkage estimators which dominate the usual sample mean and the autocovariance
when the observations are dependent. For a vector-valued Gaussian process, Taniguchi and
Hirukawa [8] gave a sufficient condition for James-Stein type estimator to dominate the
sample mean. Furthermore, for the scalar-valued Gaussian stationary process, Taniguchi et
al. [9] suggested an empirical Bayes estimator motivated by Haff [2] and discussed on the
improvement by the estimator.

Since it is useful to represent the actual time series data by dependent and multivariate
statistical models, in this paper, we consider improved autocovariance estimation for vector-
valued Gaussian stationary processes motivated by Taniguchi et al. [9]. We propose shrinked
autocovariance estimators, and show that the estimators dominate the usual autocovariance
estimators in case of vector-valued Gaussian stationary processes.

This paper is organized as follows. In Section 2, we introduce empirical Bayes estimators
in view of Taniguchi et al. [9] when the mean of the stochastic process is zero and non-zero.
Then we evaluate the asymptotic risk differences by the mean squares error between the
shrinkage estimator and the usual sample autocovariance matrix. The improvements by the
shrinkage estimators are expressed in terms of the spectral density of the process. Section
3 provides the proofs of theorems in Section 2.

2000 Mathematics Subject Classification. 60G10, 60G15, 62H12.
Key words and phrases. shrinkage estimation, Gaussian stationary process, autocovariance, spectral

density, mean squares error.
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{X(t)} is a scalar-valued process, Taniguchi et al. [9] introduced the following empirical
Bayes estimators

(6) Γ̂ =
1

n − k

(
Sn +

b

n tr(S−1
n C)

C

)

and

(7) Γ̃ =
1

n − k

(
S̃n +

b

n tr(S̃−1
n C)

C

)

to improve Γ̂0 and Γ̃0, respectively, where b is a constant and C is a positive definite matrix
of the same size as Γ, and showed that Γ̂ and Γ̃ dominate Γ̂0 and Γ̃0, respectively, with
respect to the risk. Similarly, when {X(t)} is a vector-valued process, we use the estimators
in the form of (6) and (7), and show that Γ̂ and Γ̃ dominate Γ̂0 and Γ̃0, respectively. To
evaluate the improvement of the estimator, we need the following assumption.

Assumption 2. C is symmetric.

The assumption seems to be natural because Sn in (6) and S̃n in (7) are symmetric and
Γ̂ in (6) and Γ̃ in (7) should be symmetric. Then, the following theorem holds.

Theorem 1. When µ = 0, suppose that Assumptions 1 and 2 hold. Then the asymptotic
risk difference for the estimator Γ̂0 and Γ̂ is

(8) lim
n→∞

n2[R(Γ̂0,Γ) − R(Γ̂, Γ)] = −b
tr{(CΓ−1)2}
{tr(Γ−1C)}2

[b + B],

where
(9)

B =




2(−p + 1)
{tr(Γ−1C)}2

tr{(CΓ−1)2}

+
8π

tr{(CΓ−1)2}

∫ π

−π

tr{[{{(G(λ) ⊗ Im)Γ−1CΓ−1} ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

(if k = 0),

8π

tr{(CΓ−1)2}

∫ π

−π

tr{[{{(G(λ) ⊗ Im)Γ−1CΓ−1} ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

(if k = p − 1).

with G(λ) = (e−i(h−l)λ)h,l=1,...,p (p × p matrix), Um = 1m1′
m and 1m = (1, . . . , 1)′ (m ×

1 vector).

We can see that this result includes Theorem 1 of Taniguchi et al. [9] as special case.

When µ �= 0, we can show the following theorem for Γ̃0 and Γ̃.

Theorem 2. When µ �= 0, suppose that Assumptions 1 and 2 hold. Then the asymptotic
risk difference for the estimator Γ̃0 and Γ̃ is

(10) lim
n→∞

n2[R(Γ̃0,Γ) − R(Γ̃, Γ)] = −b
tr{(CΓ−1)2}
{tr(Γ−1C)}2

[b + B̃],

where

(11) B̃ = B − 4π
tr{(Up ⊗ f(0))Γ−1CΓ−1} · tr{Γ−1C}

tr{(CΓ−1)2}
.

We can see that this result includes Theorem 2 of Taniguchi et al. [9] as special case.
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Throughout this paper, Z denotes the set of all integers, and ⊗ denotes the Kronecker
product of matrices, and ◦ denotes the Hadamard product (entrywise product) of matrices.

2 Shrinkage estimators for autocovariance matrix Let {X(t), t ∈ Z} be an m-
dimensional Gaussian stationary process with mean E(X(t)) = µ and autocovariance ma-
trix γ(s) = E[(X(t) − µ)(X(t + s) − µ)′] for s ∈ Z and all t ∈ Z. We assume that γ(s)’s
satisfy

Assumption 1.
∞∑

s=−∞
|s| · ‖γ(s)‖ < ∞,

where ‖ · ‖ is the Euclidean norm. Then the spectral density matrix of the process is given
by

(1) f(λ) =
1
2π

∞∑
s=−∞

γ(s)e−isλ.

Here we consider to estimate the autocovariance matrix

(2) Γ =




γ(0) γ(−1) . . . γ(1 − p)
γ(1) γ(0) . . . γ(2 − p)

...
...

. . .
...

γ(p − 1) γ(p − 2) . . . γ(0)


 .

for positive integer p. Since γ(−s) = γ(s)′, Γ is symmetric. Suppose that an observed
stretch {X(1), . . . , X(n)} of the process {X(t)} is available. When µ = 0, the usual
estimator for Γ is

(3) Γ̂0 =
1

n − k
Sn,

where

Sn =
n∑

t=p

Y (t)Y (t)′, Y (t) = (X(t)′, . . . , X(t − p + 1)′)′,

and k = 0 or p − 1. When µ �= 0, the usual estimator for Γ is

(4) Γ̃0 =
1

n − k
S̃n,

where

S̃n =
n∑

t=p

Ỹ (t)Ỹ (t)′, Ỹ (t) = ((X(t) − X̄n)′, . . . , (X(t − p + 1) − X̄n)′)′,

with X̄n = n−1
∑n

t=1 X(t) and k = 0 or p − 1. We measure the goodness of Γ̂0 by the
following mean squares error loss function

(5) L(Γ̂0,Γ) = tr{(Γ̂0Γ−1 − Imp)2} (Imp is the mp × mp identity matrix)

and the risk R(Γ̂0, Γ) = E{L(Γ̂0, Γ)}. Similarly, for Γ̃0 we also define L(Γ̃0, Γ) and R(Γ̃0, Γ).
Next, we consider to improve the estimators Γ̂0 and Γ̃0 with respect to the risk R(·, ·). When
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{X(t)} is a scalar-valued process, Taniguchi et al. [9] introduced the following empirical
Bayes estimators

(6) Γ̂ =
1

n − k

(
Sn +

b

n tr(S−1
n C)

C

)

and

(7) Γ̃ =
1

n − k

(
S̃n +

b

n tr(S̃−1
n C)

C

)

to improve Γ̂0 and Γ̃0, respectively, where b is a constant and C is a positive definite matrix
of the same size as Γ, and showed that Γ̂ and Γ̃ dominate Γ̂0 and Γ̃0, respectively, with
respect to the risk. Similarly, when {X(t)} is a vector-valued process, we use the estimators
in the form of (6) and (7), and show that Γ̂ and Γ̃ dominate Γ̂0 and Γ̃0, respectively. To
evaluate the improvement of the estimator, we need the following assumption.

Assumption 2. C is symmetric.

The assumption seems to be natural because Sn in (6) and S̃n in (7) are symmetric and
Γ̂ in (6) and Γ̃ in (7) should be symmetric. Then, the following theorem holds.

Theorem 1. When µ = 0, suppose that Assumptions 1 and 2 hold. Then the asymptotic
risk difference for the estimator Γ̂0 and Γ̂ is

(8) lim
n→∞

n2[R(Γ̂0,Γ) − R(Γ̂, Γ)] = −b
tr{(CΓ−1)2}
{tr(Γ−1C)}2

[b + B],

where
(9)

B =




2(−p + 1)
{tr(Γ−1C)}2

tr{(CΓ−1)2}

+
8π

tr{(CΓ−1)2}

∫ π

−π

tr{[{{(G(λ) ⊗ Im)Γ−1CΓ−1} ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

(if k = 0),

8π

tr{(CΓ−1)2}

∫ π

−π

tr{[{{(G(λ) ⊗ Im)Γ−1CΓ−1} ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

(if k = p − 1).

with G(λ) = (e−i(h−l)λ)h,l=1,...,p (p × p matrix), Um = 1m1′
m and 1m = (1, . . . , 1)′ (m ×

1 vector).

We can see that this result includes Theorem 1 of Taniguchi et al. [9] as special case.

When µ �= 0, we can show the following theorem for Γ̃0 and Γ̃.

Theorem 2. When µ �= 0, suppose that Assumptions 1 and 2 hold. Then the asymptotic
risk difference for the estimator Γ̃0 and Γ̃ is

(10) lim
n→∞

n2[R(Γ̃0,Γ) − R(Γ̃, Γ)] = −b
tr{(CΓ−1)2}
{tr(Γ−1C)}2

[b + B̃],

where

(11) B̃ = B − 4π
tr{(Up ⊗ f(0))Γ−1CΓ−1} · tr{Γ−1C}

tr{(CΓ−1)2}
.

We can see that this result includes Theorem 2 of Taniguchi et al. [9] as special case.
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Using Lemma 1(a), as n → ∞, (15) converges to

(16)

p∑
h,l,h′,l′=1

m∑
i,j,i′,j′=1

V lh
ji V l′h′

j′i′

×2π

∫ π

−π

{fii′(λ)fj′j(λ)e−i(h−l+l′−h′)λ + fij′(λ)fi′j(λ)ei(l−h+l′−h′)λ}dλ.

Here, by Assumption 2, V is symmetric and then (V lh)′ = V hl. Therefore (16) is equal to

(17) 4π

∫ π

−π

tr




p∑
h,l=1

e−(h−l)λ V lhf(λ)
p∑

h′,l′=1

e−(h′−l′)λ V l′h′
f(λ)


 dλ.

Therefore (17) can be expressed as

(18) 4π

∫ π

−π

tr{[{{(G(λ) ⊗ Im)V } ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

which completes the proof of Theorem 1.

Next, we prove Theorem 2. To prove the theorem we need the following lemma.

Lemma 2. Suppose that Assumption 1 holds. Then,
(a)

nE[(X̄n − µ)(X̄n − µ)′] = 2πf(0) + o(1).

(b)

E

(
1

n − k
S̃n

)
=

(
1 +

k − p + 1
n − k

)
Γ − 2π

n − k
(Up ⊗ f(0)) + o(n−1).

(c) Denote the α-th component of X̄n by X̄α
n . Then

lim
n→∞

nCov

{
1
n

n∑
t=p

(Xα1(t − j1) − X̄α1
n )(Xα2(t − j2) − X̄α2

n ),

1
n

n∑
t=p

(Xα3(t − j3) − X̄α3
n )(Xα4(t − j4) − X̄α4

n )

}

= Wα1,...,α4
j1,...,j4

.

(d)

1√
n

(S̃n − nΓ) = O(
√

log n), a.s.

Proof of Lemma 2 (a) is due to [3] (p.208, Corollary 4).
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3 Proofs This section provides the proofs of the theorems. We need the following
lemma to prove Theorem 1 (for the proofs, see Lemma A2.3 of Hosoya and Taniguchi [4]
and Theorem 4.5.1 of Brillinger [1]).

Lemma 1. Suppose that Assumption 1 holds.
(a) Denote the α-th component of X(t) by Xα(t), and denote the (α, β)-th component of
f(λ) by fαβ(λ). If {X(t)} is Gaussian, Then

lim
n→∞

nCov

{
1
n

n∑
t=p

Xα1(t − j1)Xα2(t − j2),
1
n

n∑
t=p

Xα3(t − j3)Xα4(t − j4)

}

= 2π

∫ π

−π

{fα1α3(λ)fα2α4(λ)e−i(j1−j2+j4−j3)λ + fα1α4(λ)fα2α3(λ)ei(j2−j1+j4−j3)λ}dλ

= Wα1,...,α4
j1,...,j4

(say) (0 ≤ j1, . . . , j4 ≤ p − 1).

(b) Denote the (α, β)-th component of γ(s) by γαβ(s). Then

1√
n

n∑
t=p

{Xα(t − j1)Xβ(t − j2) − γαβ(j1 − j2)} = O(
√

log n), a.s.

Proof of Theorem 1 We can calculate the asymptotic risk difference in the vector-valued
case as same as (19) of Taniguchi et al. [9]. In the proof of Theorem 1 of [9], we can use the
form of (23) of [9]. Therefore we only evaluate the numerator in the expectation of (23) of
[9]. The numerator is given by

(12) E

[(
tr

{√
n

(
1

n − k
Sn − E

(
1

n − k
Sn

))
Γ−1CΓ−1

})2
]

.

Here we set Z =
1

n − k
Sn − E

(
1

n − k
Sn

)
and V = Γ−1CΓ−1. Then (12) is equal to

(13) nE




{
p∑

h=1

p∑
l=1

tr
(
ZhlV lh

)}2

 ,

where Zhl and V hl are the (h, l)-th m×m block matrices of Z and V , respectively. Denote
the (i, j)-th component of Zhl and V lh by Zhl

ij and V lh
ij , respectively. Then (13) is equal to

(14)
p∑

h,l,h′,l′=1

m∑
i,j,i′,j′=1

nE[Zhl
ij Zh′l′

i′j′ ]V lh
ji V l′h′

j′i′ .

Let Shl
n be the (h, l)-th m × m block matrix of Sn. Since Zhl =

1
n − k

{Shl
n − E[Shl

n ]} and

Shl
n =

∑n
t=p X(t − h + 1)X(t − l + 1)′, (14) is equal to

(15)

p∑
h,l,h′,l′=1

m∑
i,j,i′,j′=1

n2

(n − k)2
V lh

ji V l′h′

j′i′

×nCov

(
1
n

n∑
t=p

Xi(t − h + 1)Xj(t − l + 1) ,
1
n

n∑
t=p

Xi′(t − h′ + 1)Xj′(t − l′ + 1)

)
.
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Using Lemma 1(a), as n → ∞, (15) converges to

(16)

p∑
h,l,h′,l′=1

m∑
i,j,i′,j′=1

V lh
ji V l′h′

j′i′

×2π

∫ π

−π

{fii′(λ)fj′j(λ)e−i(h−l+l′−h′)λ + fij′(λ)fi′j(λ)ei(l−h+l′−h′)λ}dλ.

Here, by Assumption 2, V is symmetric and then (V lh)′ = V hl. Therefore (16) is equal to

(17) 4π

∫ π

−π

tr




p∑
h,l=1

e−(h−l)λ V lhf(λ)
p∑

h′,l′=1

e−(h′−l′)λ V l′h′
f(λ)


 dλ.

Therefore (17) can be expressed as

(18) 4π

∫ π

−π

tr{[{{(G(λ) ⊗ Im)V } ◦ (Ip ⊗ Um)}(Up ⊗ f(λ))]2}dλ,

which completes the proof of Theorem 1.

Next, we prove Theorem 2. To prove the theorem we need the following lemma.

Lemma 2. Suppose that Assumption 1 holds. Then,
(a)

nE[(X̄n − µ)(X̄n − µ)′] = 2πf(0) + o(1).

(b)

E

(
1

n − k
S̃n

)
=

(
1 +

k − p + 1
n − k

)
Γ − 2π

n − k
(Up ⊗ f(0)) + o(n−1).

(c) Denote the α-th component of X̄n by X̄α
n . Then

lim
n→∞

nCov

{
1
n

n∑
t=p

(Xα1(t − j1) − X̄α1
n )(Xα2(t − j2) − X̄α2

n ),

1
n

n∑
t=p

(Xα3(t − j3) − X̄α3
n )(Xα4(t − j4) − X̄α4

n )

}

= Wα1,...,α4
j1,...,j4

.

(d)

1√
n

(S̃n − nΓ) = O(
√

log n), a.s.

Proof of Lemma 2 (a) is due to [3] (p.208, Corollary 4).
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(b) S̃hl
n denotes the (h, l)-th m × m block matrix of S̃n. Then

1
n − k

S̃hl
n(19)

=
1

n − k

n∑
t=p

(X(t − h + 1) − X̄n)(X(t − l + 1) − X̄n)′

=
1

n − k

n∑
t=p

(X(t − h + 1) − µ + µ − X̄n)(X(t − l + 1) − µ + µ − X̄n)′

=
1

n − k

n∑
t=p

(X(t − h + 1) − µ)(X(t − l + 1) − µ)′ +
n − p + 1

n − k
(X̄n − µ)(X̄n − µ)′

+
1

n − k
(µ − X̄n)

n∑
t=p

(X(t − l + 1) − µ)′ +
1

n − k

n∑
t=p

(X(t − l + 1) − µ)(µ − X̄n)′

=
1

n − k

n∑
t=p

(X(t − h + 1) − µ)(X(t − l + 1) − µ)′ − n

n − k
(X̄n − µ)(X̄n − µ)′

+
1

n − k
op(1).

From (a), we obtain

E

(
1

n − k
S̃hl

n

)
=

n − p + 1
n − k

γ(h − l) − 1
n − k

(2πf(0) + o(1)) +
1

n − k
o(1)

=
(

1 +
k − p + 1

n − k

)
γ(h − l) − 2π

n − k
f(0) + o(n−1).

Then we get the result.

(c) From (19), Gaussianity of {Xt}, and the properties of cumulant, we can show this
lemma.

(d) Noting that Theorem 4.5.1 of Brillinger [1], we obtain
√

n(X̄n − µ) = O(
√

log n) a.s.

From Lemma 1 (b), we can see that (d) holds.

Proof of Theorem 2 We can prove the theorem similarly to Theorem 1, except for the
evaluation of

(20) − 2n2b

n − k
tr

[{
E

(
1

n − k
S̃n

)
− Γ

}
Γ−1CΓ−1

]

in (21) of [9]. From Lemma 2 (b) it is seen that

(21) lim
n→∞

(20) = −2b[(k − p + 1)tr{CΓ−1} − 2π tr{(Up ⊗ f(0))Γ−1CΓ−1}].

Therefore we obtain the Theorem 2.
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Abstract. We prove that the free locally convex space L(X) over a metrizable space
X has countable tightness if and only if X is separable.

1 Introduction A topological space X is called first countable if it has a countable open
base at each point. Any first countable topological group is metrizable. Various topological
properties generalizing first countability have been studied intensively by topologists and
analysts, especially Fréchet-Urysohness, sequentiality, to be a k-space and countable tight-
ness (see [5, 11]). It is well know that, metrizability ⇒ Fréchet-Urysohness ⇒ sequentiality
⇒ countable tightness, and sequentiality ⇒ to be a k-space. Although none of these im-
plications is reversible, for many important classes of locally convex spaces (lcs for short)
some of them can be reversed. Ka̧kol showed that for an (LM)-space (the inductive limit of
a sequence of locally convex metrizable spaces), metrizability ⇔ Fréchet-Urysohness. The
Cascales and Orihuela result states that for an (LM)-space, sequentiality ⇔ to be a k-space.
Moreover, Ka̧kol and Saxon [12] proved the next structural theorem: An (LM)-space E is
sequential (or a k-space) if and only if E is metrizable or is a Montel (DF )-space. Topo-
logical properties of a lcs E in the weak topology σ(E,E′) are of the importance and have
been intensively studied from many years (see [11, 18]). Corson (1961) started a systematic
study of certain topological properties of the weak topology of Banach spaces. If B is any
infinite-dimensional Banach space, a classical result of Kaplansky states that (E, σ(E,E′))
has countable tightness (see [11]), but the weak dual (E′, σ(E′, E)) is not a k-space (see
[12]). Note that there exists a (DF )-space with uncountable tightness whose weak topology
has countable tightness [4]. We refer the reader to the book [11] for many references and
facts.

In this paper we consider another class in the category LCS of locally convex spaces
and continuous linear operators which is the most important from the categorical point of
view, namely the class of free locally convex spaces over Tychonoff spaces introduced by
Markov [15]. Recall that the free locally convex space L(X) over a Tychonoff space X is a
pair consisting of a locally convex space L(X) and a continuous mapping i : X → L(X)
such that every continuous mapping f from X to a locally convex space E gives rise to a
unique continuous linear operator f̄ : L(X) → E with f = f̄ ◦ i. The free locally convex
space L(X) always exists and is unique. The set X forms a Hamel basis for L(X), and the
mapping i is a topological embedding [19, 6, 7, 23]. It turns out (see [8]) that except for
the trivial case when X is a countable discrete space, the free lcs L(X) is never a k-space:
For a Tychonoff space X, L(X) is a k-space if and only if X is a countable discrete space.

The aforementioned results explain our interest to the following problem.

Question 1.1. For which Tychonoff spaces X the free lcs L(X) has countable tightness?

2010 Mathematics Subject Classification. Primary 46A03; Secondary 54A25, 54D50.
Key words and phrases. Free locally convex space, free abelian topological group, countable Pytkeev

network, the strong Pytkeev property, countable tightness.
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We obtain a complete answer to Question 1.1 for the important case when X is metriz-
able. The following theorem is the main result of the article.

Theorem 1.2. Let X be a metrizable space. Then the free lcs L(X) has countable tightness
if and only if X is separable.

Below we prove even a stronger result (see Theorem 2.6).

2 Proof of Theorem 1.2 The free (resp. abelian) topological group F (X) (resp. A(X))
over a Tychonoff space X were also introduced by Markov [15] and intensively studied over
the last half-century (see [10, 13, 19, 21, 23]), we refer the reader to [2, Chapter 7] for basic
definitions and results. We note that the topological groups F (X) and A(X) always exist
and are essentially unique. Note also that the identity map idX : X → X extends to a
canonical homomorphism idA(X) : A(X) → L(X) which is an embedding of topological
groups [21, 24].

The space of all continuous functions on a topological space X endowed with the
compact-open topology we denote by Cc(X). It is well known that the space L(X) ad-
mits a canonical continuous monomorphism L(X) → Cc(Cc(X)). If X is a k-space, this
monomorphism is an embedding of lcs [6, 7, 23]. So, for k-spaces, we obtain the next chain
of topological embeddings:

(2.1) A(X) �→ L(X) �→ Cc(Cc(X)).

Recall that a space X has countable tightness if whenever x ∈ A and A ⊆ X, then x ∈ B
for some countable B ⊆ A. We use the following remarkable result of Arhangel’skii, Okunev
and Pestov which shows that the topologies of F (X) and A(X) are rather complicated and
unpleasant even for the simplest case of a metrizable space X.

Theorem 2.1 ([1]). Let X be a metrizable space. Then:

(i) The tightness of F (X) is countable if and only if X is separable or discrete.

(ii) The tightness of A(X) is countable if and only if the set X ′ of all non-isolated points
in X is separable.

For the case X is discrete (hence metrizable) we have the following.

Theorem 2.2 ([8]). For each uncountable discrete space D, the space L(D) has uncountable
tightness.

Pytkeev [17] proved that every sequential space satisfies the property which is stronger
than countable tightness. Following [14], we say that a topological space X has the Pytkeev
property at a point x ∈ X if for each A ⊆ X with x ∈ A \ A, there are infinite subsets
A1, A2, . . . of A such that each neighborhood of x contains some An. In [22] this property
is strengthened as follows. A topological space X has the strong Pytkeev property at a point
x ∈ X if there exists a countable family D of subsets of X, which is called a Pytkeev network
at x, such that for each neighborhood U of x and each A ⊆ X with x ∈ A\A, there is D ∈ D
such that x ∈ D ⊆ U and D ∩ A is infinite. Following [3], a space X is called a Pytkeev
ℵ0-space if X is regular and has a countable family D which is a Pytkeev network at each
point x ∈ X. The strong Pytkeev property for topological groups is thoroughly studied
in [9], where, among others, it is proved that A(X) and L(X) have the strong Pytkeev
property for each MKω-space X (i.e., X is the inductive limit of an increasing sequence of
compact metrizable subspaces). Note also that in general (see [9]): Fréchet-Urysohness �⇒
the strong Pytkeev property �⇒ k-space.
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Recall that a family D of subsets of a topological space X is called a k-network in X
if, for every compact subset K ⊂ X and each neighborhood U of K there exists a finite
subfamily F ⊂ D such that K ⊂

⋃
F ⊂ U . Following Michael [16], a topological space X

is called an ℵ0-space if it is regular and has a countable k-network. Every separable and
metrizable space is a Pytkeev ℵ0-space, and every Pytkeev ℵ0-space is an ℵ0-space [3]. We
use the following strengthening of Michael’s theorem [16] given by Banakh:

Theorem 2.3 ([3]). If X is an ℵ0-space, then Cc(X) is a Pytkeev ℵ0-space.

The next theorem is an easy corollary of (2.1) and Theorem 2.3, the implication (iii)⇒(ii)
was first observed by A. Leiderman (see [3, Theorem 3.12]).

Theorem 2.4. For a k-space X the following assertions are equivalent:

(i) A(X) is a Pytkeev ℵ0-space.

(ii) L(X) is a Pytkeev ℵ0-space.

(iii) X is a Pytkeev ℵ0-space.

Proof. The implications (ii)⇒(i) and (i)⇒(iii) immediately follow from the fact that A(X)
is a subspace of L(X) and X is a subspace of A(X).

(iii)⇒(ii) If X is a Pytkeev ℵ0-space, then Cc(X) and Cc(Cc(X)) are Pytkeev ℵ0-space
by Theorem 2.3. As X is a k-space, L(X) is a subspace of Cc(Cc(X)) by (2.1). So L(X) is
a Pytkeev ℵ0-space. �

We need the next lemma (analogous results hold true also for A(X) and F (X)).

Lemma 2.5. If U is a clopen subset of a Tychonoff space X, then L(U) embeds into L(X)
as a closed subspace.

Proof. Denote by τU the topology of L(U) and by L(U)a the underlying free vector space
generated by U . Fix a point e belonging to U . Let i : U → X be the natural inclusion. By
the definition of L(U), i can be extended to a continuous inclusion ĩ : L(U) → L(X). So
τU is stronger than the topology τX

U induced on L(U)a from L(X). Define now p : X → U
as follows: p(x) = x if x ∈ U , and p(x) = e if x ∈ X \ U . Clearly, p is continuous. By the
definition of L(X), p can be extended to a continuous linear mapping p̃ : L(X) → L(U).
Since p ◦ i = idU , we obtain p̃ ◦ ĩ = idL(U) and p̃ is injective on L(U)a. So τX

U is stronger
than the topology τU . Thus τX

U = τU . Since U is a closed subset of X the subspace L(U,X)
of L(X) generated by U is closed (we can repeat word for word the proof of Proposition 3.8
in [20]). Thus ĩ is an embedding of L(U) onto the closed subspace L(U,X) of L(X). �

Now the next theorem implies Theorem 1.2.

Theorem 2.6. For a metrizable space X the following assertions are equivalent:

(i) L(X) is a Pytkeev ℵ0-space.

(ii) L(X) has countable tightness.

(iii) X is separable.
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Proof. (i)⇒(ii) is clear. Let us prove (ii)⇒(iii). Since A(X) is a subgroup of L(X), we
obtain that A(X) also has countable tightness. Now Theorem 2.1 implies that the set X ′

of all non-isolated points of X is separable. So we have to show only that the set D of all
isolated points of X is countable.

Suppose for a contradiction that D is uncountable. Then there is a positive number c
and an uncountable subset D0 of D such that Bc(d) = {d} for every d ∈ D0, where Bc(d) is
the c-ball centered at d. It is easy to see that D0 is a clopen subset of X. So, by Lemma 2.5,
L(D0) is a subspace of L(X). Now Theorem 2.2 yields that L(D0) and hence L(X) have
uncountable tightness. This contradiction shows that D is countable. Thus X is separable.

(iii)⇒(i) immediately follows from Theorem 2.4. �

We do not know whether the assertions (i) and (ii) in Theorem 2.1 are equivalent re-
spectively to the following: F (X) is a Pytkeev ℵ0-space for non-discrete X, and A(X) has
the strong Pytkeev property.
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Abstract. Let f be oeprator monotone for some open interval I of R. It is known
that f has the analytic continuation on H+ ∪ I ∪ H−, where H+ (resp. H−) is the
upper (resp. the lower) half plane of C. In this note, we determine the form of rational
operator monotone functions by using elementary argument, and prove the operator
monotonicity of some meromorphic functions.

1 Introduction. We denote the set of all n × n matrices over C by Mn and set

Hn = {A ∈ Mn | A∗ = A} and H+
n = {A ∈ Hn | A ≥ 0},

where A ≥ 0 means that A is non-negative, that is, the value of inner product

(Ax, x) ≥ 0 for all x ∈ Cn.

Let I be an open interval of the set R of real numbers. We also denote by Hn(I) the set
of A ∈ Hn with its spectra Sp(A) ⊂ I. A real continuous function f defined on the open
interval I is said to be operator monotone if A ≤ B implies f(A) ≤ f(B) for any n ∈ N
and A, B ∈ Hn(I). In this note, we assume that an operator monotone function is not a
constant function.

Let f be a real-valued continuous function on the interval I. We call f a Pick function if
f has an analytic continuation on the upper half plane H+ = {z ∈ C | Imz > 0} into itself.
It also has an analytic continuation to the lower half plane H−, obtained by reflections
across I.

We denote by P(I) the set of all Pick functions on I. It is well known that f ∈ P(I) is
equivalent to that f is operator monotone on I ([1], [4], [5]).

We characterize the rational Pick function (rational operator monotone function) by
an elementary method in Section 2 and give some examples using this characterization in
Section 3.

2 Rational operator monotone functions. Let I be an open interval and f(t) =
at + b

ct + d
(a, b, c, d ∈ R, ad − bc ≥ 0). It is well known that f is operator monotone on

(−∞,−d

c
) or (−d

c
, +∞) (see [1], [5]). So the following rational function is also operator

monotone on I:

b0 + a0t −
n∑

i=1

ai

t − αi
,

where b0 ∈ R, a0, a1, . . . , an ≥ 0 and α1, α2, . . . , αn ∈ R \ I.
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Let g ∈ P(I) be rational. Then there exists polynomials p(t) and q(t) with real coeffi-
cients such that

g(t) =
p(t)
q(t)

(t ∈ I),

where common devisors of p(t) and q(t) are only scalars and a coefficient of the highest degree
term of q(t) is 1. The polynomial q(t) with real coefficients is represented as products of
the following factors:

t − a, t2 + at + b (a, b ∈ R).

Since g has the analytic continuation to the upper half plane H+ and the lower half plane
H−,

g(z) =
p(z)
q(z)

(z ∈ H+ ∪ I ∪ H+)

and g has no poles on H+ ∪ I. So we may assume that g(z) has the following form:

g(z) =
p(z)

(z − c1)n(1)(z − c2)n(2) · · · (z − ck)n(k)
,

where c1, c2, . . . , ck ∈ R ∩ Ic and each n(i) (i = 1, 2, . . . , k) is a positive integer with
n(1) + n(2) + · · · + n(k) = deg q(z). By the partially fractional decomposition of g(z),

g(z) = r(z) +
k∑

i=1

n(i)∑
j=1

bi,j

(z − ci)j
,

where r(z) is the remainder of p(z) by q(z) and {bi.j} ⊂ R.

Lemma 2.1. In above setting, g ∈ P(I) satisfies the following conditions:

(1) There exist r0, r1 ∈ R such that r1 ≥ 0 and r(z) = r0 + r1z.

(2) n(i) = 1 and bi,1 ≤ 0 for all i = 1, 2, . . . , k.

Proof. (1) We set
r(z) = r0 + r1z + · · · + rdz

d,

where d = deg r(z). Put

θ =

{
3π
2d if d ≥ 2 and rd > 0
π
2d if d ≥ 1 and rd < 0

.

For a sufficiently large R > 0 and z = Reθ
√
−1 ∈ H+, we may assume that

|rd|Rd = |rdz
d| > |

d−1∑
i=0

riz
i +

k∑
i=1

n(i)∑
j=1

bi,j

(z − ci)j
|.

Then we have

Img(z) = Im(−|rd|Rd
√
−1 +

d−1∑
i=0

riz
i +

k∑
i=1

n(i)∑
j=1

bi,j

(z − ci)j
)

≤ −|rd|Rd + |
d−1∑
i=0

riz
i +

k∑
i=1

n(i)∑
j=1

bi,j

(z − ci)j
| < 0.
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This contradicts to g(z) ∈ H+. So we have that r(z) = r0 + r1z and r1 ≥ 0.
(2) In a suitable neighborhood of ci in H+ ∪ I ∪ H−, g ∈ P(I) has the form

g(z) =
bi,1

z − ci
+ · · · +

bi,n(i)

(z − ci)n(i)
+ h(z),

where h(z) is holomorphic on the neighborhood of ci. Put

θ =




π

2n(i)
if n(i) ≥ 2 and bi,n(i) > 0

3π

2n(i)
if n(i) ≥ 1 and bi,n(i) < 0

.

For a sufficiently small r > 0, z = ci + reθ
√
−1 ∈ H+ and we may assume that

|bi,n(i)|
rn(i)

= |
bi,n(i)

(z − ci)n(i)
| > |

n(i)−1∑
j=1

bi,j

(z − ci)j
+ h(z)|.

Then we have

Img(z) = Im(−
|bi,n(i)|
rn(i)

√
−1 +

n(i)−1∑
j=1

bi,j

(z − ci)j
+ h(z))

≤ −
|bi,n(i)|
rn(i)

+ |
n(i)−1∑

j=1

bi,j

(z − ci)j
+ h(z)| < 0.

This contradicts to g(z) ∈ H+. So we have that n(i) = 1 and bi,1 ≤ 0 for all i = 1, 2, . . . , k.

We can now prove the following theorem:

Theorem 2.2. The following are equivalent:

(1) f ∈ P(I) is rational.

(2) There exist b0 ∈ R, non-negative numbers a0, a1, . . . , an and real numbers α1, α2, . . . , αn /∈
I such that

f(t) = b0 + a0t −
n∑

i=1

ai

t − αi
.

(3) There exist a0, c ≥ 0, b0 ∈ R, α1, α2, . . . , αn /∈ I and β1, β2, . . . , βn−1 ∈ R satisfying
that

f(t) = b0 + a0t −
c(t − β1)(t − β2) · · · (t − βn−1)
(t − α1)(t − α2) · · · (t − αn)

and α1 < β1 < α2 < β2 < · · · < βn−1 < αn.

Proof. (1) ⇔ (2) This is proved by Lemma 2.1.
(2) ⇒ (3) We assume

f(t) = b0 + a0t −
n∑

i=1

ai

t − αi
,
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where b0 ∈ R, a0, a1, . . . , an ≥ 0, α1, α2, . . . , αn /∈ I and α1 < α2 < · · · < αn. We define
g(t) as follows:

n∑
i=1

ai

t − αi
=

g(t)
(t − α1) · · · (t − αn)

,

that is,

g(t) =
n∑

i=1

ai(t − α1) · · · (t − αi−1)(t − αi+1) · · · (t − αn).

Since
g(αi) = (αi − α1) · · · (αi − αi−1)(αi − αi+1) · · · (αi − αn),

we have
sign g(αi) = (−1)n−i (i = 1, 2, . . . , n).

By the fact deg g(t) = n − 1 and the continuity of g, there exist a positive number c and
β1, β2, . . . , βn−1 such that

g(t) = c(t − β1)(t − β2) · · · (t − βn−1)

and α1 < β1 < α2 < β2 < · · · < βn−1 < αn.
(3) ⇒ (2) Set

g(t) =
c(t − β1)(t − β2) · · · (t − βn−1)
(t − α1)(t − α2) · · · (t − αn)

,

where c > 0, α1 < β1 < α2 < β2 < · · · < βn−1 < αn. Then g(t) has the following form:

g(t) =
n∑

i=1

bi

t − αi
,

for some bi ∈ R \ {0}. It suffices to show that bi > 0 for i = 1, 2, . . . , n − 1.
When we choose t such that βi−1 < t < αi and αi − t is sufficiently small, we have

sign g(t) = −sign bi.

Because α1 < · · · < βi−1 < t < αi < · · · < αn,

sign g(t) = (−1)(n−1)−(i−1)+n−(i−1) = −1.

So we have bi > 0.

For a rational function f(t), we can choose polynomials p(t) and q(t) such that

f(t) =
p(t)
q(t)

and common devisors of p(t) and q(t) are only scalars. Then we call f of order n if

n = max{deg p(t), deg q(t)}.
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Corollary 2.3. The followings are equivalent:

(1) f ∈ P(I) is rational of order n.

(2) f has one of the following forms:

(a) f(t) =
a(t − β2)(t − β3) · · · (t − βn+1)
(t − α1)(t − α2) · · · (t − αn)

,

(b) f(t) =
a(t − β1)(t − β2) · · · (t − βn)

(t − α1)(t − α2) · · · (t − αn−1)
,

(c) f(t) = −a(t − β1)(t − β2) · · · (t − βn)
(t − α1)(t − α2) · · · (t − αn)

or

(d) f(t) = −a(t − β2)(t − β3) · · · (t − βn)
(t − α1)(t − α2) · · · (t − αn)

,

where a > 0, αi /∈ I and

β1 < α1 < β2 < α2 < · · · < αn < βn+1.

Proof. (1) ⇒ (2) When f(t) has the form

f(t) = b0 + a0t −
n−1∑
i=1

ai

(t − αi)
,

where a1, a2, . . . , an−1 > 0. Since f is rational of order n, we have a0 > 0. We set

g(t) = (b0 + a0t)(t − α1)(t − α2) · · · (t − αn−1)

−
n−1∑
i=1

ai(t − α1) · · · (t − αi−1)(t − αi+1) · · · (t − αn−1),

that is,

f(t) =
g(t)

(t − α1)(t − α2) · · · (t − αn−1)
.

Then we have

sign( lim
t→∞

g(t)) = 1, sign g(αn−1) = −1, sign g(αn−2) = 1,

· · · , sign g(α1) = (−1)n−1, sign( lim
t→−∞

g(t)) = (−1)n.

So f has the form (b).
When f(t) has the form

f(t) = b0 + a0t −
n∑

i=1

ai

(t − αi)
,

where a1, a2, . . . , an > 0. Since f is rational of order n, we have a0 = 0. We set

g(t) = b0(t − α1)(t − α2) · · · (t − αn)

−
n∑

i=1

ai(t − α1) · · · (t − αi−1)(t − αi+1) · · · (t − αn),
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that is,

f(t) =
g(t)

(t − α1)(t − α2) · · · (t − αn)
.

Using the same argument as above, f has the form (d) if b = 0, the form (a) if b > 0 and
the form (c) if b < 0.

(2) ⇒ (1) When f has the form (a),(b),(c) or (d), f is rational of order n.
When f has the form (d), f ∈ P(I) by Theorem 2.2.
When f has the form (a), f is represented as the following form:

f(t) =
n∑

i=1

bi

t − αi
+ a,

where a > 0 and some bi ∈ R (i = 1, 2, . . . , n). Since

lim
t→αi+0

f(t) = lim
t→αi+0

a(t − β2)(t − β3) · · · (t − βn+1)
(t − α1)(t − α2) · · · (t − αn)

= −∞,

we get bi < 0 from the fact

lim
t→αi+0

n∑
i=1

bi

t − αi
+ a = −∞.

So f ∈ P(I).
By the similar reason, f ∈ P(I) if f has the form (b) or (c).

3 Examples. The following Example 3.1 has been announced by M. Uchiyama in many
Conferences (cf. [7], [8]).

Example 3.1. Let {pn(x)} be the orthogonal polynomials on a closed interval [a, b] whose
leading coefficient is positive. It is well known that the zeros {c1, c2, . . . , cn} of pn(x) satisfies
that

a = c0 < c1 < c2 · · · < cn < cn+1 = b,

and each interval (ci, ci+1) (i = 0, 1, . . . , n) contains exactly one zeros of pn+1(x) ([6]).
So pn+1(x)/pn(x) has the form (b) in Corollary 2.3. This means that pn+1(x)/pn(x) is
operator monotone on any interval which does not contain any zeros of pn(x).

Example 3.2. Let 0 = a0 < a1 < a2 < · · · < a2n−1 < a2n = π. Then

f(x) =
cos(x − a1) cos(x − a3) · · · cos(x − a2n−1)
cos(x − a0) cos(x − a2) · · · cos(x − a2n−2)

is operator monotone on any interval I contained in R \ { (2m + 1)π
2

+ a2i | m ∈ Z, i =

0, 1, . . . , n − 1}.
In particular, tanx is operator monotone on any interval contained in R \ {mπ − π

2
|

m ∈ Z} (when n = 1, a0 = 0, a1 =
π

2
).
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Proof. The function cos x is represented by the infinite product as follows:

cos x = lim
m→∞

fm(x),

where

fm(x) =
m−1∏

k=−m

(1 − 2x

(2k + 1)π
).

Remarking the fact

fm(x) =
(−1)m24m−2((m − 1)!)2

((2m − 1)!)2

m−1∏
k=−m

(x − 2k + 1
2

π),

we have that

gm(x) =
fm(x − a1)fm(x − a3) · · · fm(x − a2n−1)
fm(x − a0)fm(x − a2) · · · fm(x − a2n−2)

=
m−1∏

k=−m

(x − ( (2k+1)π
2 + a1))(x − ( (2k+1)π

2 + a3)) · · · (x − ( (2k+1)π
2 + a2n−1))

(x − ( (2k+1)π
2 + a0))(x − ( (2k+1)π

2 + a2)) · · · (x − ( (2k+1)π
2 + a2n−2))

belongs to P(I) by Corollary 2.3. Since

f(x) = lim
m→∞

gm(x),

f(x) is operator monotone on I.

Example 3.3. Let a0 < a1 < a2 < · · · < a2n−1 < a0 + 1 and k(1), k(2), . . . , k(n) ∈ Z.
Then

f(x) =
Γ(x − a0 − k(1))Γ(x − a2 − k(2)) · · ·Γ(x − a2n−2 − k(n))
Γ(x − a1 − k(1))Γ(x − a3 − k(2)) · · ·Γ(x − a2n−1 − k(n))

is operator monotone on any interval I contained in R\{a2i−1+k(i)−m | i = 1, 2, . . . , n, m =
0, 1, 2, . . .}, where Γ(x) is the Gamma function, i.e.,

Γ(x) =
∫ ∞

0

e−ttx−1dt (x > 0).

Proof. We use Gauss’s Formula of Γ(x) as follows:

Γ(x) = lim
m→∞

gm(x),

where gm(x) = mxm!
x(x+1)···(x+m) and the convergence is uniformly on any compact subset of

R \ {0,−1,−2, . . .} ([3]). For a < b < a + 1,

gm(x − a)
gm(x − b)

= mb−a (x − b)(x − (b − 1)) · · · (x − (b − m))
(x − a)(x − (a − 1)) · · · (x − (a − m))

is operator monotone on any interval contained in R \ {a, a − 1, . . . , a − m} by Corollary
2.4. Then we have that

hm(x) =
gm(x − a0 − k(1))gm(x − a2 − k(2)) · · · gm(x − a2n−2 − k(n))
gm(x − a1 − k(1))gm(x − a3 − k(2)) · · · gm(x − a2n−1 − k(n))

also has the form (a) in Corollary 2.3, and is operator monotone on I. So is f(x), because
f(x) = lim

m→∞
hm(x).
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ON RELATIONS BETWEEN OPERATOR VALUED α-DIVERGENCE
AND RELATIVE OPERATOR ENTROPIES

Hiroshi Isa(1), Masatoshi Ito(2), Eizaburo Kamei(3),
Hiroaki Tohyama(4) and Masayuki Watanabe(5)

Abstract. Let A and B be two strictly positive operators, and α ∈ (0, 1). The
operator valued α-divergence is defined by

Dα(A|B) ≡ 1

α(1− α)
(A ∇α B −A ♯α B) ,

where A ∇α B = (1 − α)A + αB and A ♯α B = A
1
2 (A− 1

2BA− 1
2 )αA

1
2 . In this paper,

firstly, we show some fundamental relations between operator valued α-divergence and
relative operator entropies (relative operator entropy, Tsallis relative operator entropy
etc.). Next, we introduce noncommutative ratio (A ♮u+v B)(A ♮u B)−1 on the path
A ♮w B, and we discuss noncommutative ratio translation. Moreover, we discuss α-
divergence for operator distributions.

1 Introduction. Throughout this paper, an operator means a bounded linear operator
on a Hilbert space H. An operator T on H is said to be positive (denoted by T ≥ 0) if
(Tx, x) ≥ 0 for all x ∈ H, and an operator T is said to be strictly positive (denoted by
T > 0) if T is invertible and positive.

A relative operator entropy is introduced by Fujii and Kamei [3] as follows: For strictly
positive operators A and B,

S(A|B) ≡ A
1
2 log

(
A− 1

2BA− 1
2

)
A

1
2 .

Moreover, for u ∈ R, Furuta [8] introduced

Su(A|B) ≡ A
1
2

(
A− 1

2BA− 1
2

)u

log
(
A− 1

2BA− 1
2

)
A

1
2

as an extension of S(A|B), and Yanagi, Kuriyama and Furuichi [16] call it generalized
relative operator entropy.

For w ∈ R, we consider a path A ♮w B through A and B defined by [4], [5], [12] etc.:

A ♮w B ≡ A
1
2 (A− 1

2BA− 1
2 )wA

1
2 .

A path through A and B is an extended notion of weighted geometric mean A ♯α B ≡
A

1
2 (A− 1

2BA− 1
2 )αA

1
2 defined for α ∈ [0, 1]. Su(A|B) can be regarded as a tangent vector at

u on the path, and from this viewpoint, we showed several relations between S(A|B) and
Su(A|B) in [9].

Yanagi, Kuriyama and Furuichi [16] introduced Tsallis relative operator entropy as fol-
lows:
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For strictly positive operators A and B,

Tα(A|B) ≡
A

1
2

(
A− 1

2BA− 1
2

)α

A
1
2 −A

α
=

A ♯α B −A

α
, α ∈ (0, 1].

Since lim
α→0

xα−1
α = log x holds for x > 0, we have T0(A|B) ≡ lim

α→0
Tα(A|B) = S(A|B). Tsallis

relative operator entropy can be extended as the notion for α ∈ R. In [9], we showed
the following essential relation between relative operator entropies: For strictly positive
operators A and B, and for α ∈ (0, 1),

(∗) S(A|B) ≤ Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A) ≤ −S(B|A) = S1(A|B).

In the information geometry, α-divergence defined by Amari [1] plays an important role
as a notion to measure the difference between two probability distributions. Fujii [2] defined
an operator version of α-divergence as follows: For strictly positive operators A and B, and
for α ∈ (0, 1),

Dα(A|B) ≡ 1

α(1− α)
(A ∇α B −A ♯α B) ,

where A ∇α B ≡ (1 − α)A + αB is weighted arithmetic mean. In section 2, we show
some fundamental relations between operator valued α-divergences and relative operator
entropies.

In section 3, we show the following equality for u, v ∈ R:

(♢) (A ♮u+v B)(A ♮u B)−1Su(A|B) = Su+v(A|B).

We call (A ♮u+v B)(A ♮u B)−1 noncommutative ratio on the path A ♮w B, and show a
preservation on this ratio. We call to multiply Su(A|B) by (A ♮u+v B)(A ♮u B)−1 like
the equality (♢) noncommutative ratio translation for generalized relative operator entropy.
Applying noncommutative ratio translation to fundamental relations between operator val-
ued α-divergences and relative operator entropies shown in section 2, we get similar results
to the waving property in [9].

For discrete (positive) probability distributions p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn),
Shannon inequality 0 ≥

∑n
i=1 pi log

qi
pi

holds. Furuta [8] showed operator Shannon inequal-

ity, that is, 0 ≥
∑n

i=1 S(Ai|Bi) for Ai, Bi > 0 (1 ≤ i ≤ n) with
∑n

i=1 Ai =
∑n

i=1 Bi = I.
We call an operator sequence A = (A1, A2, · · · , An) an operator distribution if Ai > 0
(1 ≤ i ≤ n) and

∑n
i=1 Ai = I, since it can be regarded as an operator version of discrete

probability distribution.
Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distributions, and

α ∈ (0, 1). In [9] and [10], we introduced relative operator entropy for operator distributions
S(A|B), Tsallis relative entropy for operator distributions Tα(A|B), and generalized relative
entropy for operator distributions Sα(A|B) as follows:

S(A|B) =
n∑

i=1

S(Ai|Bi), Tα(A|B) =
n∑

i=1

Tα(Ai|Bi), Sα(A|B) =
n∑

i=1

Sα(Ai|Bi).

Yanagi, Kuriyama and Furuichi [16] improved the operator Shannon inequality:

0 ≥ Tα(A|B) ≥ S(A|B), α ∈ (0, 1).

From the viewpoint of this improvement of Shannon inequality, in [9], we got

S(A|B) ≤ Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A) ≤ −S(B|A) = S1(A|B)
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by (∗) and showed related inequalities. Moreover, in [10], we discussed generalizations of
these inequalities. In section 4, we define α-divergence for operator distributions, and show
its fundamental properties.

2 Operator valued α-divergence and fundamental properties. Amari [1] defined
α-divergence as a notion to measure the difference between two probability distributions as
follows: For two discrete probability distributions p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn),
that is, pi, qi > 0 (1 ≤ i ≤ n) and

∑n
i=1 pi =

∑n
i=1 qi = 1, and for α ∈ R,

Dα[ p : q ] ≡ 4

1− α2

(
1−

n∑
i=1

p
1−α
2

i q
1+α
2

i

)
, α ̸= ±1.

If α = −1, then D−1[p : q] ≡ lim
α→−1

Dα[p : q] =
∑n

i=1 pi log
pi

qi
, and if α = 1, then D1[p : q] ≡

lim
α→1

Dα[p : q] = D−1[q : p]. We call this quantity D−1[p : q] the relative entropy (Kullback-

Leibler divergence, Kullback-Leibler distance), and denote it by DKL( p | q ) ([13], [14]). If
we put t = 1+α

2 , then α-divergence can be expressed as follows:

Dt( p | q ) ≡ D2t−1[ p : q ] =
1

t(1− t)

n∑
i=1

{
(1− t)pi + tqi − p1−t

i qti
}
, t ̸= 0, 1.

Based on this expression, Fujii [2] defined an operator valued α-divergence as follows.

Definition 2.1. For strictly positive operators A and B, and for α ∈ (0, 1), operator valued
α-divergence is defined as follows ([2], [6], [7]):

Dα(A|B) ≡ 1

α(1− α)
(A ∇α B −A ♯α B) ,

where A ∇α B ≡ (1− α)A+ αB and A ♯α B ≡ A
1
2 (A− 1

2BA− 1
2 )αA

1
2 .

In this section, we show some fundamental properties of operator valued α-divergences.
Petz [15] introduced the operator divergence DFK(A|B) ≡ B − A − S(A|B). Fujii et al.
showed the following relation between DFK(A|B) and operator valued α-divergences at end
points for interval (0, 1).

Proposition 2.2. (Fujii-Mićić-Pečarić-Seo, [6], [7]) Let A and B be strictly positive opera-
tors. Then,

D0(A|B) ≡ lim
α→0

Dα(A|B) = DFK(A|B) = B −A− S(A|B),(1)

D1(A|B) ≡ lim
α→1

Dα(A|B) = DFK(B|A) = A−B + S1(A|B)(2)

hold.

The following (1) in Proposition 2.3 interpolates (1) and (2) in Proposition 2.2 since
T0(A|B) = S(A|B) and −S(B|A) = S1(A|B) by (∗).

Proposition 2.3. Let A and B be strictly positive operators. Then,

Dα(A|B) =
1

1− α
(B −A− Tα(A|B)) =

1

α
(A−B − T1−α(B|A)), for α ∈ (0, 1),(1)

D1−α(B|A) = Dα(A|B), for α ∈ [0, 1](2)

hold.
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Proof. (1) This can be shown as follows:

(1− α)Dα(A|B) =
A ∇α B −A ♯α B

α
=

A ∇α B −A

α
− A ♯α B −A

α
= B −A− Tα(A|B),

αDα(A|B) =
A ∇α B −A ♯α B

1− α
=

A ∇α B −B

1− α
− A ♯α B −B

1− α

= A−B − B ♯1−α A−B

1− α
= A−B − T1−α(B|A).

(2) For α ∈ (0, 1),

D1−α(B|A) = B ∇1−α A−B ♯1−α A

(1− α){1− (1− α)}
=

A ∇α B −A ♯α B

(1− α)α
= Dα(A|B)

holds. In case of α = 0 or α = 1, this can be obtained by Proposition 2.2 and the
relation −S(B|A) = S1(A|B) in (∗).

The following result gives bounds of operator value Dα(A|B).

Theorem 2.4. Let A and B be strictly positive operators. Then,

0 ≤ Dα(A|B) ≤ 1

1− α
D0(A|B),(1)

0 ≤ Dα(A|B) ≤ 1

α
D1(A|B)(2)

hold for α ∈ (0, 1).

Proof. Since A ∇α B ≥ A ♯α B for any α ∈ (0, 1), Dα(A|B) ≥ 0 holds. Moreover, by (∗)
and (1) in Proposition 2.3, we have

Dα(A|B) =
1

1− α
(B −A− Tα(A|B)) ≤ 1

1− α
(B −A− S(A|B)) =

1

1− α
D0(A|B),

Dα(A|B) =
1

α
(A−B − T1−α(B|A)) ≤ 1

α
(A−B + S1(A|B)) =

1

α
D1(A|B).

By the following Theorem 2.5, it is shown that an operator value Dα(A|B) can be
represented by the sum of two operator values for Tsallis entropies.

Theorem 2.5. Let A and B be strictly positive operators. Then,

Dα(A|B) = −{Tα(A|B) + T1−α(B|A)}

holds for α ∈ (0, 1).

Proof. This theorem can be shown as follows:

Dα(A|B) =
A ∇α B −A ♯α B

α(1− α)

=
{(1− α)A + αB} − {(1− α)(A ♯α B) + α(A ♯α B)}

α(1− α)

= −
{
(1− α)(A ♯α B)− (1− α)A

α(1− α)
+

α(B ♯1−α A)− αB

α(1− α)

}

= −
{
A ♯α B −A

α
+

B ♯1−α A−B

1− α

}
= −{Tα(A|B) + T1−α(B|A)}.
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Theorem 2.5 gives a new viewpoint for operator valued α-divergence. Tsallis relative
operator entropy Tα(A|B) can be regarded as the slope of the line through points A and

A ♯α B. Since −T1−α(B|A) = −B ♯1−α A−B
1−α = B−A ♯α B

1−α , we can regard this operator value
as the slope of the line through points A ♯α B and B. Therefore, we can regard Dα(A|B) as
the difference between the slops of these two lines. We illustrate the quantity corresponding
to Dα(A|B) by bold straight line in Figure 1.

�

�

α 1

A

A ♯α B

B

O

■■■−T1−α(B|A)

Tα(A|B)

Dα(A|B)

Figure 1: Dα(A|B) = −T1−α(B|A)− Tα(A|B).

The following result can be shown by Theorem 2.5 and (∗) easily.

Corollary 2.6. Let A and B be strictly positive operators. Then,

Dα(A|B) ≤ S1(A|B)− S(A|B)

holds for α ∈ (0, 1).

3 Noncommutative ratio translation on the path. First, we show the following
result on translation of generalized relative operator entropies.

Proposition 3.1. Let A and B be strictly positive operators. Then,

(A ♮u+v B)(A ♮u B)−1Su(A|B) = Su+v(A|B)

holds for u, v ∈ R.
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Proof. This can be shown as follows:

(A ♮u+v B)(A ♮u B)−1Su(A|B)

= A
1
2

(
A− 1

2BA− 1
2

)u+v

A
1
2A− 1

2

(
A− 1

2BA− 1
2

)−u

A− 1
2

×A
1
2

(
A− 1

2BA− 1
2

)u

log
(
A− 1

2BA− 1
2

)
A

1
2

= A
1
2

(
A− 1

2BA− 1
2

)u+v

log
(
A− 1

2BA− 1
2

)
A

1
2

= Su+v(A|B).

We can regard Su(A|B) and Su+v(A|B) as tangent vectors at u and u+ v on the path
A ♮w B, respectively. Then, Proposition 3.1 means that Su+v(A|B) is parallelly transferring
Su(A|B) by v along the path.

Here, we define the following noncommutative ratio on the path A ♮w B, and give a new
viewpoint for the equality in Proposition 3.1.

Definition 3.2. For strictly positive operators A and B, and for u, v ∈ R, noncommutative
ratio on the path A ♮w B is defined as follows:

R(u, v;A,B) ≡ (A ♮u+v B)(A ♮u B)−1.

We have the following property of noncommutative ratio.

Proposition 3.3. Let A and B be strictly positive operators. Then,

(A ♮u+v B)(A ♮u B)−1 = (A ♮v B)A−1,

that is,

R(u, v;A,B) = R(0, v;A,B) = (A ♮v B)A−1

holds for u, v ∈ R.

Proof. This can be shown as follows:

R(u, v;A,B) = (A ♮u+v B)(A ♮u B)−1

= A
1
2

(
A− 1

2BA− 1
2

)u+v

A
1
2A− 1

2

(
A− 1

2BA− 1
2

)−u

A− 1
2

= A
1
2

(
A− 1

2BA− 1
2

)v

A− 1
2

= (A ♮v B)A−1

= R(0, v;A,B).

By Proposition 3.3, R(u, v;A,B) does not depend on u. So, we denote R(u, v;A,B) by
R(v;A,B), or simply R(v) in the rest of this section. We call multiplying by R(v) from
the left side noncommutative ratio translation.

From Proposition 3.1 and Definition 3.2, we get the following immediately.
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Corollary 3.4. Let A and B be strictly positive operators. Then,

R(v)Su(A|B) = Su+v(A|B)

hold for u, v ∈ R.

In particular, by putting u = 0 in Corollary 3.4 , we have

R(v)S(A|B) = Sv(A|B).

Tsallis relative operator entropy can be extended as follows: For strictly positive oper-
ators A and B, and for u ∈ R,

Tu(A|B) ≡ A ♮u B −A

u
.

From above definition and Proposition 3.3, we have

R(v)Tu(A|B) =
A ♮u+v B −A ♮v B

u
.

Let n be an integer. Then, R(n) = (A ♮n B)A−1 = (BA−1)n holds. In [9], we showed
a similar relation to (∗) as follows: For strictly positive operators A, B and u ∈ (n, n+ 1),

(⋆) Sn(A|B) ≤ A ♮u B −A ♮n B

u− n
≤ Su(A|B) ≤ A ♮n+1 B −A ♮u B

n+ 1− u
≤ Sn+1(A|B),

or equivalently,

(⋆⋆) (BA−1)nS(A|B) ≤ (BA−1)nTu−n(A|B) ≤ (BA−1)nSu−n(A|B)

≤ −(BA−1)nTn+1−u(B|A) ≤ (BA−1)nS1(A|B).

The relation (⋆) can be expressed by (⋆⋆) which is the transferred form of (∗) by n along
the path. We call this the waving property in [9].

The relation (⋆⋆) can be generalized as follows:

Corollary 3.5. Let A and B be strictly positive operators and u ∈ (v, v + 1). Then,

Sv(A|B) = R(v)S(A|B) ≤ R(v)Tu−v(A|B) ≤ Su(A|B)

≤ −R(v)Tv+1−u(B|A) = R(u)Tv+1−u(A|B) ≤ Sv+1(A|B)

hold for u, v ∈ R.

Proof. We only show the relation −R(v)Tv+1−u(B|A) = R(u)Tv+1−u(A|B) since the others
can be obtained by the similar way to the proof in [9].
By Proposition 3.3, we have

R(v)Tv+1−u(B|A) = (A ♮v B)A−1Tv+1−u(B|A) = (A ♮v B)A−1B ♮v+1−u A− B

v + 1− u

=
(A ♮v B)A−1(A ♮u−v B)− (A ♮v B)A−1B

v + 1− u

=
A ♮u B −A ♮v+1 B

v + 1− u

= (A ♮u B)A−1A −A ♮v+1−u B

v + 1− u
= −R(u)Tv+1−u(A|B).
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We apply noncommutative ratio translation to fundamental relations shown in section
2, and try to show the similar property to the waving property. To see this, we make some
preparations.

Lemma 3.6. Let A and B be strictly positive operators. Then,

(A ♮u B) ♮w (A ♮u+v B) = A ♮u+vw B

holds for u, v, w ∈ R.

Proof. By Lemma 4.2 in [11], T ∗(X ♮u Y )T = (T ∗XT ) ♮u (T ∗Y T ) holds for any invertible
operator T , for any positive invertible operators X, Y and for u ∈ R. Therefore, we have

(A ♮u B) ♮w (A ♮u+v B) =
{
A

1
2 (A− 1

2BA− 1
2 )uA

1
2

}
♮w

{
A

1
2 (A− 1

2BA− 1
2 )u+vA

1
2

}

= A
1
2

{
(A− 1

2BA− 1
2 )u ♮w (A− 1

2BA− 1
2 )u+v

}
A

1
2

= A
1
2 (A− 1

2BA− 1
2 )u+vwA

1
2

= A ♮u+vw B.

In [12], Kamei showed some kind of the additivity for entropy

S(A|A ♯t B) = tS(A|B)

for t ∈ [0, 1]. The following is an extension of this result.

Proposition 3.7. Let A and B be strictly positive operators. Then,

Su(A ♮v B|A ♮v+w B) = wSv+uw(A|B)

holds for u, v, w ∈ R.

Proof. Since lim
t→0

xu+t−xu

t = xu lim
t→0

xt−1
t = xu log x holds for x > 0, we have

lim
t→0

X ♮u+t Y −X ♮u Y

t
= Su(X|Y )

for strictly positive operators X, Y and w ∈ R. Therefore, by Lemma 3.6, we get

Su(A ♮v B|A ♮v+w B) = lim
t→0

(A ♮v B) ♮u+t (A ♮v+w B)− (A ♮v B) ♮u (A ♮v+w B)

t

= w lim
wt→0

A ♮v+uw+wt B −A ♮v+uw B

wt
= wSv+uw(A|B).

We give the special cases of Proposition 3.7 which are useful in our calculations.
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Lemma 3.6. Let A and B be strictly positive operators. Then,

(A ♮u B) ♮w (A ♮u+v B) = A ♮u+vw B

holds for u, v, w ∈ R.

Proof. By Lemma 4.2 in [11], T ∗(X ♮u Y )T = (T ∗XT ) ♮u (T ∗Y T ) holds for any invertible
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1
2

}
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}
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1
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In [12], Kamei showed some kind of the additivity for entropy

S(A|A ♯t B) = tS(A|B)

for t ∈ [0, 1]. The following is an extension of this result.

Proposition 3.7. Let A and B be strictly positive operators. Then,

Su(A ♮v B|A ♮v+w B) = wSv+uw(A|B)

holds for u, v, w ∈ R.

Proof. Since lim
t→0

xu+t−xu

t = xu lim
t→0

xt−1
t = xu log x holds for x > 0, we have

lim
t→0

X ♮u+t Y −X ♮u Y

t
= Su(X|Y )

for strictly positive operators X, Y and w ∈ R. Therefore, by Lemma 3.6, we get

Su(A ♮v B|A ♮v+w B) = lim
t→0

(A ♮v B) ♮u+t (A ♮v+w B)− (A ♮v B) ♮u (A ♮v+w B)

t

= w lim
wt→0

A ♮v+uw+wt B −A ♮v+uw B

wt
= wSv+uw(A|B).

We give the special cases of Proposition 3.7 which are useful in our calculations.
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Corollary 3.8. Let A and B be strictly positive operators. Then,

S(A ♮v B|A ♮v+w B) = wSv(A|B),(1)

Su(A ♮v B|A ♮v+1 B) = Su+v(A|B)(2)

hold for v, w ∈ R.

For the following two operator values which appear in (⋆),

A ♮u B −A ♮n B

u− n
=

(A ♮n B) ♯u−n (A ♮n+1 B)−A ♮n B

u− n
= Tu−n(A ♮n B|A ♮n+1 B),

A ♮u+1 B −A ♮u B

n+ 1− u
= − (A ♮n B) ♯u−n (A ♮n+1 B)−A ♮n+1 B

n+ 1− u

= −
(A ♮n+1 B) ♯1−(u−n) (A ♮n B)−A ♮n+1 B

1− (u− n)

= −T1−(u−n)(A ♮n+1 B|A ♮n B)

hold.
From these facts and (2) in Corollary 3.8, the relation (⋆) is equivalent to the following:

S(A ♮nB|A ♮n+1 B) ≤ Tu−n(A ♮nB|A ♮n+1 B) ≤ Su−n(A ♮n B|A ♮n+1 B)

≤ −T1−(u−n)(A ♮n B|A ♮n+1 B) ≤ S1(A ♮n B|A ♮n+1 B).

We show the similar phenomena for each operator value Su(A|B), Tu(A|B), and Dα(A|B).

Theorem 3.9. Let A and B be strictly positive operators. Then,

R(v)Su(A|B) = Su(A ♮v B|A ♮v+1 B),(1)

R(v)Tu(A|B) = Tu(A ♮v B|A ♮v+1 B)(2)

hold for u, v ∈ R.

In particular, by putting u = 0 in Theorem 3.9, we have

R(v)S(A|B) = S(A ♮v B|A ♮v+1 B).

Proof. (1) By Corollary 3.4 and (2) in Corollary 3.8, we have

R(v)Su(A|B) = Su+v(A|B) = Su(A ♮v B|A ♮v+1 B).

(2) By Proposition 3.3 and Lemma 3.6, we get

R(v)Tu(A|B) = (A ♮v B)A−1Tu(A|B)

=
(A ♮v B)A−1(A ♮u B)− (A ♮v B)A−1A

u

=
A ♮u+v B −A ♮v B

u

=
(A ♮v B) ♮u (A ♮v+1 B)−A ♮v B

u
= Tu(A ♮v B|A ♮v+1 B).
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Theorem 3.10. Let A and B be strictly positive operators. Then,

R(v)Dα(A|B) = Dα(A ♮v B|A ♮v+1 B)

holds for α ∈ (0, 1) and v ∈ R.

Proof. By Proposition 3.3 and Lemma 3.6, we have

R(v)Dα(A|B) = (A ♮v B)A−1Dα(A|B)

= (A ♮v B)A−1A ∇α B −A ♯α B

α(1− α)

=
(1− α)(A ♮v B)A−1A+ α(A ♮v B)A−1B − (A ♮v B)A−1(A ♯α B)

α(1− α)

=
(1− α)(A ♮v B) + α(A ♮v+1 B)−A ♮v+α B

α(1− α)

=
(A ♮v B) ∇α (A ♮v+1 B)− (A ♮v B) ♯α (A ♮v+1 B)

α(1− α)

= Dα(A ♮v B|A ♮v+1 B).

Theorem 3.9 can be generalized as follows.

Theorem 3.11. Let A and B be strictly positive operators. Then,

wR(v)Suw(A|B) = Su(A ♮v B|A ♮v+w B),(1)

wR(v)Tuw(A|B) = Tu(A ♮v B|A ♮v+w B)(2)

hold for u, v, w ∈ R.

Proof. (1) By Corollary 3.4 and Proposition 3.7, we have

wR(v)Suw(A|B) = wSv+uw(A|B) = Su(A ♮v B|A ♮v+w B).

(2) By Proposition 3.3 and Lemma 3.6, we get

wR(v)Tuw(A|B) = w(A ♮v B)A−1Tuw(A|B)

= w
(A ♮v B)A−1(A ♮uw B)− (A ♮v B)A−1A

uw

=
A ♮v+uw B −A ♮v B

u

=
(A ♮v B) ♮u (A ♮v+w B)−A ♮v B

u
= Tu(A ♮v B|A ♮v+w B).

By using Theorem 3.10, we get the following properties by applying noncommutative ra-
tio translation to fundamental relations between operator valued α-divergences and relative
operator entropies shown in section 2.
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Theorem 3.12. Let A and B be strictly positive operators. Then,

R(v)D0(A|B) = D0(A ♮v B|A ♮v+1 B),(1-a)

R(v)D1(A|B) = D1(A ♮v B|A ♮v+1 B),(1-b)

R(v)Dα(A|B) = −R(v){Tα(A|B) + T1−α(B|A)},(2)

0 ≤ R(v)Dα(A|B) ≤ 1

1− α
R(v)D0(A|B),(3-a)

0 ≤ R(v)Dα(A|B) ≤ 1

α
R(v)D1(A|B),(3-b)

R(v)Dα(A|B) ≤ R(v){S1(A|B)− S(A|B)}(4)

hold for α ∈ (0, 1) and v ∈ R.

Proof. These can be obtained by applying Theorem 3.9 and Theorem 3.10 to Proposition
2.2, Theorem 2.5, Theorem 2.4, and Corollary 2.6.

Remark 1. Although noncommutative ratio translation has been defined as multiplying
each operator value by noncommutative ratio R(v) from the left side, this is equivalent to
multiplying the operator value by R(v)∗ from the right side. For instance, in Theorem 3.9,

R(v)Su(A|B) = Su(A|B)R(v)∗,(1)

R(v)Tu(A|B) = Tu(A|B)R(v)∗(2)

hold for u, v ∈ R.

Remark 2. In [9], we introduced Dr(A,B) ≡ A ♮r+1 B − A ♮r B − Sr(A|B) for r ∈ R as a
generalization of DFK(A|B) = D0(A|B). We remark that Dv(A,B) = R(v)D0(A|B) holds
for v ∈ R by (2) in Corollary 3.8 and (1-a) in Theorem 3.12.

4 α-divergence for operator distributions. On operator entropies for operator
distributions A = (A1, · · · , An) and B = (B1, · · · , Bn), in [9], we obtained that the relations

S(A|B) ≤ Iα(A|B) ≤ Tα(A|B) ≤ 0,

0 ≤ −T1−α(B|A) ≤ −I1−α(B|A) ≤ S1(A|B)

and

Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A)

hold for 0 < α < 1, where Iα(A|B) ≡ 1

α
log

n∑
i=1

Ai ♯α Bi is Rényi relative operator entropy

for operator distributions. By these inequalities and Corollary 3.5, we have

S(A|B) ≤ Tα(A|B) ≤ Sα(A|B) ≤ −T1−α(B|A) = Tα
1−α(A|B) ≤ S1(A|B)

for 0 < α < 1, where T v
α(A|B) ≡

n∑
i=1

Ri(v)Tα(Ai|Bi) for v ∈ R and Ri(v) = R(v;Ai, Bi),

as used in section 3. In this section, we investigate fundamental properties and relations
between α-divergences and relative operator entropies for operator distributions.

Here, we define α-divergence for operator distributions.
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Definition 4.1. For operator distributions A = (A1, A2, · · · , An) and B = (B1, B2, · · · ,
Bn), and for α ∈ (0, 1), α-divergence for operator distributions is defined as follows:

Dα(A|B) ≡
n∑

i=1

Dα(Ai|Bi) =

n∑
i=1

Ai ∇α Bi −Ai ♯α Bi

α(1− α)
.

As in section 2, we show fundamental properties of α-divergences for operator distributions.

Proposition 4.2. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator
distributions. Then,

D0(A|B) ≡ lim
α→0

Dα(A|B) = −S(A|B),(1)

D1(A|B) ≡ lim
α→1

Dα(A|B) = S1(A|B)(2)

hold.

Proof. We only show the proof of equality (1) since the equality (2) can be shown similarly.
By Proposition 2.2, we have

D0(A|B) =
n∑

i=1

D0(Ai|Bi) =
n∑

i=1

{Bi −Ai − S(Ai|Bi)} = −S(A|B).

By Proposition 2.3, Theorem 2.4, Theorem 2.5 and Corollary 2.6, we get the following
Proposition 4.3, Theorem 4.4, Theorem 4.5 and Corollary 4.6, respectively.

Proposition 4.3. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator
distributions. Then,

Dα(A|B) = − 1

1− α
Tα(A|B) = − 1

α
T1−α(B|A), for α ∈ (0, 1),(1)

D1−α(B|A) = Dα(A|B), for α ∈ [0, 1](2)

hold.

Theorem 4.4. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distribu-
tions. Then,

0 ≤ Dα(A|B) ≤ 1

1− α
D0(A|B),(1)

0 ≤ Dα(A|B) ≤ 1

α
D1(A|B)(2)

hold for α ∈ (0, 1).

Theorem 4.5. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distribu-
tions. Then,

Dα(A|B) = −{Tα(A|B) + T1−α(B|A)}

holds for α ∈ (0, 1).
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Corollary 4.6. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distri-
butions. Then,

Dα(A|B) ≤ S1(A|B)− S(A|B)

holds for α ∈ (0, 1).

From above discussion, we remark that the relations

αTα(A|B) = (1− α)T1−α(B|A)

and
Tα(A|B) ≥ −(1− α){S1(A|B)− S(A|B)}

hold for α ∈ (0, 1).
Finally, we apply noncommutative ratio translation to α-divergence for operator distri-

butions by the following notation:

Definition 4.7. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator
distributions. For v ∈ R and α ∈ (0, 1), we define Dv

α(A|B) as follows:

Dv
α(A|B) ≡

n∑
i=1

Ri(v)Dα(Ai|Bi).

Then, we get the following from Theorem 3.12.

Corollary 4.8. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be operator distri-
butions. Then,

Dv
0(A|B) =

n∑
i=1

Ri(v)D0(Ai|Bi),(1-a)

Dv
1(A|B) =

n∑
i=1

Ri(v)D1(Ai|Bi),(1-b)

Dv
α(A|B) = −

n∑
i=1

Ri(v){Tα(Ai|Bi) + T1−α(Bi|Ai)},(2)

0 ≤ Dv
α(A|B) ≤ 1

1− α
Dv

0(A|B),(3-a)

0 ≤ Dv
α(A|B) ≤ 1

α
Dv

1(A|B),(3-b)

Dv
α(A|B) ≤

n∑
i=1

Ri(v){S1(Ai|Bi)− S(Ai|Bi)}(4)

hold for α ∈ (0, 1) and v ∈ R.
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inequality based on Tsallis and Rényi relative entropies, Linear Algebra Appl., 439(2013),
3148–3155.

[11] M. Ito, Y. Seo, T. Yamazaki, and M. Yanagida, Geometric properties of positive definite
matrices cone with respect to the Thompson metric, Linear Algebra Appl., 435(2011), 2054–
2064.

[12] E. Kamei, Paths of operators parametrized by operator means, Math. Japon., 39(1994), 395–
400.

[13] S. Kullback, Information Theory and Statistics, Wiley, New York, (1959).

[14] M. I. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press, Cambridge, (2000).

[15] D. Petz, Bregman divergence as relative operator entropy, Acta Math. Hungar., 116(2007),
127–131.

[16] K. Yanagi, K. Kuriyama, S. Furuichi, Generalized Shannon inequalities based on Tsallis rela-
tive operator entropy, Linear Algebra Appl., 394(2005), 109–118.

(1) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. isa@maebashi-it.ac.jp

(2) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. m-ito@maebashi-it.ac.jp

(3) 1-1-3, Sakuragaoka, Kanmakicho, Kitakaturagi-gun, Nara, Japan, 639-0202.

ekamei1947@yahoo.co.jp

(4) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. tohyama@maebashi-it.ac.jp

(5) Maebashi Institute of Technology, 460-1, Kamisadori-machi, Maebashi, Gunma,

Japan, 371-0816. masayukiwatanabe@maebashi-it.ac.jp

Communicated by Jun Ichi Fujii

14 H.Isa, M.Ito, E.Kamei, H.Tohyama and M.Watanabe

[3] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory,
Math. Japon., 34(1989), 341–348.

[4] J. I. Fujii and E. Kamei, Interpolational paths and their derivatives, Math. Japon., 39(1994),
557–560.

[5] J. I. Fujii and E. Kamei, Path of Bregman-Petz operator divergence, Sci. Math. Jpn., 70(2009),
329–333.
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(3) Reviewing Process 
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b. The referee sends a report to the editor.  When revision of the paper is 
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Call for Academic and Institutional Members 
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yearly price of US$225.  At this price, they can add the subscription of the online version upon 
their request.    
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